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Abstract
Heart rate variability (HRV) analysis represents an important tool for the characterization of complex cardiovascular
control. HRV indexes are usually calculated from electrocardiographic (ECG) recordings after measuring the time
duration between consecutive R peaks, and this is considered the gold standard. An alternative method consists of
assessing the pulse rate variability (PRV) from signals acquired through photoplethysmography, a technique also
employed for the continuous noninvasive monitoring of blood pressure. In this work, we carry out a thorough analysis
and comparison of short-term variability indexes computed from HRV time series obtained from the ECG and from PRV
time series obtained from continuous blood pressure (CBP) signals, in order to evaluate the reliability of using CBP-
based recordings in place of standard ECG tracks. The analysis has been carried out on short time series (300 beats) of
HRV and PRV in 76 subjects studied in different conditions: resting in the supine position, postural stress during 45°
head-up tilt, and mental stress during computation of arithmetic test. Nine different indexes have been taken into
account, computed in the time domain (mean, variance, root mean square of the successive differences), frequency
domain (low-to-high frequency power ratio LF/HF, HF spectral power, and central frequency), and information domain
(entropy, conditional entropy, self entropy). Thorough validation has been performed using comparison of the HRV and
PRV distributions, robust linear regression, and Bland–Altman plots. Results demonstrate the feasibility of extracting
HRV indexes from CBP-based data, showing an overall relatively good agreement of time-, frequency-, and information-
domain measures. The agreement decreased during postural and mental arithmetic stress, especially with regard to band-
power ratio, conditional, and self-entropy. This finding suggests to use caution in adopting PRV as a surrogate of HRV
during stress conditions.

Keywords Heart rate variability (HRV) . Pulse rate variability (PRV) . Electrocardiography (ECG) . Photoplethysmography
(PPG) . Continuous blood pressure (CBP) . Time series analysis

1 Introduction

Heart rate variability (HRV) is commonly considered an im-
portant tool to assess overall cardiac health and the status of
autonomic nervous system (ANS) [1, 2]. HRV reflects cardio-
vascular complexity and the organism capability to react to
environmental and psychological stimuli, and is widely
agreed as a noteworthy feature of healthy physiological regu-
lation that is commonly degraded with disease and aging
[1–5]. Therefore, HRV may potentially reveal an ongoing dis-
ease, or even an impending cardiovascular pathological state
[2, 6]. The Bgold standard^ method to assess HRV involves
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measurement of the time interval between consecutive heart-
beats from electrocardiographic (ECG) recordings—RR inter-
vals [1–6]. While in the analysis of HRV recordings as long as
24 h (Blong-term^ recordings) can be considered, recordings
of HRVof ~ 5 min are the most commonly analyzed, both for
practical purposes and because they allow to assess the short-
term cardiovascular control [1, 6]. The analysis of short-term
HRV can be also used—with a reasonable time resolution—to
assess changes in the ANS activity related to altered psycho-
physiological states, including among others the response to
physiological stressors [7, 8].

Short-term HRV is commonly described through different
analysis techniques, carried out via time-domain, frequency-
domain, and information-theoretic indexes [1, 6, 9, 10]. Time-
domain analysis can quantify the magnitude of variability ei-
ther beat-to-beat, or overall within the considered timeframe.
On the other hand, frequency-domain indexes are convenient
to estimate the distribution of absolute or relative power into
specific frequency bands [1]. Furthermore, information-
domain entropy-based measures allow to assess the complex-
ity of HRV, which is related to the regularity of the temporal
patterns found in the time series and is linked to the balance
between sympathetic and parasympathetic ANS activity [1, 3,
7, 11–16]. Notably, the interest in the information-theoretic
assessment of short-term cardiovascular variability is increas-
ing, as documented by several recent studies focused not only
on the analysis of HRV complexity, but also on the analysis of
physiological interactions within cardiovascular and cardiore-
spiratory control system [3, 7, 11–16].

In recent years, there has been an upswing of the utilization
out of clinical settings of photoplethysmography (PPG), an
optical technique capable of detecting microvascular blood
volume changes in tissues [16, 17]. The simplest PPG devices
usually consist of a light source illuminating the tissue, and a
photodetector capable of sensing the small variations in
reflected or transmitted light intensity [16–19]. The PPG
working principle relies on a different absorption of infrared
light by blood in comparison to the surrounding skin tissues,
in order to obtain a signal proportional to changes in blood
volume [16–19]. The growing interest towards PPG is mainly
due to its ease of use, low cost, safety, minimal invasiveness,
and potential to carry out a wide range of physiological as-
sessments, such as blood oxygen saturation and extraction of
cardiovascular and respiratory parameters. Moreover, PPG
signals are becoming more widely available thanks to the
possibility to employ cameras embedded in smartphones and
smartwatches for their acquisition [20, 21]. The PPG tech-
nique is used in the clinical and physiological research also
to measure arterial pressure variability, employing medical
devices that exploit the volume-clamp method, such as
Finapres and Finometer [17, 22–24]. Finapres (FINger
Arterial PRESsure) devices were first developed in the early
1980s for providing a reliable continuous blood pressure

(CBP) monitoring. Their working principle is based on the
dynamic vascular unloading of the finger arterial walls using
an inflatable finger cuff [17, 22–24]. In such devices, a PPG
probe controls an air pump to counteract finger volume chang-
es, so that the cuff pressure oscillations are a reflection of the
arterial pressure signal and can be used as its surrogate [17,
22]. CBP and PPG signals are thus related to each other since
a pulsation of the arterial diameter during a heartbeat produces
a pulsation in the photodetected signal; e.g., timings of the
CBP signal are based on plethysmographic principle [17, 23].

Starting from a PPG or blood pressure signal, a time series
of pulse rate variability (PRV) can be extracted which can be
considered as an alternative way for the recording of HRV
[16–19]. However, PPG or CBP recordings are typically af-
fected both by physiological factors related to the transmission
of the pulse wave along the vascular bed, and by measure-
ments errors due for instance to motion-induced signal corrup-
tion and to the lower accuracy of peak detection [16, 25]. Such
drawbacks may impair the agreement between PRVand HRV,
thus potentially limiting the usability of PPG-based ap-
proaches to the evaluation of HRV parameters. This issue
has been widely investigated in recent years [21, 24, 26–37],
and we refer the reader to [24] for a comprehensive review in
this sense. Most of the papers [26–33] take into account time-
and frequency-domain indexes for the analysis, while only a
few consider also information-theoretic variables [34, 35].
While an overall good agreement has been found in the liter-
ature among PRVand HRV variables, results appear still con-
troversial [24, 27–33].

The present study aims at contributing to the assessment of
the reliability of PRV as a surrogate of HRV with a special
focus on the following: (i) the exploration of a broad range of
measures able to characterize short-term cardiac control com-
plexity, and (ii) the evaluation of the agreement during condi-
tions of physiological stress. To this end, we evaluate, in a
group of healthy subjects monitored during supine rest, pos-
tural stress induced by head-up tilt, and mental stress induced
by arithmetic tests, several measures typically used to quantify
short-term HRV in the time domain (mean, variance, and root
mean square of the successive differences (RMSSD)), fre-
quency domain (low-to-high frequency power ratio LF/HF,
HF band central frequency, and spectral power), and informa-
tion domain (entropy, conditional entropy, self entropy). To
the best of our knowledge, this paper is the first which com-
pares PRV to HRV taking into account, in the same study, nine
different indexes, also including information-theoretic domain
ones. This approach considers the complex nature of beat-to-
beat heart rate oscillations stressing the importance of their
assessment using time series analysis tools in various do-
mains. In addition, our work brings special focus on valida-
tion, performing a thorough analysis of the differences and
relations between two assessed methods (PRV and HRV)
exploiting three types of analysis (i.e., hypothesis testing,
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correlation analysis, Bland–Altman plots). Our intention was
to complement the results already available in the literature in
terms of when and to which extent PPG-based measurements
can be used to assess HRV in place of the standard but more
cumbersome ECG technique as regards the detection of stress
states resembling those of daily life situations, with possible
implications for homecare and fitness applications. The pres-
ent work completes and extends results recently presented in a
preliminary form in ref. [38].

2 Materials and methods

2.1 Subjects and experimental protocol

The present work makes use of a database previously collect-
ed to evaluate the effects of physiological stress and cognitive
workload on cardiovascular variability [39]. Seventy-six
young healthy volunteers (32 males, 44 females, age 18.4 ±
2.7 years), all normotensive, and having a normal body mass
index (BMI = 21.3 ± 2.3 kg/m2) participated to the study. All
participants signed a written informed consent, and when the
subject was a minor (age < 18 years) prior parental or legal
guardian permission was gathered to allow the child to partic-
ipate in the study. All the procedures were approved by the
Ethical Committee of the Jessenius Faculty of Medicine,
Comenius University, Martin, Slovakia.

Signals were recorded on subjects in five different phases of
the experimental protocol: (a) 15 min with subjects resting in
the supine position after initial stabilization of physiological
parameters prior to measurement at a baseline level (phase
R1), (b) head-up tilt test was performed for 8 min in order to
produce orthostatic stress (phase T), (c) another phase of 10min
of supine rest allowed physiological parameters of the subjects
to recover (phase R2), (d) with subjects lying in the supine
position, a mental arithmetic test lasting 6 min was executed
to evoke cognitive load (phase M), and (e) another phase of
10 min of supine rest was allowed to let the physiological
parameters to recover again (phase R3). Head-up-tilt was per-
formed in phase T by tilting passively the motorized bed table
on which the volunteers were laying to 45° upright position.
The arithmetic test was carried out in phase M using WQuick
software with WIN 5 PMT test (Psycho Soft Software, s.r.o.,
Brno, Czech Republic) and consisted of a repetitive display on
the ceiling of the room of randomly generated 3-digit numbers.
Each subject was asked to read the numbers and mentally sum
up the digits as quickly as possible: if the result was a two-digit
number, the subject was instructed to keep summing the digits
until a one-digit number was reached; then, the subject had to
decide whether the final resulting number was even or odd by
using a computer mouse to click the corresponding virtual but-
ton also projected on the ceiling.

The analyzed data consisted of ECG and blood pressure
recordings acquired simultaneously at a sampling rate of
1 kHz. ECG was obtained using horizontal bipolar thoracic
leads and recorded by Cardiofax ECG-96220 (Nihon Kohden,
Japan), while blood pressure data were obtained using
Finometer Pro device (FMS, The Netherlands), which mea-
sures beat-to-beat arterial pressure variability through the
volume-clamp method [22, 23].

2.2 Time series and data analysis

Analyses have been carried out selecting windows of N = 300
consecutive heartbeats, for each of the five phases described in
the previous subsection. The windows were selected during
stable physiological conditions to avoid transition effects from
one phase to another, thus favoring the stationarity of the time
series. In detail, the 300-point windows were extracted from
the recorded signals, respectively, starting ~ 8 min after the
beginning of phase R1, ~ 3 min after the beginning of phase T,
~ 3 min after the beginning of phase R2, ~ 2 min after the
beginning of phase M, and ~ 5 min after the beginning of
phase R3. The analyzed 300-point windows were free of arti-
facts, including those related to calibration of the Finometer
device (such calibration, which interrupts the measurement of
CBP, was executed only in the last minute of phases R1 and
R2).

Starting from the acquired data, the n-th RR interval (RRI)
was calculated from the ECG as the time interval between the
n-th and (n + 1)-th QRS apexes, while the n-th pulse-to-pulse
interval (PPI) was measured as the time interval between the
n-th and (n + 1)-th blood pressure maxima. RRI and PPI
values were extracted using LabChart 8 (ECG analysis, blood
pressure modules) toolbox from ADInstruments. An example
of the RRI and PPI time series measured for a representative
subject during the phases R1, M, and T is reported in Fig. 1a.

For both the RRI and PPI time series measured in each
phase, time-domain analysis was performed computing the
average value (MEAN), the standard deviation of the
normal-to-normal intervals (SDNN), and the root mean square
of successive RRI or PPI interval differences (RMSSD) [1,
40]. SDNN has been chosen as an index of interest since both
sympathetic nervous system (SNS) and parasympathetic ner-
vous system (PNS) activity contribute to its value, and also
because it represents the gold standard for medical stratifica-
tion of cardiac risk, although this has been proved on 24-h
period recordings [1]. Instead, RMSSD reflects the beat-to-
beat variability in pulse interval (or heart rate) and is the pri-
mary time-domain measure used to assess vagally mediated
changes in HRV [1], and was computed as [40]

RMSSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1
∑
N−1

n¼1
x nþ 1ð Þ−x nð Þð Þ2;

s
ð1Þ
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where x(n) can be either RRI(n) or PPI(n), indicating the n-th
measurement of the interval, and N = 300. Before performing
frequency- and information-domain analyses, PPI and RRI
time series were further pre-processed removing slow trends
(by means of a zero-phase IIR high-pass filter with a cutoff
frequency of 0.015 Hz) and then reduced to zero mean by
subtracting the mean value. Quasi-stationarity of the selected
time series was verified by applying test described in [41],
which checks a restricted form of weak stationarity by
assessing the stability of mean and variance across sub-
windows of the analyzed time series.

Parametric spectral analysis was then carried out fitting the
pre-processed time series with an autoregressive (AR) model
of the form

x nð Þ ¼ ∑
p

k¼1
akx n−kð Þ þ w nð Þ; ð2Þ

where ak are the linear regression coefficients that weight the
linear dependence of the current sample of the time series,
x(n), on the past samples, x(n-k) with a delay k = 1,..., p, p is
the model order, and w(n) an uncorrelated Gaussian white
noise process with zero mean and variance σ2

w. Here, model
identification was performed through the ordinary least
squares method and, instead of using standard model order

selection criteria, a model order of p = 10 was selected to
allow representation of different oscillations within the low-
frequency (LF, range 0.04–0.15 Hz) and high-frequency (HF,
range 0.15–0.4 Hz) spectral bands [38]; in general, it has been
proven that orders from p = 9 to p = 25 generate statistically
similar normalized spectral parameters [42]. Then, the power
spectral density of the AR process was computed in the fre-
quency domain starting from the AR coefficients as [43]

P fð Þ ¼ σ2
w=jA zð Þ z¼e j2πfTj j2 ð3Þ

where A zð Þ ¼ 1−∑p
k¼1akz

−k is the representation of the coef-
ficients in the z-domain.

In this work, we used a spectral decomposition method to
split P( f ) into k components reflecting the oscillatory struc-
ture of the process [44], each associated with a central fre-
quency fk and a power Pk computed from the roots of the
polynomial A(z) [16]. An example of spectral decomposition
performed from RRI and PPI time series during R1, M, and T
is shown in Fig. 1 (mid row panels). As frequency-domain
indexes, we have selected the central frequency of the most
prominent peak located in the high frequency band (fHF), the
HF spectral power in absolute units, and the ratio of the total
power located in the LF band to that found in HF band (LF/
HF). In detail, LF power may reflect the activity of both PNS

Fig. 1 Examples of RRI and PPI time series (top row panels), spectral
decomposition (mid row panels), and probability distributions (bottom
row panels) for a representative subject monitored at rest (a, phase R1),
during orthostatic stress (b, phase T), and during mental workload (c,
phase M). Black lines/plots represent RRI data, while blue lines/plots
denote PPI data. Dotted lines in mid row panels indicate the k
components obtained from spectral decomposition representing the
oscillatory structure of the process. In this example, the indexes
measured in the three phases (R1, T, and M) were the following:
MEAN (911.24, 720.08, 843.09 ms from RRI; 911.24, 720.13, 843.09

from PPI), SDNN (40.33, 52.74, 40.74 ms from RRI; 42.18, 57.19,
45.24 ms from PPI), and RMSSD (40.82, 29.24, 33.16 ms from RRI;
42.18, 39.57, 45.70 ms from PPI) for the time-domain analysis; fHF
(0.336, 0.166, 0.191 Hz from RRI; 0.336, 0.171, 0.189 Hz from PPI),
HF (606.19, 608.32, 527.81 ms2 from RRI; 726.38, 744.60, 727.46 ms2),
and LF/HF (0.999, 3.028, 1.002 from RRI; 0.826, 3.116, 0.732 from PPI)
for frequency-domain analysis; and H (5.046, 5.209, 4.842 nats from
RRI, 5.035, 5.321, 5.009 nats from PPI), CE (2.067, 1.470, 1.700 nats
from RRI; 2.042, 1.839, 1.974 nats from PPI), and SE (0.116, 0.547,
0.122 nats from RRI; 0.119, 0.395, 0.062 nats from PPI)
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and SNS; however, SNS usually does not generate rhythms
much above 0.1 Hz, while the PNS can affect heart rhythms
down to 0.05 Hz [1]. The power content in the HF band
reflects parasympathetic activity and a strong relationship be-
tween the HF central frequency, and respiratory influences has
been observed [1]; moreover, lower HF power has been cor-
related with stress, panic, anxiety, or worry conditions [1].
Finally, LF/HF power ratio has been chosen since it has been
long used as an index reflecting the proportion of sympathetic
to parasympathetic activity [1], although its reliability as a
measure of the autonomic balance is largely debated [45,
46]. In addition to these indexes herein analyzed, also the
LF spectral power (both in absolute and normalized units),
the central frequency of the most prominent peak located in
the LF band and the normalized power in the HF band have
been considered; description and relevant results are included
as electronic supplementary material (Online Resource 1).

Finally, information-domain analysis was carried out to
assess the amount of information contained in the most recent
sample of the time series x(n), as well as the information
shared between x(n) and the past samples x(n−1),..., x(n−m)
and the residual information contained in x(n) but not in
x(n−1),..., x(n−m). These quantities reflect, respectively, the
entropy of the time series (H), the part of this entropy which
can be derived from the past history (self entropy, SE) and the
part that cannot be derived from it (conditional entropy, CE)
[11, 47, 48]. In detail, entropy, conditional entropy, and self
entropy are given by:

Hx ¼ −Ε logp x nð Þð Þ½ �
Cx ¼ −Ε log

p x nð Þ; x n−1ð Þ; :::; x n−mð Þð Þ
p x n−1ð Þ; :::; x n−mð Þð Þ

� �

Sx ¼ Hx−Cx ¼ Ε log
p x nð Þ; x n−1ð Þ; :::; x n−mð Þð Þ

p x nð Þð Þ⋅p x n−1ð Þ; :::; x n−mð Þð Þ
� � ð4Þ

where for the generic random variables a and b, p(a) is the
probability of a, and p(a|b) = p(a,b)/p(b) is the conditional
probability of a given b. An example of the probability distri-
bution p(x(n)), computed using histogram quantization where
x(n) is RRI(n) or PPI(n), is reported in Fig. 1 (bottom row
panels). In this work, we applied two different model-free
approaches, described in detail e.g., in ref. [48], to compute
the information measures defined in Eq. (4). The conditional
entropy was computed using the kernel estimator, which
yields the estimate of CE very well known as sample entropy
[12]. This is achieved computing the kernel density estimate
of the probability distribution, i.e., computing the probability

of a generic vector v(n) from M realizations as p v nð Þð Þ ¼
M−1ð Þ−1∑M

i¼1;i≠nΘ ‖v nð Þ−v ið Þ‖ð Þ where ||∙|| is the maximum

norm and Θ is the Heaviside kernel with threshold distance
r (i.e., the vectors v(n) and v(i) are similar if the maximum
distance between their scalar components is lower than r), and
then using the kernel estimator for computing p(x(n), x(n −

1), ..., x(n −m)) and p(x(n − 1), ..., x(n −m)) to be plugged in
Eq. (4) to estimate Cx. As to the estimate of entropy and self
entropy, here, we adopted an approach based on k-nearest
neighbor method for the estimation of probability density
functions [48, 49] that is more accurate and less biased than
the kernel entropy estimation methods commonly used for Cx

[12]. With this approach, estimates of the quantities Hx and Sx
defined in Eq. (4) are obtained in practice as follows:

Hx ¼ ψ Nð Þ−ψ kð Þ þ 1

N
∑N

n¼1lnε nð Þ
Sx ¼ ψ N−mð Þ þ ψ kð Þ− 1

N−m
∑N−m

n¼1 ψ Nx n;mð Þ
� �þ ψ Nx nð Þ

� �� �
ð5Þ

where ψ(∙) is the digamma function, ε(n) is twice the distance
from x(n) to its k-th nearest neighbor in the one-dimensional
space, x(n,m) = (x(n − 1), ..., x(n −m)), ε(n,m + 1) is twice the
distance from (x(n), x(n,m)) to its k-th nearest neighbor in the
(m + 1)-dimensional space, and Nx(n,m) and Nx(n) are the num-
ber of points whose distance from x(n,m) and x(n), respective-
ly, is smaller than ε(n,m + 1)/2. Details about the estimation of
these measures can be found in [48, 49]. In this study, before
evaluating information-domain indexes, the time series were
normalized to unit variance. Then, in accordance with the
literature standards for short-time series [12, 49], the parame-
ter m was set equal to m = 2; the threshold distance for the
kernel estimator was set to r = 0.2, and the number of neigh-
bors to be used in Eq. (5) was set to k = 10.

2.3 Statistical analysis

The main aim of the analyses carried out in this work was to
assess to what extent PPI-based measures can be used to eval-
uate HRV in place of the gold standard ECG technique. For
this reason, the agreement between PPI- and RRI-based ap-
proaches has been assessed comparing the distributions of the
nine indexes described in Sect. 2.2 across the 76 subjects,
using three different testing approaches: (a) hypothesis testing,
(b) correlation analysis, and (c) Bland–Altman plots.

For each of the five phases described in Sect. 2.1, we
have applied the Wilcoxon signed rank test to check wheth-
er RRI-based and PPI-based distributions come from a dis-
tribution of the samemedian. The null hypothesis is rejected
(i.e., p value < 0.05) when there is no agreement between the
two distributions under test. Moreover, to test the statistical
significance of the differences in median of the five distri-
butions of each measure evaluated across conditions (R1, T,
R2, M, R3), we used the Friedman ANOVA test, followed by
post hoc Wilcoxon signed rank test to assess pairwise dif-
ferences (e.g., R1 vs T, R1 vs R2, R1 vs M, R1 vs R3, and so
on), also employing the Bonferroni correction for multiple
comparisons.
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As regards correlation analysis, a robust regression tech-
nique was used to calculate the slope (a) and the intercept (b)
of the regression line, in order to quantify the agreement be-
tween RRI-based and PPI-based measurements according to
the linear prediction model y = ax + b, where x and y represent
values of measures assessed from RRI and from PPI time
series, respectively. Moreover, the standard linear regression
technique was employed to calculate the Pearson correlation
coefficient R, which was taken as a measure of the agreement
between the two distributions under test.

Finally, the Bland–Altman plots were used to assess the
agreement between the two approaches in terms of the differ-
ences between RRI-based and PPI-based measurements (in
the y axis) plotted versus their average (in the x axis). The
agreement was quantified as a ratio between half the 95%
confidence interval for the difference and the mean of the
averaged values [50].

3 Results

Figure 2 shows the comparison of the distributions of time-
domain indexes (i.e., MEAN, SDNN, and RMSSD) across the
76 subjects in the five considered conditions.

As reported, for all the three considered indexes, the phase-
by-phase comparison shows that the distributions in supine
rest conditions (R1, R2, R3) are not statistically different. On
the contrary, all indexes were significantly lower (p < 0.05)
during mental arithmetic and head-up tilt if compared with
each of the three resting conditions.

Importantly, the results of the significance tests were exact-
ly the same when the indexes were computed from RRI or
from PPI measurements. Regarding the comparison between
the two approaches to compute the same index in a given
phase, we observed that the distributions of the MEAN index
were statistically similar. On the contrary, the values of SDNN

and RMSSD were significantly higher if assessed from PPI
than from RRI time series.

Figure 3 depicts the comparison of the distributions of
frequency-domain indexes, i.e., fHF, HF, and LF/HF. The cen-
tral frequency of the HF peak in the power spectrum did not
show any statistically significant difference across the ana-
lyzed experimental conditions, while the HF spectral power
was significantly lower duringM and T than during any of the
supine rest conditions. Analysis of the LF/HF power ratio
(Fig. 3c) shows that, while the three resting conditions did
not exhibit significant differences with each other, the ratio
was significantly higher during T and M than during rest,
and was significantly higher during T than during M. For
the HF and LF/HF indexes, we note also that the PPI-based
values are significantly different than the RRI-based values in
all conditions, the difference being more positive (larger PPI)
for HF and negative (larger RRI) for LF/HF.

Similar remarks can be made from the comparison of the
distributions of information-domain indexes, i.e., H, CE, and
SE, shown in Fig. 4. Again, RRI-based or PPI-based distribu-
tions of supine resting phases are similar, while T and M are
statistically different. In particular, significant differences can
be observed for H during both T and M (a significant de-
crease), for CE during T (a decrease), and for SE during T
(an increase). RRI-based and PPI-based values of the indexes
are statistically different as the PPI method overestimates H
and CE and underestimates SE (p value < 0.05), the difference
being more remarkable during T.

Table 1 summarizes the results of the linear correlation anal-
ysis between RRI-based and PPI-based measurements of, re-
spectively, time-, frequency-, and information-domain indexes,
assessed through robust regression in the five different condi-
tions (R1, R2, R3 shown together in the left panel in each figure,
T in the central panel, M in the right panel). In detail, the
numerical values of the correlation coefficient (R), slope (a),
and intercept (b) of the regression lines are reported in Table 1.

Fig. 2 Boxplot distributions of time-domain indexes, i.e., (a) MEAN, (b)
SDNN, and (c) RMSSD calculated from PPI (white) and RRI (gray) time
series during supine rest phases (R1, R2, R3), head-up tilt (T), and mental

arithmetic test (M). Statistical tests: phase name, p < 0.05 Ph.1 vs Ph.2;
*p < 0.05 PPI vs RRI
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With regard to time-domain indexes, an almost perfect
agreement (i.e., correlation coefficient and slope of the regres-
sion of ~ 1.00) is observed in resting conditions (R1, R2, R3),
while a slightly lower slope has been obtained in case of
RMSSD in T (a~0.97) and M (a~0.98) phases.

Regression analysis of frequency-domain indexes demon-
strates again a very good agreement of central frequency and
HF spectral power in resting conditions, with almost unitary
slope values and correlation coefficients higher than 0.93. As
to the LF/HF power ratio, the agreement is lower than expect-
ed during the R1 condition due to the presence of some outlier
values, but the correlation is very high in the two other resting
phases R2 and R3. The lowest value of the slope of the regres-
sion line has been obtained also in this case during the T
condition.

Regression analysis of information-domain indexes shows
similar results to the previous analysis, demonstrating again a
very good agreement of all the considered indexes (i.e., H,
CE, and SE) in the supine resting conditions (R1, R2, and
R3), with high values of the correlation coefficient in all the

cases; lower correlation values were obtained for CE (com-
puted with the kernel estimator) compared with H and SE
(computed with the nearest neighbor estimator). In a similar
way, the slope of the robust regression line was higher than 0.9
during the three rest conditions when assessed for H and SE,
while it was lower for CE. Again, a worse agreement is ob-
served moving from rest to stress, with generally lower R and
a values obtained in the M and especially in the T phases. The
worst agreement is observed during head-up tilt for SE
(R~0.79, a~0.63) and for CE (R~0.79, a~0.61).

Figures 5, 6, and 7 depict Bland–Altman plots, respectively
for the time-domain, frequency-domain, and information-
domain indexes, during all the five conditions; again, the rest-
ing phases R1, R2, and R3 have been analyzed together.
Diagrams have been obtained plotting the differences between
RRI-based and PPI-based measurement versus their average.
The average difference is indicative of the bias of PPI-based
measures compared to RRI-based ones, while the width of the
95% confidence intervals of the differences PPI-RRI is indic-
ative of the dispersion of PPI-based measures around RRI-

Fig. 4 Boxplot distributions of information-domain indexes, i.e., (a) H,
(b) CE, and (c) SE calculated from PPI (white) and RRI (gray) time series
during supine rest (R1, R2, R3), head-up tilt (T), andmental arithmetic test

(M). Statistical tests: phase name, p < 0.05 Ph.1 vs Ph.2; *p < 0.05 PPI vs
RRI

Fig. 3 Boxplot distributions of frequency-domain indexes, i.e., (a) fHF,
(b) HF, and (c) LF/HF, calculated from PPI (white) and RRI (gray) time
series during supine rest phases (R1, R2, R3), head-up tilt (T), and mental

arithmetic test (M). Statistical tests: phase name, p < 0.05 Ph.1 vs Ph.2;
*p < 0.05 PPI vs RRI
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based ones. Numerical values of the agreement between PPI-
based and RRI-based measures are reported in Table A of the
electronic supplementary material (Online Resource 1).

With regard to time-domain indexes (Fig. 5), there is an
almost perfect agreement for the MEAN parameter between
RRI-based and PPI-based measurements (around 10−4) in all
the conditions.

Moreover, the average values PPI-RRI are very small, as
also seen by the almost null median values of the plots. Also,
SDNN shows a very good agreement, with index lower than
0.05 for all the cases and especially for the resting conditions.
However, the average values PPI-RRI and the median of their
distribution show that PPI measurements overestimate SDNN
for all the conditions, especially during head-up tilt. The same
remarks can be made for RMSSD in terms of overestimation in
case of PPI measurements. In addition, the agreement was very
good (~ 0.05) for resting phases, but lower for other conditions,
being 0.09 during M and 0.13 during T.

The Bland-Altman analysis carried out on frequency-
domain indexes (Fig. 6) shows quite different results. First,
the bias is very low for fHF in all the considered conditions. A
larger positive bias was instead found for HF, indicating that
PPI-based measures overestimate HF power.

The agreement is quite good (~ 0.01) only for fHF, while it
is worse otherwise. In detail, agreement is bad (> 2) for the LF/
HF power ratio during R1, R2, and R3 (considered together)
and during T, being only a little better in the M phase. The
difference in the agreement among the various conditions is
very marked for HF, ranging from ~ 0.16 in the supine resting
conditions to ~ 0.83 during T.

Figure7 reports the results of the Bland–Altman test exe-
cuted for the information-domain indexes. The bias, which
documents the average of the differences, is positive for the
indexesH and CE and is negative for SE, confirming that PPI-
based measures overestimate entropy and complexity and un-
derestimate the regularity of HRV. Moreover, the bias was
small during rest and M and larger during T for all indexes.
As to the agreement, it is very good (~ 0.02) in all conditions
for the index H, while it is larger for the indexes CE and SE,
ranging from ~ 0.14 to ~ 0.5.

We highlight that similar remarks can be made when ana-
lyzing LF spectral power and also normalized power values,
which are other frequency-domain indexes widely employed
in the literature [1, 6]. We refer the reader to the electronic
supplementary material (Online Resource 1) for this analysis.

4 Discussion

The aim of the present study was to investigate to what extent
measures of PRV-derived detecting blood pulsation in the pe-
ripheral circulation can substitute traditional HRV measures
derived from the ECG, with focus on descriptive indexesTa
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based on short-term analysis performed in time, frequency,
and information domains. For PRV analysis, we have
employed blood pressure data acquired via a Finometer device
(previously collected for other purposes). We are aware that
volume clamp photoplethysmography-based devices, being
less portable and more expensive when compared to basic
PPG devices, are not the way to go for practical applications

if the purpose is to measure PRV. However, as the CBP and
PPG signals are strictly related to each other in terms of pul-
sation timings, both have been proposed to compare HRVand
PRV [24], and this suggests that our results should also reflect
the agreement between HRV and PRV when the latter is
assessed through portable photoplethysmographic devices
[17, 23].

Fig. 5 Bland–Altman plots of time-domain indexes, i.e., (a) MEAN, (b)
SDNN, and (c) RMSSD showing mean values of RRI-based and PPI-
based indexes against their difference, computed for the five considered
conditions. For each figure, the left panel shows results obtained in resting
conditions (R1 in blue, R2 in green, and R3 in red), the central panel those

extracted for head up tilt (T) case, and the right panel those computed for
mental arithmetic test condition (M). Horizontal lines denote median
(dotted lines) and 95% confidence intervals of the difference PPI-RRI
(solid lines)

Med Biol Eng Comput (2019) 57:1247–1263 1255



In the literature, different works have been devoted to com-
paring PRVand HRV variables [24, 27–33]. Even if an overall
good agreement has been obtained in most papers for time- and
frequency-domain indexes, the results appear still somewhat
controversial [24, 27–33], especially with regard to RMSSD
and some frequency-related variables, such as LF, HF, and LF/

HF [27–29] or during head-up tilt, exercise [26, 27], or mental
stress [29]. Also, a few studies using blood pressure (Finapres)
data tend to confirm a greater disagreement between PRV and
HRV variables in the short-term or HF domain [30–33]. In
particular, in [30], a comparative study of ECG and CBP sig-
nals recorded during a variety of situations (e.g., supine, seated

Fig. 6 Bland-Altman plots of frequency-domain indexes, i.e., (a) fHF, (b)
HF, and (c) LF/HF showing mean values of RRI-based and PPI-based
indexes against their difference, computed for the five considered
conditions. For each figure, the left panel shows results obtained in
resting conditions (R1 in blue, R2 in green, and R3 in red), the central

panel those extracted for head-up tilt (T) case, and the right panel those
computed for mental arithmetic test condition (M). Horizontal lines
denote median (dotted lines) and 95% confidence intervals of the
difference PPI-RRI (solid lines)
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rest, orthostatic tilt, psychological tasks) has been carried out,
again taking into account time- and frequency-domain indexes.
However, data were analyzed by intraclass correlation reliabil-
ity coefficients only [30]. More recent research papers have
investigated the feasibility to assess the reliability of pulse-
rate variability measurements obtained from PPG signals ac-
quired by video cameras [36], smartphones [21], or

smartwatches [37]. Also, in such works, only time- and
frequency-domain indexes have been taken into account, find-
ing an overall good agreement of temporal parameters, but
bigger differences and disagreement for LF and HF powers
[21, 37] or during standing if compared to resting position [36].

Our results complement the findings already available in
the literature, highlighting the feasibility of extracting HRV

Fig. 7 Bland–Altman plots of frequency-domain indexes, i.e., (a) H, (b)
CE, and (c) SE showing mean values of RRI-based and PPI-based
indexes against their difference, computed for the five considered
conditions. For each figure, the left panel shows results obtained in
resting conditions (R1 in blue, R2 in green, and R3 in red), the central

panel those extracted for head-up tilt (T) case, and the right panel those
computed for mental arithmetic test condition (M). Horizontal lines
denote median (dotted lines) and 95% confidence intervals of the
difference PPI-RRI (solid lines)
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indexes from PPI-based data, in several different conditions.
Overall, the relatively good agreement of PPI-based measures
with the corresponding RRI-based gold standard is demon-
strated by their ability to detect changes in the autonomic
nervous system state during physiological challenges, by gen-
erally low difference of their absolute value (Figs. 2, 3, and 4),
high correlation (Table 1), and low dispersion of differences
(Figs. 5, 6 and 7). The agreement was almost perfect in resting
supine positions (R1, R2, R3), while resulted to be worse in the
45° upright position (T) and duringmental arithmetic test (M).
In particular, PPI-based measures of the time-domain indexes
exhibited higher bias and coefficient of agreement according
to Bland–Altman analysis (Fig. 5). As to frequency-domain
indexes, resting conditions presented a better agreement doc-
umented in terms of correlation coefficient (Table 1) and
Bland–Altman plots (Fig. 6), compared to mental and espe-
cially to postural stress. The HF spectral power resulted sig-
nificantly lower duringM and T than during any of the supine
rest conditions, suggesting that the HF power decreases during
M and especially during head-up tilt due to reduced parasym-
pathetic activity. Moreover, the LF/HF ratio was markedly
higher during T, confirming the well-established behavior that
in this case the LF component becomes dominant, reflecting
sympathetic activation; this occurred without any significant
changes of LF spectral power in absolute units if compared to
resting conditions, due to the decrease of the total variance [6].
Moreover, the reduction of HF spectral power during mental
arithmetic test can be due to the fact that decreased parasym-
pathetic tone reflected in a lower HF power is correlated with
stress states [1]. In the information domain, supine resting
conditions showed a close agreement between the two ap-
proaches, being instead worse during stress, especially in the
case of conditional entropy and self entropy computed during
head-up tilt. A possible explanation of the worse agreement
for information measures during physiological stress is that
the higher variability exhibited by PRV compared to HRV is
likely determining more complex patterns in the time series,
which cause the higher CE and lower SE found in our study
(Fig. 7). This finding has potential physiological and clinical
relevance, since information measures such as the CE and the
SE have been shown to respond to different degrees of neural
sympathetic activity during postural stress, and are thus be-
lieved to respond to sympathetic control [7, 13].

When comparing the different descriptors in the time, fre-
quency, and information domains, we observe that PRV is
more in disagreement with HRV regarding the computation
of the LF/HF power ratio. For this index, the accordance be-
tween PPI- and RRI-based data was worse both in terms of
correlation coefficient and of Bland–Altman agreement. In the
literature, the agreement between PPI- and RRI-based values
of the LF/HF index has been controversial [24]. In particular,
similarly to our results, in different previous works, the LF/HF
ratio presented a negative bias and a lower agreement when

compared to other indexes [24, 29, 51]. The reason behind this
may be physiological as the LF/HF ratio, though traditionally
used as an indicator of sympathovagal balance, is actually a
measure affected by several factors which determine its high
variability across subjects and conditions. In fact, its use as a
measure of balance between sympathetic and parasympathetic
activity has already been widely questioned [1, 45, 46], since
the underlying assumption in using LF/HF ratio (i.e., that an
increased sympathetic activity is accompanied by a decreased
parasympathetic activity) is not always valid and instead de-
pends on specific measurement conditions, especially in case
of short-term HRV (5-min data) [1, 45]. Moreover, LF power
is not a pure index of sympathetic activity, being a significant
portion of the variability in this frequency band mediated by
the PNS [1]. The situation may change during head-up tilt,
when sympathetic activation induces a shift in the sympatho-
vagal balance that generally increases the value of LF/HF [6];
this may also explain the fact that in our study, LF/HF did not
show the higher disagreement during tilt displayed by most of
the other indexes.

The analysis of the distribution of values for each index
computed over the 76 subjects analyzed showed that PPI-
based distributions present in most cases a small but statisti-
cally significant deviation from reference RRI-based mea-
sures, with a bias which is positive for SDNN, RMSSD, HF,
H, and CE, and negative for LF/HF and SE indexes. However,
such deviation does not affect the capability of the PPI-based
method to assess in almost all the cases the differences across
the different conditions (resting and T and M), as using the
RRI-based analysis. Moreover, the detected deviations are not
surprising, since previous studies evidenced bias in the esti-
mation of PRV-based indexes, especially regarding fast varia-
tions in the cycle length reflected by the RMSSD measure in
the time domain and by the HF activity in the frequency do-
main [26, 34].

The discrepancies observed between HRVand PRV can be
due to inaccurate detection of the pulse rate and/or to noise
and movement artifacts which are known to affect CBP and
PPG recordings. In our study, we tend to exclude the second
reason because our acquisitions were executed in carefully
controlled laboratory settings, also avoiding transition effects
from one phase to another, and the analyzed time series were
selected as free of artifacts and fulfilled the test for restricted
weak-sense stationarity [41] (see Sect. 2.2) [3, 39]; however,
random errors due to localization of the maxima in the round-
shaped pulse waves of the blood pressure signal may play an
important role in determining different values of PPI com-
pared to RRI. Another plausible reason for the observed dis-
crepancies can be related to physiological factors. PRV differs
from HRV due to the distorting effect of non-constant pre-
ejection period (PEP), which depends mainly on left ventric-
ular contractility [52–55], and to pulse transit time (PTT),
which has been also shown to exhibit physiological variability
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[24, 56–61]. PTT is the time that a pressure pulse takes to
travel between two arterial sites and depends on the current
condition of the vessels and on blood pressure [59, 60]. We
refer to [60] for propagation models establishing the relation-
ship between PTTand arterial elasticity, which may play a role
in determining the discrepancy between short-term PRV and
HRVand between the related descriptive indexes. PEP is one
of the components of the time delay between R wave from
ECG and pulse wave from PPG, and several previous studies
demonstrated its dependence on the autonomic nervous sys-
tem state and ventricular filling (venous return) [52–55]. PEP
depends on the electromechanical functioning of the heart and
can thus vary independently of PTT (e.g., PEP changes in the
same direction as PTT during exercise but in the opposite
direction during vasoconstriction) [61]. Finally, we note that
a main role in determining physiological differences between
PRV and HRV is played by respiration, which may affect
ventricular loading and thus PEP, as well as intra-thoracic
pressure, stroke volume, and arterial blood flow, and thus
PTT. Future studies are needed to clarify better the role of
inaccuracies in PPI measurement vs physiological factors in
determining the differences between HRVand PRV.

In spite of the discrepancies discussed above, our results
demonstrate that it is feasible to employ PPI-based measures
to assess statistically significant variations of both standard
and novel descriptive indexes of short-term HRV computed
in the time, frequency, and information domains in response to
physiological changes related to orthostatic stress or cognitive
workload. Indeed, a number of changes observed in the de-
scriptive indexes of HRVacross different experimental condi-
tions were observed identically also for the corresponding
indexes based on PRV. These changes are specific for the
ANS state modification and reflect the well-known physiolog-
ical regulatory mechanisms responsible for the cardiovascular
system control [3, 13, 62, 63]. In detail, orthostatic and mental
stress induce tachycardia as well as an overall decrease of
HRV associated with a reduced PNS activity and/or elevated
SNS activity, here reflected by the lower values of the MEAN,
SDNN, and RMSSD indexes. In the frequency domain, ortho-
static stress is reflected in this study by higher values of the
LF/HF power ratio, which are seen, even though to a lesser
extent, also duringmental stress induced by the arithmetic test.
With regard to the entropy measures, the decrease of condi-
tional entropy, a measure associated with system complexity
[7], as well as the increase of information storage (i.e., the self
entropy, SE) [38, 64] induced by head-up tilt in short-term
HRV series is a well-known result which has been ascribed
to the shift in the sympathovagal balance occurring during
head-up tilt causing simpler cardiac dynamics with dominant
oscillations centered around the frequency of Mayer waves
[3]. It is worth noting also that, in agreement with recent find-
ings [11, 65], conditional entropy and information storage
were altered by postural stress but not by mental stress.

Correlation analysis and Bland–Altman plots con-
firmed the good agreement between PPI and RRI based
measurements in all the resting conditions. The agree-
ment decreases for mental arithmetic test and even more
for head-up tilt: in detail, lower correlation coefficients
and/or higher deviation of the robust regression line
from the optimum condition of a = 1, b = 0 have been
obtained, especially for LF/HF, CE, and SE. Such re-
sults are in agreement with other works in literature
which demonstrated that the consistency between PPI-
and RRI-based measures decreases during physiological
stress [26, 34], most probably due to the usually lower
magnitude values of HRV in such conditions [6]. Again,
while the administration of stressors generally favors
noise and motion artifacts, physiological factors may
contribute to the observed higher discrepancies. These
factors may include the reduced variability of RRI dur-
ing orthostatic and mental stress, and the stronger me-
chanical coupling between respiration and the thoracic
vascular system in the upright position compared to the
supine [66].

5 Conclusions

This work presents an in-depth comparison of PRV and
HRV as regards the computation of descriptive indexes of
the heart period variability in different physiological
states ranging from the resting supine position to head-
up tilt and mental arithmetic test. Our results speak in
favor of the utilization of PRV to characterize the short-
term cardiovascular control, both at rest and in response
to postural and mental stress. Nevertheless, the larger dis-
agreement found during mental stress and particularly
during postural stress suggests that some caution should
be adopted to use PRV measures in place of HRV mea-
sures during altered physiological states, especially when
subtle modifications in cardiovascular control are sought.
Future works should focus on studying how the
agreement/disagreement between PRV- and HRV-based
indexes of short-term variability varies with age and in
presence of cardiovascular pathologies and what are its
major determinants.
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