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Abstract
The aim of medical image fusion is to improve the clinical diagnosis accuracy, so the fused image is generated by preserving
salient features and details of the source images. This paper designs a novel fusion scheme for CTandMRI medical images based
on convolutional neural networks (CNNs) and a dual-channel spiking cortical model (DCSCM). Firstly, non-subsampled shearlet
transform (NSST) is utilized to decompose the source image into a low-frequency coefficient and a series of high-frequency
coefficients. Secondly, the low-frequency coefficient is fused by the CNN framework, where weight map is generated by a series
of feature maps and an adaptive selection rule, and then the high-frequency coefficients are fused by DCSCM, where the
modified average gradient of the high-frequency coefficients is adopted as the input stimulus of DCSCM. Finally, the fused
image is reconstructed by inverse NSST. Experimental results indicate that the proposed scheme performs well in both subjective
visual performance and objective evaluation and has superiorities in detail retention and visual effect over other current typical
ones.

Keywords Image fusion . Non-subsampled shearlet transform . Convolutional neural networks . Dual-channel spiking cortical
model

1 Introduction

With the rapid development of sensor and computer science
technology, medical imaging has been playing an essential role
in various clinical applications including medical diagnosis, sur-
gical navigation, and treatment planning, which is a critical tool
for the doctors to diagnose the diseases accurately [1].

Commonly, medical images are generated by different im-
aging mechanisms, which are focused on specific tissue or
organ information, such as X-ray, computed tomography
(CT), andmagnetic resonance imaging (MRI). The CT images
are used for the precise localization of dense structures like
bones and implants, the MRI images can provide enough soft-
tissue details with high-resolution anatomical information [2].
The main task of image fusion is to generate a single compre-
hensive image containing the unique characteristics of

multimodal medical images, which can help doctors to make
accurate decisions for various diagnoses [3].

Over the last few years, multiscale transform (MST)
methods applied to image fusion have been studied extensive-
ly. Among the conventional tools of MST, we can mention
discrete wavelet transform (DWT) [4], Laplacian pyramid
(LAP) [5], and contourlet transform (CT) [6]. To achieve bet-
ter frequency selectivity and regularity than CT and remove
pseudo-Gibbs phenomena along the edges to some extent,
non-subsampled contourlet transform (NSCT) was proposed
by Da Cunha et al. [7]. In comparison with other decomposi-
tion methods, NSCT requires a larger amount of computation.
To reduce the computational complexity of NSCT, non-
subsampled shearlet transform (NSST) was proposed by
Zhang et al. [8]; NSST has the shift-invariance of non-
subsampled processes and inherits the main properties from
shearlet and wavelet, such as the characteristics of anisotropy
and computing speed. Therefore, NSST has a significant ad-
vantage in obtaining more details for image fusion.

In addition to choose the excellent decomposition method,
how to generate a robust weight map is also the key step of
image fusion. In conventional transform domain fusion
methods, the weight maps were generated by the simple
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fusion rules such as weighted-average or choose-max. This
kind of fusion rules does not consider the relationship between
pixels which reduce the contrast of fused image and lose sa-
liency information on a certain degree. To get the better fusion
performance, the methods based on pulse-coupled neural net-
work (PCNN) have also become a research hotspot. PCNN
owns some superior characteristics, such as coupling and
pulse synchronization which can be used to generate fused
coefficients [9]. X. Jin et al. [10] proposed an image fusion
method based on NSST and PCNN. K. J. He et al. [11] intro-
duced a fusion method which combines focus-region-level
partition and PCNN. However, PCNN has a large number of
parameters which are always set as constants by human expe-
rience leading to the lack of universality. To address these
problems, a modified neural network model called spiking
cortical model (SCM) was proposed by Hou et al. [12], which
devised a novel scheme based on SCM and NSST and over-
came the shortcoming of parameters setting, and utilized the
saliency map to fuse low-frequency coefficients. However,
this algorithm has a certain limitation that saliency detection
method only achieves outstanding performance on visible and
infrared images.

In recent years, deep learning has gained many break-
throughs in various computer vision and image processing
problems, such as image segmentation, super resolution res-
toration, classification, saliency detection, and so on [13]. Y.
Liu et al. [14] proposed a novel multi-focus image fusion
scheme using convolutional neural networks (CNNs); they
used CNNs to classify the focus region and get a decision
map. The fused image was generated by combining decision
map and source images. Although deep learning achieves
good performance, the limitation of this method is that it is
just suitable for multi-focus image fusion. Then Y. Liu et al.
[1] extended the CNNs model to medical image fusion which
acquired a good effect.

In this paper, we propose a novel medical image fusion
scheme based on deep learning framework and improved
artificial neural network. In the beginning, NSST decom-
poses the source image into a low-frequency coefficient
and a series of high-frequency coefficients. The main task
in this paper is to design robust activity level measurements
and weight assignment strategies, so the CNNs are used to
encode a direct mapping from the source image to weight
map. To enhance adaptability of the algorithm for different
images, we design an effective weight assignment rule.
Then the low-frequency coefficients are fused by deep
learning framework. For high-frequency coefficients, we
proposed a dual-channel SCM (DCSCM) to fuse the
decomposed coefficients. Finally, the fused image is obtain-
ed via inverse NSST. Experimental results show that the
proposed method does well in the fusion of medical images
and can preserve not only the dense structures information
of the CT image but also the soft-tissue information of the

MRI image; thus, the result contains rich details and has a
good visual effect.

The remaining sections of this paper are summarized as
follows. Section 2 reviews the theory of related algorithms
and describes the image fusion strategies and steps in detail.
Experimental results are given in Section 3. Section 4 shows
the discussion about the experimental results. Some conclu-
sions are summarized in Section 5.

2 Methods

In this section, we briefly review the theory of NSST, CNNs,
and DCSCM, which are essential components of the proposed
method.

2.1 Non-subsampled shearlet transform

NSST, which was proposed by Zhang et al. [8], is an extension
of the wavelet in multidimensional space and combines the
non-subsampled Laplacian pyramid (NSLP) filter with
shearlet transform to provide the multiscale decomposition.
The shearlet transform (ST) is close to optimal sparse repre-
sentation; the synthetic expansion of affine system is de-
scribed as follows:

ΛAB ψð Þ ¼ ψ j;l;k xð Þ ¼ detAj j j=2ψ BlAjx−k
� �

: j; l∈Z; k∈Z2
n o

ð1Þ

where ψj, l, k is expressed as a composite wavelet, A denotes
the anisotropy matrix for multiscale decomposition, B is a
shear matrix for directional analysis, and j, l and k are scale,
the direction of decomposition and shift parameter, respective-

ly. When A ¼ 4 0
0 2

� �
, B ¼ 1 1

0 1

� �
, the composite wavelet

transformed into shearlet, the structure of the frequency tiling
by the shearlet is shown in Figs. 1 and 2, which show three-
level multiscale and multidirectional decomposition of the
NSST.

The NSST decomposition is divided into two major steps:

( 1, 1)

(1,1)
1

2

22 j

2 j

Fig. 1 The structure of the frequency tiling by the shearlet

888 Med Biol Eng Comput (2019) 57:887–900



(I) Multiscale decomposition. (k + 1) sub-bands as same size
as the source image can be obtained by using the k-class
non-subsampled pyramid filter, including a low-
frequency map and a series of high-frequency maps.

(II) The direction of localization. In pseudo polarization grid
coordinates, standard shearlet is calculated by Meyer
window function, which requires the subsampled oper-
ation to obtain the shift-invariance. However, NSST di-
rection of localization uses the modified shearlet filter,
which can map from the pseudo polarization to the
Cartesian coordinate system avoiding the next sampling
operation via Fourier inverse transform, soNSST has the
characteristic of the shift-invariance.

2.2 Convolutional neural networks

Recently, CNNs have shown impressive performance across
various artificial intelligence tasks. While CNNs have
achieved state-of-the-art results in many high-level computer
vision tasks like classification, object detection, scene under-
standing, and much more, their performance on low-level im-
age processing problems such as filtering and image fusion is
not studied extensively [15].

CNNs become a new type of an artificial neural network
model, which are combining artificial neural network and
deep learning network. The convolution layer is the key to
construct the convolutional neural network which is defined
as follows.

xlj ¼ f ∑
i∈M j

xl−1i *wl
ij þ blj

 !
ð2Þ

where l denotes l-th layer, w denotes the convolution kernel,M j

is the receptive field of the input layer, b is the bias, ∗ denotes the
convolution operation, and f represents the activation function.

The structure of neuron is shown in Fig. 3. Firstly, each
neuron connected via synapses and neurons capture input sig-
nals from its dendrites, then the dendrites would transmit the
signals to the cell body, eventually along the axons to produce
the output signal. The proper activation function is an impor-
tant part of neural network, Eq. (2) can be rewritten as Eq. (3)
by incorporating the rectified linear unit (ReLU) activation
function [16].

xlj ¼ max ∑
i∈M j

xl−1i *wl
ij þ blj; 0

 !
ð3Þ

VGG network increases the depth of network to achieve a
better performance. Gatys et al. [17] proposed a novel image
style transfer technology based on VGG network. Firstly, the
VGG-19 network was used to extract the deep feature in
multi-layers from content and style images, then the loss func-
tion of style and content was defined, and the generated image
was achieved after a certain number of iterative training,
which fuses the style and content of the source images respec-
tively. There is no doubt that VGG network is an effective
feature extractor that contains different information in each
layer, and the structure of VGG-19 neural network is shown
in Fig. 4. Inspired by the above work, the fixed VGG network
in our paper which is trained on ImageNet (ILSVRC2012) to
extract the multi-layer deep features of sourcemedical images.
Specifically, the training is carried out by optimizing the mul-
tinomial logistic regression objective using mini-batch gradi-
ent descent with momentum and the learning is stopped after
74 epochs [18]. Different from the style transfer and classifi-
cation tasks, we do not need neural network to reconstruct
images or output the probability of classification, but just uti-
lize deep features of ReLU_1_1, ReLU_2_1, and ReLU_3_1
activation layer from the VGG-19 network to design the ro-
bust weight maps, and more details are described in
Section 2.4.1.

Source 
image

NSLP

NSLP

K=2

K=3
ShF

ShF

ShF

NSLP

K=1

Fig. 2 Three level multiscale and
multidirectional decomposition of
the NSST
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2.3 Dual-channel spiking cortical model

Conventional SCM was presented by K Zhan et al. [19] and
has the simple structure and fewer parameters. It consists of
multiple neurons, and each neuron contains three main func-
tion units: receptive field, modulation field, and pulse gener-
ator. Moreover, it does not need to learn or train, and it can
extract the useful information from the complex background.
We modified the conventional SCM into dual-channel SCM
(DCSCM) which can enhance its ability to extract details in
the dark region. The mathematical expressions of the model
are as follows:

U 1
ij nð Þ ¼ f U 1

ij n−1ð Þ þ S1ij ∑
kl
WklY kl n−1ð Þ ð4Þ

U 2
ij nð Þ ¼ f U 2

ij n−1ð Þ þ S2ij ∑
kl
WklY kl n−1ð Þ ð5Þ

Uij nð Þ ¼ max U 1
ij nð Þ;U 2

ij nð Þ
� �

ð6Þ
Eij nð Þ ¼ gEij n−1ð Þ þ VθY ij n−1ð Þ ð7Þ

X ij nð Þ ¼ 1

1þ e Eij−Uijð Þ ð8Þ

Y ij nð Þ ¼ 1; if X ij nð Þ > 0:5
0; otherwise

�
ð9Þ

where n denotes the iteration times, (i, j) is the location of the
image pixel, Sij(n) is the input excitation signal, and the su-
perscript 1 and 2 represent channel 1 and channel 2 respec-
tively. Uij(n) refers to the internal active state of the neuron,

256 256 64

128 128 128
64 64 256

32 32 512
16 16 512 8 8 512

1 1 4096 1 1 1000

convolution + ReLU

Max-pooling

fully connected + ReLU

Soft-max

Fig. 4 The structure of VGG-19 neural network
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Fig. 3 The structure of neuron
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and it depends on the maximum of U 1
ij nð Þ and U2

ij nð Þ, Wkl is
the weighted coefficient matrix of linking between neurons,
Eij(n) is the dynamic threshold, Vθ is the threshold of amplifi-
cation factor, Yij(n) is the output signal of the neuron at nth
iteration, and f and g are the internal active and dynamic
threshold signal decay coefficients, respectively.

In order to show the difference within ignition range, the
sigmoid function is used to improve the neuron output signal
[20], as shown in Eq. (8), Xij(n) denotes the pixel pulse igni-
tion output amplitude, as Xij(n) > 0.5, the neuron produces a
pulse, which is called one firing time, the signal is captured by
the linking matrixWkl, and the adjacent neurons achieve syn-
chronization pulse release at the spatial position. Tij(n) ex-
presses the neuron firing times matrix after nth iteration, the
structure of the basic SCM neuron is shown in Fig. 5, and the
mathematical expression is described as follows.

Tij nð Þ ¼ n; Yij nð Þ ¼ 1
Tij n−1ð Þ þ Y ij nð Þ; otherwise

�
ð10Þ

2.4 Fusion strategies and specific steps

2.4.1 Low-frequency coefficient fusion strategy

Commonly the part of low-frequency contains the main com-
ponents of the source image. On the contrary, the high-
frequency coefficients preserve the more details of the source
image. The low-frequency coefficients of the source images
are fused by the simple weighted averaging or maximum
value-based strategies, which do not consider the relationship
between pixels. To address the limitation of traditional fusion
strategies, we use the VGG-19model to extract the multi-layer
features of source images, the weight maps are generated by

adaptive selection rule. Finally, the low-frequency coefficients
are fused by the source images and weight maps. The low-
frequency coefficient fusion framework is shown in Fig. 6.

We introduce this fusion strategy in details, f n;mk denotes
the feature map of kth source image at nth layer, and m is the
dimension of the feature map, m = 64 × 2n − 1, k = 2, where Fn

indicates the layer in VGG-19 network, n ∈ {1, 2, 3} repre-
sents the ReLU_1_1, ReLU_2_1, and ReLU_3_1 activation
layer respectively. An

k i; jð Þ is the activity level map which is
generated by l1-norm at position (i, j), to make the fusion
method robust to misregistration; the block-based average op-

erator is used to calculate the final activity level map Â
n
k i; jð Þ,

where r denotes the block size, to preserve more details, r = 1.

f n;mk ¼ Fn Ikð Þ ð11Þ

An
k x; yð Þ ¼ f n;mk

�
x; y
�			 			

1
ð12Þ

Â̂
n
k i; jð Þ ¼ ∑r

β¼−r∑
r
θ¼−rA

n
k iþ β; jþ θð Þ

2r þ 1ð Þ2 ð13Þ

Then we design an adaptive selection rule to make the weight
mapsmore robust, tn(i, j) is the ratio of two activity level maps by
Eq. (13),Wn

1 i; jð Þ is the weight map which denotes that if tn(i, j)
tends to zero, the L1 coefficient has a greater weight, and the
same goes for Wn

2 i; jð Þ. The VGG-19 has pooling operation; it
is necessary to carry out the upsampling operator and resize the
weight maps size consistent with source images size.

tn i; jð Þ ¼ Â
n

1 i; jð Þ
Â
n

2 i; jð Þ
ð14Þ

Wn
1 i; jð Þ ¼ t3n i; jð Þ

1þ t3n i; jð Þ ð15Þ
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Fig. 5 The structure of the basic
SCM neuron
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Wn
2 i; jð Þ ¼ 1

1þ t3n i; jð Þ ð16Þ

Ŵ
n

k iþ p; jþ qð Þ ¼ Wn
k i; jð Þ ð17Þ

p; q∈ 0; 1;⋯; 2n−1−1
� �
 � ð18Þ

Finally, we carry out the maximum value rule for the initial
fused coefficients of the three layers, so as to merge them into
the final fused coefficient; the specific expressions are as fol-
lows.

LnFused i; jð Þ ¼ L1 � Ŵ
n

1 i; jð Þ þ L2 � Ŵ
n

2 i; jð Þ ð19Þ
LFused i; jð Þ ¼ max Lnfused i; jð Þ; n∈ 1; 2; 3f g

h i
ð20Þ

2.4.2 High-frequency coefficient fusion strategy

The existing high-frequency fusion strategies contain the larg-
est absolute value, regional energy [21], variance, and gradient
[22], but these strategies cannot extract detail information
from the image adequately while only considering the indi-
vidual pixels or regional characteristics. The gray value of a
single pixel is used as the excitation of the neural network; this
may lose image edges and texture features. Two diagonal gra-
dient changes are added on the basis of the conventional meth-
od; it can be utilized to stimulate the DCSCM.

Suppose H(i, j) denotes the high-frequency coefficients at
the location (i, j), and modified average gradient (MAG) is
measured using slipping windows (the size is 3 × 3) of the
coefficients, then MAG in each coefficient is used to motivate
the neuron, and it is defined as follows:

MAG i; jð Þ ¼ 1

MN
∑
M

i¼1
∑
N

j¼1

∇Hh i; jð Þ þ ∇Hv i; jð Þ þ ∇Hmd i; jð Þ þ ∇Hvd i; jð Þ
2

� 1=2

ð21Þ
∇Hh i; jð Þ ¼ H i; jð Þ−H i; j−1ð Þ½ �2 ð22Þ
∇Hv i; jð Þ ¼ H i; jð Þ−H i−1; jð Þ½ �2 ð23Þ
∇Hmd i; jð Þ ¼ H i; jð Þ−H i−1; j−1ð Þ½ �2 ð24Þ
∇Hvd i; jð Þ ¼ H i; jð Þ−H i−1; jþ 1ð Þ½ �2 ð25Þ
where ∇Hh(i, j), ∇Hv(i, j), ∇Hmd(i, j), and ∇Hvd(i, j) denote the
gradient changes in the horizontal, vertical, main diagonal,
and oblique diagonal directions, respectively. N and M are
the size of the slipping window.

2.4.3 Fusion steps

Assume that the CT and MRI images have been matched and
treated with uniform size accurately.

The image fusion scheme is shown in Fig. 7.
The steps of the image fusion method are narrated as

follows.

Step 1. Decompose the CT and MRI images using NSST to
obtain their low-frequency coefficients {L1,L2} and a

series of high-frequency coefficients {Hl;k
1 ,Hl;k

2 } at
each K-scale and l-direction, where 1 ≤ k ≤K.

Step 2. The deep learning framework is used to fuse the low-
frequency coefficients. According to Eqs. (11)–(20),
theweightmaps are generated by theVGG-19 network
which can choose the low-frequency coefficients
adaptively.

VGG-19
Source 

image #A

Source 
image #B

Low-Freq

Low-Freq

Fusion rule

Weight map

Max

Fused 
Low-Freq

Fig. 6 The low-frequency coefficient fusion framework
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Step 3. DCSCM is utilized to deal with the high-frequency
coefficients. Let the MAG maps be the feedback
inputs of the DCSCM.

(a) Calculate the MAG1 and MAG2 maps according to
Eq. (21), and all coefficients are normalized.

(b) Set the initial values as follows: Uij(0) = Tij(0) =
Eij(0) = 0. In the initial state, all the neurons are
inactivated, so Yij(0) = 0.

(c) Calculate Uij(n), Eij(n), and Yij(n) by Eq. (6), Eq. (7),
and Eq. (9), respectively, and then compute the neu-
ron’s firing times Tij(n) according to Eq. (10). The fu-
sion coefficients are selected according to Uij(n), N is
the maximum number of iterations, and the rule is de-
scribed as follows:

HK
Fused i; jð Þ ¼ HK

1 i; jð Þ; Uij Nð Þ ¼ Uij
1 Nð Þ

HK
2 i; jð Þ; Uij Nð Þ ¼ Uij

2 Nð Þ
�

ð26Þ

Step 4. Perform the inverseNSSTof the low-frequency and the
high-frequency coefficients to obtain the fused image.

3 Results

The simula t ion exper iments were conducted by
MATLAB2017b and Python 2.7 software on PC with Intel

E5 2670 2.6 GHz CPU, 16 GB RAM, GTX1080ti GPU. We
take several groups of accurate matching of CT image and
MRI image to test, and a pair of CT and MRI images belongs
to the same patient, as shown in Figs. 8, 9, 10, 11, and 12. The
source medical images were collected from http://www.med.
harvard.edu/AANLIB/.

3.1 Experiment parameters setting

In this section, extensive experiments on CT and MRI
medical images are performed to verify the effectiveness
of the proposed method. Our fusion method is compared
with three representative conventional fusion methods and
two state-of-the-art fusion methods including wavelet-
based method (DWT) [4], Laplacian pyramid (LAP) [5],
multiscale transform-based method (NSST-SCM) [23],
sparse representation-based method (SR) [24], and guided
filter-based fusion method (GFF) [25]. In the experiments,
DWT uses Bdb2^ as the filter; NSST uses a non-
subsampling pyramid Bmaxflat^ filter, and its decomposi-
tion directions are set as [2–4]. The fusion rule for low-
frequency coefficient is averaging while the high-
frequency coefficients are fused using absolute maximum
choosing rule. According to [23] and artificial experience,
the parameters of the SCM and DCSCM are set as fol-
lows:

CNN

DCSCM

NSST Inverse 
NSST

Source 
image #A

Source 
image #B

Low-Freq

Low-Freq

High-Freq

High-Freq

Fused 
Low-Freq

Fused 
High-Freq

Fused image

Fig. 7 Schematic diagram of the proposed image fusion framework
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f ¼ 0:2; g ¼ 0:6;Vθ ¼ 20;W

¼
0:1091 0:1409 0:1091
0:1409 0 0:1409
0:1091 0:1409 0:1091

2
4

3
5:

3.2 Subjective evaluations

For convenience, five pairs of CTandMRI images respective-
ly called BData-1,^ BData-2,^ BData-3,^ BData-4,^ and BData-
5^ are selected as representative results to demonstrate the
performance of the proposed fusionmethod. All of them cover
256 gray levels and have the same size 256 × 256.

(a) CT             (b) MRI    (c) DWT     (d) LAP

(e) NSST-SCM (f) SR              (g) GFF             (h) Proposed
Fig. 8 Fusion results of the BData-1^ image set with different methods. a CT, b MRI, c DWT, d LAP, e NSST-SCM, f SR, g GFF, h proposed

(a) CT                (b) MRI             (c) DWT              (d) LAP

(e) NSST-SCM (f) SR              (g) GFF             (h) Proposed
Fig. 9 Fusion results of the BData-2^ image set with different methods. a CT, b MRI, c DWT, d LAP, e NSST-SCM, f SR, g GFF, h proposed
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The fusion results based on different methods for BData-1^
image set are shown in Fig. 8. The CT and MRI images are
respectively shown in Fig. 8a and b. The fusion results obtain-
ed from DWT, LAP, NSST, SR, and the proposed method are
represented in Fig. 8c–h, respectively. The fusion results
mainly retain both the bone structures of CT image and soft
tissues of MRI image. However, there are slight differences in
contrast and detail preservation.

To show the difference of comparison methods more
directly, we marked the experimental results with a yellow
rectangle. As shown in Fig. 8c and f, the fused results
have very low contrast in the yellow marked region.
Although the fused images using LAP and NSST shown
in Fig. 8d preserve more information of CT image, they
lose some details of MRI image. In terms of visual effects,
the performance of the GFF is similar to our proposed

(a) CT                (b) MRI      (c) DWT              (d) LAP

(e) NSST-SCM (f) SR              (g) GFF             (h) Proposed
Fig. 11 Fusion results of the BData-4^ image set with different methods. a CT, b MRI, c DWT, d LAP, e NSST-SCM, f SR, g GFF, h proposed

(a) CT                (b) MRI             (c) DWT              (d) LAP

(e) NSST-SCM (f) SR              (g) GFF             (h) Proposed
Fig. 10 Fusion results of the BData-3^ image set with different methods. a CT, b MRI, c DWT, d LAP, e NSST-SCM, f SR, g GFF, h proposed
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method which can fully retain the details of the source
images. The next medical image set BData-2^ is shown
in Fig. 9. The result of using DWT is the lack of bone
structure information and has a bad visual effect; the
problem of low contrast also exists in Fig. 9f. There were
no significant differences in the other three groups of re-
sults. Figure 10 shows the medical image set BData-3,^
compared with other comparison algorithms; the fusion
result of the proposed method has high contrast and fully
retains the soft tissue information as shown in Fig. 10h.
The DWT, NSST-SCM, and SR methods lose the details
of source images, and bone structures information is in-
sufficient in Figs. 11 and 12. The obtained results by the
proposed method have sharp edges, more details, and en-
hanced contrast.

3.3 Quantitative comparison

In addition to subjective visual evaluation, quantitative evalu-
ation metric is an important tool to measure fusion perfor-
mance. In this paper, those quantitative evaluation metrics
include mutual information (MI) [26], mean structural similar-
ity (MSSIM) [27], standard deviation (SD) [10], spatial fre-
quency (SF) [10], image entropy (IE) [10], and margin infor-
mation retention (QAB/F) [28] which are used to evaluate the
different fusion methods.

1) MI shows the correlation between two events. The MI of
two discrete random variables U and V can be defined as
follows:

MI U ;Vð Þ ¼ ∑
v∈V

∑
u∈U

p u; vð Þlog2
p u; vð Þ
p uð Þp vð Þ ð27Þ

where p(u,v) is the joint probability distribution of U and V,
p(u) and p(v) are themarginal probability distribution ofU and
V, respectively. The sum of mutual information between the
fused image and two source images can be calculated to de-
note the difference of fusion quality, and then the mutual in-
formation metric can be described as follows:

MIABF ¼ MI A; Fð Þ þMI B; Fð Þ ð28Þ

Equation (28) reflects a total amount of information that
fused image F(i, j) contains both source image A(i, j) and
source image B(i, j). The higher score of MI is, the richer the
information is obtained from the source images.

2) SD is a measure of the dispersion degree of a set of image
data averages. The standard deviation of the fused image
is calculated as.

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M � N
∑
M

i¼1
∑
N

j¼1
F i; jð Þ−μð Þ2

s
ð29Þ

where F(i, j) is the pixel value of the fused image at the loca-
tion (i, j), and μ is the mean value. The metric indicates the
clarity of the fused image; the higher this score is, the higher
the image quality is.

3) SF is composed of row frequency (RF) and column fre-
quency (CF) and is described as follows.

(a) CT              (b) MRI           (c) DWT            (d) LAP

(e) NSST-SCM (f) SR              (g) GFF             (h) Proposed
Fig. 12 Fusion results of the BData-5^ image set with different methods. a CT, b MRI, c DWT, d LAP, e NSST-SCM, f SR, g GFF, h proposed
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SF ¼ 1

MN
∑
M

i¼1
∑
N

j¼1
RF þ CFð Þ ð30Þ

RF ¼ C i; jð Þ−C i; j−1ð Þ½ �2 ð31Þ
CF ¼ C i; jð Þ−C i−1; jð Þ½ �2 ð32Þ
whereC(i, j) denotes the pixel value of the image, in which the
size of the image is M ×N. The higher score of this metric
represents the fused image with higher resolution.

4) IE represents the amount of information in the fused im-
age and the gray distribution of an image is P = {P1,P2,…
Pn}, Pl denotes the ratio of the pixel number of gray value
l and the total pixels of the image, and n is the total num-
ber of gray level. It can be acquired by Eq. (33).

IE ¼ − ∑
L

i¼0
P lð Þlog2P lð Þ ð33Þ

where P(l) expresses the probability density of L, and L rep-
resents the gray level of an image. The higher score of IE is,
the more information the fused image contains.

5) MSSIM is an effective measure of similarity of two im-
ages, which is calculated as follows.

MSSIM ¼ SSIM A; Fð Þ þ SSIM B; Fð Þ
2

ð34Þ

where SSIM(A, F) and SSIM(B, F) are correlation coefficients
between the CT image and the fused image, the MRI image
and the fused image respectively. SSIM (i, j) is defined as
follows.

Table 1 Quantitative assessments
comparison of different methods Dataset Methods MI IE SF SD MSSIM QAB/F

Data-1 DWT 1.9221 6.1766 17.1339 44.7173 0.5246 0.6073

LAP 2.4316 6.0799 18.1079 52.8910 0.5518 0.7184

NSST-SCM 2.0570 6.2015 17.0573 44.1620 0.5366 0.6816

SR 2.5735 5.8054 11.6897 30.8241 0.5122 0.5756

GFF 2.3191 6.5253 16.9774 52.8964 0.5634 0.7210

Proposed 2.6023 6.5997 17.6021 53.0515 0.5676 0.7276

Data-2 DWT 3.1957 5.1935 22.1574 55.7300 0.7915 0.5051

LAP 3.3457 4.8935 21.9313 59.9259 0.8146 0.5888

NSST-SCM 3.3489 5.1244 20.9562 54.5607 0.8160 0.5887

SR 3.4259 4.9400 17.7694 51.4073 0.8248 0.5178

GFF 3.7904 5.2091 20.2566 55.6818 0.8207 0.6028

Proposed 3.8849 5.2231 22.6706 62.3212 0.8273 0.6108

Data-3 DWT 3.1289 4.8668 25.1158 66.5339 0.7489 0.5473

LAP 3.3880 4.3915 25.9915 69.6022 0.7775 0.6042

NSST-SCM 3.2093 4.8812 24.5271 65.8981 0.7733 0.5971

SR 3.1845 4.5228 20.1904 61.5043 0.7640 0.5157

GFF 3.3467 5.0519 24.3932 69.6355 0.7762 0.6119

Proposed 3.8130 4.6208 25.6074 73.2812 0.7669 0.6534

Data-4 DWT 3.0829 7.4137 35.9431 76.8087 0.6263 0.4699

LAP 3.2691 7.3196 37.0391 79.8434 0.6462 0.5171

NSST-SCM 3.2365 7.4479 34.6064 79.4965 0.6628 0.5349

SR 3.3354 7.5617 28.9810 69.8406 0.6532 0.4964

GFF 3.5241 7.7616 34.3087 75.3693 0.6602 0.5510

Proposed 3.6284 7.5901 35.5445 88.1087 0.6683 0.5516

Data-5 DWT 2.8048 5.3647 22.2882 55.7298 0.7098 0.4573

LAP 3.1872 4.8391 23.0648 61.1195 0.7448 0.5214

NSST-SCM 2.9475 5.4499 21.4789 53.7913 0.7311 0.5226

SR 3.1968 5.2472 17.5857 51.7154 0.7427 0.4823

GFF 3.2308 5.7828 21.5629 66.9815 0.7342 0.5330

Proposed 4.4628 5.5307 23.0713 74.3093 0.7456 0.5990
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SSIM i; jð Þ ¼
2μiμ j þ C1

� �
2σij þ C2

� �
μi

2 þ μ j
2 þ C1

� �
σi

2 þ σ j
2 þ C2

� � ð35Þ

where μi, σj, and σij express the mean, standard deviation, and
cross-correlation, respectively. C1 and C2 are used to ensure
stability when the mean value and the variance are close to
zero. The rotationally symmetric Gaussian window with stan-
dard deviation 1.5 was selected inMSSIM. The higher score of
MSSIM is, the smaller the distortion of the fused image is.

6) QAB/F represents the transformation degree of edge infor-
mation of the fused image and the source image. It is
defined as follows.

QAB=F ¼
∑
N

i¼1
∑
M

j¼1
QAF i; jð ÞwA i; jð Þ þ QBF i; jð ÞwB i; jð Þ� �
∑
N

i
∑
M

j
wA i; jð Þ þ wB i; jð Þð Þ

ð36Þ

where QAF i; jð Þ ¼ QAF
g i; jð ÞQAF

o i; jð Þ, QAF
g i; jð Þ, and QAF

o

i; jð Þ are the edge strength and orientation preservation value
at the location (i, j), respectively. N and M are the size of the
image, and QBF(i, j) is similar to QAF(i, j); wA(i, j) and wB(i, j)
reflect the weight of QAF(i, j) and QBF(i, j) respectively. If the
Q AB/F gets the value higher and closer to unity, it means that
the fused image is produced with less edge information loss.

The objective quantitative assessments based on image
quality metrics are shown in Table 1. The best results are in
italic. The proposed method achieves the best metric in terms

of MI, SD, MSSIM, and QAB/F, and remaining metrics have
subtle different between each other which demonstrate that the
proposedmethod has a high level of competence in preserving
edge details and saliency information. Moreover, the two im-
portant relative evaluation metrics that MI and QAB/F will be
represented as line chart intuitively, as shown in Fig. 13.

4 Discussions

To summarize the experimental results, the fused images
based on SR and DWT method look unsatisfactory due to
low contrast and bone structure information loss. The visual
effect of results based on LAP, NSST-SCM, and GFF has
improved, but texture and edge in yellow marked region are
not preserved fully. By contrast, the proposed method
achieves clear and high contrast fused results by retaining
salient features, which synthesizes soft tissues and bone struc-
ture information to the maximum extent. Next, we discuss the
quantitative assessments of the image in detail. Among the six
metrics, such as IE, SF, and SD reflect the internal features of a
single image, which can measure the quality of the fused im-
age commonly. The IE represents the information entropy of
the fused image. The SF reflects the clarity of the image. The
SD describes the contrast of the fused image. The bigger the
SD is, the more dispersed the distribution of gray level in the
image is, and the greater the contrast is, the better the visual-
ization of the fused image is. However, some results contain
more redundant information, which also lead to increase the
score of those three metrics. To make more comprehensive
and objective analysis, we introduce the other three metrics
including MI, MSSIM, and QAB/F that can better reflect the

(a) The comparison line chart for MI      (b) The comparison line chart for QAB/F

Fig. 13 Objective evaluation results based on Figs. 8, 9, 10, 11, and 12. a The comparison line chart for MI, b the comparison line chart for QAB/F
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internal relationship between the source images and the fused
image. The MI describes the similarity of the image intensity
distributions of the corresponding image pair and estimates
how much information is obtained from source images. The
higher score ofMI indicates the richer information and details
obtained from CT and MRI images which also assures more
activity and clarity level in the fused images. The MSSIM
represents the degree of distortion of the fused image. In ad-
dition, the QAB/F measures the amount of edge information
transferred from the source images to the fused images. This
metric is essential for medical image fusion that the higher
score means the more the edge details such as bone structure
and texture are fused, which is helpful for accurate patholog-
ical analysis. According to the quantitative analysis of the
experimental results, the proposed method achieves the best
performance in the MI, SD, and QAB/F metrics especially,
which also means that the fused image has a high contrast
and less distortion and contains enough dense structures, soft
tissues information, texture, and edge details. The results
based on the proposed method are more suitable for assisting
doctors in the accurate diagnosis diseases. At the present
stage, we adopt the deep learning scheme to extract multi-
layer features and generate the low-frequency fusion weight
which achieves good performance, but the selection of the
deep features still depends on the artificial designed rule. In
the future, we will continue to study the relationship between
multi-model features and try to build an unsupervised deep
fusion model and make the fusion framework more robust and
adaptive.

5 Conclusions

In this paper, a novel fusion method for CT and MRI medical
images is proposed by integrating CNNs and DCSCM in
NSST domain. In the proposed method, the NSST provides
both the multiscale and direction analysis of the source im-
ages. The CNNs based an activity level measurement that is
used to fuse the low-frequency coefficients. In the term of
high-frequency coefficients, the modified average gradient is
utilized as the external incentive of DCSCM. Extensive con-
trast experiments have been carried out on different pairs of
CT and MR images which can verify the superiority of the
proposed method in both visual effects and objective evalua-
tion. Moreover, the results demonstrate this fusion scheme has
application prospect in the field of medical image fusion.
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