
ORIGINAL ARTICLE

A unified non-linear approach based on recurrence quantification
analysis and approximate entropy: application to the classification
of heart rate variability of age-stratified subjects

Vikramjit Singh1
& Amit Gupta1 & J. S. Sohal2 & Amritpal Singh3

Received: 3 August 2017 /Accepted: 9 October 2018 /Published online: 3 November 2018
# International Federation for Medical and Biological Engineering 2018

Abstract
This paper presents a unified approach based on the recurrence quantification analysis (RQA) and approximate entropy (ApEn)
for the classification of heart rate variability (HRV). In this paper, the optimum tolerance threshold (ropt) corresponding to
ApEnmax has been used for RQA calculation. The experimental data length (N) of RR interval series (RRi) is optimized by
taking ropt as key parameter. ropt is found to be lying within the recommended range of 0.1 to 0.25 times the standard deviation of
the RRi, when N ≥ 300. Consequently, RQA is applied to the age stratified RRi and indices such as percentage recurrence
(%REC), percentage laminarity (%LAM), and percentage determinism (%DET) are calculated along with ApEnmax, rmin

opt , r
max
opt ,

and an index namely the radius differential (RD). Certain standard HRV statistical indices such as mean RR, standard deviation of
RR (or NN) interval (SDNN), and the square root of the mean squared differences of successive RR intervals (RMSSD) (Eur
Hear J 17:354–381, 1996) are also found for comparison. It is observed that (i) RD can discriminate between the elderly and
young subjects with a value of 0.1151 ± 0.0236 (mean ± SD) and 0.0533 ± 0.0133 (mean ± SD) respectively for the elderly and
young subjects and is found to be statistically significant with p < 0.05. (ii) Similar significant discrimination was obtained using
rmin
opt with a value of 0.1827 ± 0.0382 (mean ± SD) and 0.2248 ± 0.0320 (mean ± SD) (iii) other significant indices were found to

be %REC, %DET, %LAM, SDNN, and RMSSD; however, ApEnmax was found to be insignificant with p > 0.05. The above
features of RRi time series were tested for classification using support vector machine (SVM) and multilayer perceptron neural
network (MLPNN). Higher classification accuracy was achieved using SVM with a maximum value of 99.71%.

Keywords Heart rate variability . Autonomic nervous system (ANS) . Non-linear methods . Information theory . Approximate
entropy . Recurrence quantification analysis . Support vectormachine

1 Introduction

Heart rate variability (HRV) is the variation in the time interval
between successive R-peaks of an electrocardiogram (ECG)
signal. The study of HRV is useful in the diagnosis and

prognosis of various physiological and pathophysiological
conditions [1–4]. HRV is a result of the dynamic interactions
between several feedback loops regulating the cardiovascular
system occurring at variable rates. This leads to dynamic com-
plexity in the HRV that is altered under different physiological
and pathophysiological conditions [5]. It has been established
that HRV is altered by several factors like respiratory sinus
arrhythmia (RSA); Valsalva maneuver; decreases in venous
return, the baroreflex, and the vasovagal reaction; exercise;
thermo-regulation; embolisms; intra-venous (IV) injections;
circadian rhythms; inter-patient factors like genetics and fam-
ily history, sex, age, medical condition, and level of fitness;
emotion; stress; sleep; body posture; smoking; caffeine; hu-
moral factors, etc. [1–5]. Genesis of HRV is a highly interde-
pendent and complex phenomenon that involves the interac-
tions among parasympathetic and sympathetic branches of
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ANS along with inputs from the hemodynamic, electrophysi-
ological, and humoral systems [6]. It has been established that
measurement and evaluation of cardiovascular complexity
from HRV provides useful prognostic indicators [2, 5, 7].
The complexity of beat-to-beat HRV varies with the different
physiological situations including disease [8], pharmaceutical
interventions [9, 10], and postural changes [11, 12]. Several
linear and non-linear methods have been employed in the past
to assess the dynamic properties of this physiological time
series [13–15]. Linear methods which were based on either
time domain [1], frequency domain [16], or time-frequency
domain [13, 14, 17] were initially used for the analysis of
HRV. Though these methods were able to comprehend the
steady-state relation between parasympathetic nervous system
and sympathetic nervous system of the ANS that cause HRV
pattern, but they were not able to quantify the dynamic behav-
ior of HRV that involved non-linear components of signal
generation. Later, non-linear methods like Poincaré plot [18],
and certain entropy measures like approximate entropy
(ApEn), sample entropy (SampEn) [19], and transfer entropy
(TE) [11] were used to characterize complexity of the physio-
logical time series. Lake [20] discovered Gaussianity of HR
which is a measure of physiological complexity using Shannon
or differential and conditional Renyi entropy rate. Other non-
linear methods like phase synchronization, fractal dimension
[21], de-trended fluctuation analysis (DFA) [22], and recur-
rence quantification analysis (RQA) [23] were also used to
give deeper insight into the dynamic interactions of HRV.

Beckers [24] concluded that non-linear heart rate fluctua-
tions decline with age due to decreased autonomic modulation
with increase in age. This provided evidence for the involve-
ment of the autonomic nervous system in the generation of the
complex fluctuation of HRV. Iyenger et al. [25] proved that
young subjects have a stronger stability between many differ-
ent physiological inputs that operate over different time scales
so as to regulate cardiac cycle times. In contrast, elderly sub-
jects exhibit crossover behavior due to degradation of some of
these inputs and dominance of others. Y. Shiogai et al. [7]
confirmed that the SDNN decreases significantly with age
irrespective of the gender. Also, the total energy of HRV de-
creases with age as the influence due to respiratory activity
and myogenic activity decreases with age while the neurogen-
ic control of HR becomes more prominent with increasing
age. Kampouraki et al. [26] extracted various statistical and
wavelet features and utilized SVM for the successful classifi-
cation of HRVon age-stratified data.

From these studies, it can be inferred that it is very impor-
tant to take age into consideration for the HRV indices to
produce an accurate interpretation in a clinical condition.

The reported studies utilized the established techniques for
the quantification of the HRV. This work emphasizes on giv-
ing new insights to the quantification of HRV indices of

healthy elderly and young subjects by tuning the conventional
techniques for optimum results. Time domain indices, descrip-
tive statistics, complexity indices based on ApEn, and non-
linear indices based on RQA are analyzed and combined to
develop new indices to quantify HRV. Further, a classification
method based on support vector machine (SVM) and multi-
layer perceptron neural network (MLPNN) is presented to
classify the elderly and young subjects.

2 Materials and methods

2.1 Experimental data

Twenty young subjects aged 28 ± 8 (mean ± SD) along with
20 elderly subjects aged 65 ± 5 (mean ± SD) participated in
the study. They were abstained from any kind of prescribed
medicine, alcohol, tobacco, and caffeine for 12 h prior to the
recording. Recordings were done in a quiet and dark room. All
subjects were rested initially for 10 min before the start of
recording. All subjects were healthy and declared to assume
no medication. Continuous ECG signal was recorded for the
subjects using MP150 Biopac® System for a duration of
30 min at a sampling frequency of 250 Hz.

2.2 The Fantasia dataset

The Fantasia database from the PhysioBank [25] is an age-
stratified data repository to study the effect of age on HRV. It
consists of 40 subjects (20 young and 20 elderly) for which
120-min ECG recordings were performed. For 20 young sub-
jects, the age lies between 21 to 34 years and for 20 elderly
subjects, the age lies between 68 to 85 years old. Each group
consists of healthy subjects that comprise the same numbers of
men and women. While recording the ECG, all subjects were
kept in a resting supine position in sinus rhythm and subjects
watched the movie Fantasia (Disney 1940) to help retain
wakefulness. The continuous ECG was sampled at sampling
frequency of 250 Hz.

2.3 Extraction of beat-to-beat HRV series

R-peak detection from the ECG was done by an algorithm
based on Shannon entropy and Hilbert transform [27].
Ectopic beats, if present, were removed using zero-degree
interpolation. From the identified R-peaks of ECG, a time
series of RR intervals (RRi), known as tachogram, is formu-
lated. RRi thus obtained is the function of the number of heart-
beats rather than their time of occurrence.
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2.4 Calculation of descriptive statistical features
of HRV

In this paper, three descriptive statistical features are evaluated
for the HRV. Mean RR is defined as averaged value of the
RRi. SDNN is the standard deviation of the RRi and RMSSD
is defined as root mean square of successive differences of
RRi.

2.5 Calculation of approximate entropy

Approximate entropy (ApEn) is an entropy-based technique,
governed by the parameters such as tolerance threshold (r), lag
(τ), embedding dimension (m), and data length (N). All these
inputs need to be fixed before the calculation of ApEn. This
technique is used to quantify the similarity in any time series
[19].

Given a time series, {d (i) : 1 ≤ i ≤ N}, template vectors
Xm

1 ;X
m
2 ;X

m
3⋯;Xm

N−mþ1 are formed where:

Xm
i ¼ d ið Þ; d iþ τð Þ;…; d iþ m−1ð Þ � τð Þf g ð1Þ

for i = 1, 2, …, N −m + 1. The conditional measure (R), so
that the distance between two such vectors, within thresh-
old (r), is given by:

Rij ¼ θ r− Xm
i −X

m
j

���
���

� �
ð2Þ

where ‖.‖ is the maximum norm distance between the two
vectors Xm

i and Xm
j and θ (.) is the Heaviside function.

The conditional probability, Cm
i rð Þ, defined as the number

of such vectors, Xm
j within r of Xm

i , hence is given by

Cm
i rð Þ ¼ Rij

N−mþ 1
ð3Þ

where j ranges from 1 to N −m + 1.
ApEn is computed using the conditional probabilities form

and m+ 1 embedding dimension, given by

ApEn m; rð Þ

¼
∑N−mþ1

i¼1 ln
Cm

i rð Þ
N−mþ 1

� �

N−mþ 1
−
∑N−m

i¼1 ln
Cmþ1

i rð Þ
N−m

� �

N−m
ð4Þ

ApEn is a biased technique which while calculating condi-
tional probabilities includes self-matching templates. In order
to reduce this bias, self-matches are excluded and resulting
undefined conditional probability Cm

i rð Þ is substituted to 0.5
as a correction strategy [28]. This strategy ensures that even
for small data sets the bias can be reduced.

2.6 Recurrence quantification analysis

Recurrence quantification analysis (RQA) is a technique of
analysis of non-linear data which quantifies the count and
period of recurrences of a dynamic system given by its state-
space trajectory. Quantification analysis of recurrence plots
was first performed by Zbilut and Webber Jr. [29] and was
complemented with new complexity measures by Marwan
et al. [30].

The calculation of Rij, when both i and j ranges
from 1 to N −m + 1, results in a two-dimensional binary
M ×M matrix, where,M = N −m + 1. This two-dimensional
matrix is called as recurrence plot (RP). Hence, RP is the
recurrence of a state occurring at time i that recur at time
j, represented with dots within a two-dimensional squared
matrix Rij, as shown in Fig. 1 where both axes are time
axes with i and j representing time instants [29].

RQA of recurrence plots is done by measuring the various
indices. The typical indices are recurrence rate (%REC), de-
terminism (%DET), and laminarity (%LAM). Recurrence rate
(%REC) is the density measure of the points of recurrence in
the RP. It is calculated simply by counting the black dots in the
RP.

%REC ¼ 1

M �M
∑
M

i; j¼1
Rij � 100 ð5Þ

Determinism (%DET) is developed to measure the deter-
ministic nature of the signal. In an RP, the diagonal points
represent the repeating dynamics of the signal. %DET is de-
fined as the fraction of recurrence points that make diagonal
line segments.

%DET ¼ ∑M
L¼LminlPl lð Þ
∑M

i; j¼1Rij
� 100 ð6Þ

Where Pl(l) gives the number of the diagonal lines of length l,
while Lmin is the minimum length of the diagonal lines that
have been considered.

%LAM is defined as the proportion of recurrence points
that constitute vertical lines in the RP. Laminarity represents
random dynamics in the signal.

%LAM ¼ ∑M
v¼VminvPv vð Þ
∑M

i; j¼1Rij
� 100 ð7Þ

where Pv(v) is the count of the vertical lines of length v and
Vmin is the minimum length of the vertical lines that have
been considered.

2.7 Multilayer perceptron neural network

For short term datasets, multilayer perceptron neural network
(MLPNN) classifier is employed which is a commonly used
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feed-forward neural network-based classifier that is simple to
implement and is fast in operation [31]. The MLPNN consists
of three layers in series: input layer, hidden or concealed layer,
and the output layer. The objective of the hidden layer is to
receive information from input layer, process it, and to for-
ward it to the output layer. ForMPLNN, the amount of neuron
in the hidden layer is very critical as insufficient or excessive
neurons can cause problems of over fitting [31]. Number of
neurons in the hidden layer analytically rather is based on trial
and error method [31–34]. For this study, we used a MLPNN
model with single hidden layer of five hidden neurons as
employed in some of the previous studies [31, 35].

The neurons which are in the middle layer multiply the
input Xi with their connection weights Wij and sum them up
as per the following equation (Fig. 2).

Y j ¼ ∅ ∑X iW ij

� � ð8Þ

Here, ∅ is an activation function which can be threshold
function, sigmoidal function, or hyperbolic tangent function
[31]. In this study, a hyperbolic tangent function has been
employed as the activation function [31]. In MLPNN, each
weight Wij is adjusted iteratively so as to reduce the error (E)
between the actual response Yj and desired response Ydj. E is
defined as

E ¼ 1

2
Y dj−Y j

� �2 ð9Þ

For adjusting the weights and minimizing the error, many
training algorithms have been employed and out of these, a
commonly used one is backpropagation (BP) training algo-
rithm. In this paper, backpropagation supported by the
Levenberg–Marquardt (LM) algorithm [31–34] has been
employed to address the problem of slow convergence of con-
ventional BP algorithm.

X1

X
2

X
3

X
4

X
5

X
n

Y
1

Y
2

Input Hidden 
Output 

Fig. 2 The structure of the MPLNN model

Fig. 1 RRi series of a typical
subject and its corresponding
recurrence plot (m = 2, τ = 1, r =
0.2 × SD of time series). Self-
matches form diagonal line as
shown
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2.8 Support vector machine

Support vector machine (SVM) is an algorithm of machine
learning, that is used for classification and regression purposes
[36]. It is a form of supervised learning that is based on statis-
tical learning theory. SVM is based on the idea of finding a
hyper plane that discriminates the data into distinct classes
where data is projected into a higher dimensional feature
space. SVM distinguishes the data by maximizing the margin
and minimizing the class error ratio [37]. SVM comprises of
many reliable properties for learning and provides good ex-
perimental results, so it finds many applications in various
fields [26, 36, 38, 39].

Figure 3 presents the basic idea about SVM. The data
points are classified as positive or negative by finding a
hyper plane that separates the data points my maximum
margin.

For further explanation, suppose x is a vector which de-
notes a pattern to be classified and d denotes its class (d ∈
{± 1}). Also let ({xi, di}, i = 1, 2, ……. k) denotes a set of k
training examples. In SVM, the challenge lies with the crea-
tion of a decision variable, f(x), that it correctly categorizes
data into two classes. For linear SVM classifiers, the decision
variable is given as [26]

f xð Þ ¼ WTxþ b ð10Þ
such that dif(xi) > 0 for di = +1 and dif(xi) < 0 for di = −1, where
W is the vector of weights and while b defines the bias that
forms the hyper plane, f(x) = 0. In SVM, the optimal hyper
plane with maximum class separation can be found by lessen-
ing the following cost function [26]

j wð Þ ¼ 1

2
WTW ¼ 1

2
Wk k2 ð11Þ

subject to the constraints of separation

di WTxi þ b
� �

≥1 for i ¼ 1; 2;……………k ð12Þ

Solution to (11) is given by

W ¼ ∑
k

i¼1
αidixið Þ ð13Þ

Hence, the final decision variable can be obtained by

f xð Þ ¼ sign ∑
k

i¼1
αidixxi þ bð Þ

� �
ð14Þ

where xi is the training vector, x is the classification vector, and
αi are the langrage multipliers for enhancing separation.

For the classes which are not linearly separable, kernel
function k(x, xi) is used, which facilitates the classification
using linear hyper plane. The final decision function given
in (14) is adapted to

f xð Þ ¼ sign ∑
k

i¼1
αidik x; xið Þ þ bð Þ

� �
ð15Þ

The kernel function of the SVM can be linear, polynomial,
Gaussian, radial function etc. In this paper, for the choice of
the SVM kernel, SVMs with various kernels like linear SVM,
cubic SVM, quadratic SVM, fine Gaussian SVM, medium
Gaussian SVM, and course Gaussian SVM were tested for
the classification at it was found that SVM with quadratic
kernel provides the highest accuracy [23].

2.9 Statistical analysis

A comparison among the different indices for the elderly and
young subjects is performed using normal distribution and
variance homogeneity test. If the results are positive, then
independent samples t test is implemented, otherwise
Wilcoxon rank test is done for a significance level of 0.05.

2.10 Selection of optimum threshold (ropt)

For the calculation of various indices of RQA and ApEn,
selection of threshold “r” is very significant. For RQA, re-
searchers have used empirically defined “r” as 0.20–0.25
times the standard deviation of the signal [23, 40]. For calcu-
lating ApEn, in case of slow dynamic signals, researchers
have prescribed “r” within 0.01.–0.2 times the standard devi-
ation of the signal [41]. Further, Chon et al. [42] illustrated that
instead of strictly following the range recommendation, select-
ed “r” should correspond to ApEnmax. This choice eliminates
the problem of underestimating the ApEn due to lower toler-
ance as well as intrusion of self-matches in ApEn calculations
due to higher tolerance threshold. The selected “r” corre-
sponding to ApEnmax is the tipping point where self-matches
begin to dominate other matches. Hence, it is the most appro-
priate measure to quantify the complexity of any time series.

Positive Examples

Negative Examples

Maximize distance

to nearest points

Fig. 3 SVM classification

Med Biol Eng Comput (2019) 57:741–755 745



The corresponding “r” is considered as optimum tolerance
threshold value, i.e., ropt [41].

In this paper, ropt that corresponds to ApEnmax is used for
the calculation of RQA indices such as %REC, %DET, and %
LAM. The corresponding calculations of ApEn and RQA
have been made by selecting low embedding dimension,
m = 2 and τ = 1 [43]. Figure 4 shows the variation of ApEn
with variation in “r”with a step size of 0.01. Corresponding to
the ApEnmax, rmin

opt and rmax
opt define the range of the values for

the choice of ropt.
RRi is a time series with finite resolution that is acquired

from ECG signal, sampled at finite sampling frequency; there-
fore, sampling and quantification errors in the discrete RRi

may lead to erroneous ApEn and %REC calculations [44].
This is reflected from the outcomes depicted in Figs. 4 and
5, which show the relationship between the number of neigh-
borhood points and the radius of the neighborhood indicated
by stepped line for the variation of ApEn and %REC. These
steps lead to different values of ropt, i.e., ranging between rmin

opt

and rmax
opt . However, for infinite resolution, this stepped re-

sponse will be replaced by smooth line and rmin
opt and r

max
opt will

coincide to a single value of ropt.
Figure 5 shows the behavior of ropt for a typical elderly, a

young subject, and a random noise (RN) series for the data
length (N) of 300. Due to higher resolution of RN series, ropt
corresponds to single value, while for RRi series, ropt is spread
over a range of values. It is also seen that for an elderly

subject, the minimum value of ropt, i.e., rmin
opt , is lesser than that

of its young counterpart. On the other hand, rmax
opt of the elderly

subject is greater than that of young subject, which results in
greater difference between rmin

opt and r
max
opt for the elderly subject

than young one.

2.11 Selection of appropriate RR data length (N)

Calculating ApEn requires comparison of the various data
templates derived from a larger dataset having length N.
Hence, ApEnmax and ropt are critically dependent on N. In this
work, N is carefully chosen so that ropt corresponding to
ApEnmax lies within the suggested range between 0.1 and
0.25 times SD of RRi [45].

To ascertain the optimum data length to be chosen for ropt,
50 realizations of random noise (RN) of N varying from 50 to
700 in steps of 50 are simulated and the same is performed on
real RRi for young and elderly subjects. Figure 6 shows the
variation of ropt with respect to N for RN series. It is observed
that ropt decreases with increase in N and becomes nearly
constant for N ≥ 300 for RN series.

Figures 7 and 8 show the variation of ropt with respect to N
varying for RRi obtained from young and the elderly subject
respectively. It is seen that the minimum value of N, for which
ropt (rmin

opt ) is within the recommended range, is found to be

300 for elder as well as young subjects. In this case also, ropt

Fig. 4 ApEn and %REC values
over the range of “r” varying from
0 to 0.7 in steps of 0.01 for an
RRi, rmin

opt and rmaxopt correspond to

the maximum value of ApEn
depicted as ApEnmax. The
corresponding calculation is made
by choosing m as 2 and τ as 1
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remains almost constant for N ≥ 300 and remains within the
suggested range for RRi.

From Figs. 7 and 8, it is also observed that mean value of
rmin
opt remains lower for the elderly subjects irrespective of data

length, while on the other hand, mean value of rmax
opt always

remain higher.

2.12 Calculation of radius differential (RD)

It has been established that due to the finite sampling frequen-
cy of ECG, the return map of RRi as shown in Fig. 9 have
points lying at least one sampling period (TS) apart [44]. This
separation increases further, if RRi time series has lower com-
plexity, due to reduced probability of finding a point at mini-
mum resolution. Based on this, an index, namely radius dif-
ferential (RD), is provided for the assessment of complexity.
RD is defined as the range of values of ropt that corresponds to
same value of ApEn, i.e., ApEnmax.

RD ¼ rmax
opt −r

min
opt

� �
ð16Þ

Hence, RD is the amount of uncertainty involved in calcu-

lating ropt within the plateau range rmax
opt ; r

min:
opt

� �

Figure 9 shows the Poincaré plot of RRi where threshold
rmin
opt and rmax

opt are represented by two concentric circles.

From Fig. 9, it is assumed that the inner and outer circles
encompass the same number of points, and hence they corre-
spond to the same value of ApEn. Hence, RD can be taken as
the radial difference between these two concentric circles.

Figure 10 shows the Poincaré plot of an elderly and a
young subject from the Fantasia database. The distribution
of points is dense for the young subject, which results in lower
value ofRD. It is also worth mentioning here that the minimum
value of RD is limited by sampling interval (Ts). Hence, the
changes in HRV with age, captured by RD, are apparent from
Figs. 5, 9, and 10

3 Results

3.1 Descriptive statistics (mean ± SD)

The results presented in Table 1 are calculated by randomly
extracting 1040 data segments of RRi with a preset length of
300, from the recorded and standard Fantasia database of the
elderly and young subject s. It is observed that for HRV, mean
of SDNN is greater in the case of the young subjects than the
elderly subjects. The heart rate, represented by reciprocal of

Fig. 5 Selection of ropt for the
elderly subject (f2o02) and young
subject (f2y02) and random noise
(RN), N = 300

Fig. 6 Variation of mean of “ropt”
with data length (N). “ropt” value
is mean over 50 random noise
(RN) series
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mean RR, is higher in young subjects than those of the elderly
subjects. These results were found significant with p value less
than 0.05. Figure 11 also endorses the results.

3.2 ApEn results

In this paper, for the calculation of ApEn- and RQA-related
indices, m= 2, τ= 1, and N = 300 are used. The indices cal-
culated from ApEn are tabulated next to the descriptive statis-
tics indices in Table 1. ApEnmax, rmin

opt , r
max
opt , and RD are com-

puted from the RRi time series of the elderly and young sub-
jects. Mean and SD of each parameter along with p value are
depicted. Mean value of ApEnmax is almost similar for the
elderly and young subjects with a marginal difference.
Averaged rmin

opt is lower for the elderly subjects than the young

ones, while the mean value of rmax
opt is slightly higher for the

elderly subjects. Parameter RD has a significantly higher mean
value for the elderly subjects than the young subjects. All
indices are found significant with a lower p value, except
ApEnmax, which has a p value of 0.118.

3.3 RQA results

The indices calculated from RQA are presented next to the
ApEn indices in Table 1. Mean and SD of%REC, %DET, and
%LAM along with their respective p values are presented. In
this paper, for the calculation of%DETand%LAM,minimum
line length is set to 3, as this results in the decay in the

influence of noise [43]. Mean of %REC is almost the same
for the two classes with a slight difference, conversely SD of
%REC shows substantial change. Similar trend is observed
for %DET and %LAM. These indices are found significant
with a lower p value.

3.4 Effect of sampling frequency of ECG on ApEn
indices

The values of ApEn indices rmin
opt , r

max
opt , and RD may be influ-

enced by the resolution of RR intervals and hence depend
upon sampling frequency of the ECG signal acquired. To in-
vestigate this, these indices are computed for the ECG signals
sampled at 250 Hz, 500 Hz, and 1000 Hz for the elderly and
young subjects respectively. To obtain high-resolution ECG
signals, the already acquired ECG signals (sampled at 250 Hz)
were interpolated to reflect a sampling frequency of 500 Hz
and 1000 Hz using cubic spline interpolation [46]. The results
are presented in Table 2.

3.5 Correlation analysis of descriptive statistics, RQA,
and ApEn

A correlation analysis between descriptive statistics, RQA,
and ApEn indices is carried out for the young and elderly
subjects using Pearson’s cross correlation coefficient and the
results are tabulated in Tables 3, 4, and 5 respectively. Table 3
shows the Pearson cross correlation (CC) between descriptive

Fig. 7 Variation of mean of lower
value of “ropt” (rmin

opt ) with data

length N for RRi

Fig. 8 Variation of mean of upper
value of “ropt” (rmax

opt ) with data

length N for RRi
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statistics and ApEn indices for the elderly and young subjects.
Table 4 shows the cross correlation between ApEn and RQA
indices. Table 5 shows the cross correlation between RQA
indices and descriptive statistics.

3.6 Classification by MLPNN and SVM

In this work, commonly used 10-fold cross-validation has
been employed to classify the samples. The significant indices
as stated in Table 1, derived from 1040(520 each) data seg-
ments for the elderly and young subjects, were used. To ex-
amine the effect of the selection of indices on the classification
performance, the indices were categorized into three different
categories. Category-I comprises of descriptive indices such

as mean RR, SDNN, and RMSSD. Category-II comprises of
RQA indices such as %REC, %DET, and %LAM, while
Category-III consists of ApEn indices such as rmin

opt , r
max
opt , and

RD. For comparing the performance of the two classifiers, the
following performance measures were employed:

Recall ¼ True Positive TPð Þ
True Positive TPð Þ þ False Negative FNð Þ ð17Þ

Precision ¼ True Positive TPð Þ
True Positive TPð Þ þ False Positive FPð Þ ð18Þ

%Accuracy ¼ No of Correct decisions

Total no of decisions
ð19Þ

Figure 12 presents the variation of various performance
measures with the choice of features. It is observed that, con-
sidering all the features as input to the classifier, SVM per-
forms better than MLPNN with a maximum % accuracy of
99.7, recall and precision of 0.998 and 0.996 respectively. It is
found that while consideringCategory-I along withCategory-
III, viz., leaving out the RQA features, the classification per-
formance is significantly decreased. Similarly, the combina-
tion of Category-II & III produced a % accuracy of 90%,
recall of 0.896, and precision of 0.903 for SVM while %
accuracy of 85.1%, recall of 0.862, and precision of 0.864
was observed for MLPNN. Further, a significant drop in %
accuracy, recall, and precision was observed both for SVM
and MLPNN when ApEn-derived features were omitted, viz.,
Category-I along withCategory-IIIwas employed. Moreover,
for the individual classification performance of the three cat-
egories of feature vectors, each category was separately tested
and it was found that theCategory-III, in which ApEn-derived
features were present, gave improved results, i.e.,% accuracy
of 84.6 for SVM and 79.6 for MPLNN. The separate test of
Category-I resulted with % accuracy of 81.2% and 78% for
SVM and MLPNN respectively. RQA-derived features from
Category-II were only able to discriminate classes with %
accuracy of 68.8% for SVM and 62.1% for MLPNN.

Fig. 9 Poincaré plot of an RRi, inner and outer circles are drawn with
threshold (radii) rminopt and rmax

opt respectively. Both these circles have

encircled the same number of points

Fig. 10 Poincaré plot of an
elderly and a young subject from
the Fantasia database
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4 Discussion

In the clinical setting, HRVand its use for predictive purposes
is accounted for a number of physiological factors such as age
and gender. HRV is known to decrease with normal aging
process. This is indicated by the linear and non-linear indexes
that reduce with age. This can be related to the concept of
decreasing autonomic modulation with advancing age.
Moreover, the reduction of the magnitude of heart period fluc-
tuations and the decrease of complexity of the heart period
dynamics are interpreted as a sign of the reduction of respira-
tory sinus arrhythmia and the increased activation of sympa-
thetic control with age [4, 7, 24, 47, 48]. Therefore, it is im-
portant to take age into consideration for the HRV indices to
produce an accurate interpretation in a clinical condition. The
present work aids the previous studies and uses complexity
indices that correlate to the descriptive statistics. In the earlier
works [4, 12, 24, 47], it has been found that the young and

elderly subjects can be differentiated based on HRV statistics;
however, present work emphasizes on the development of
complexity related indices that can significantly differentiate
the two groups even for shorter data sets.

The autonomic nervous system (ANS) possesses a regula-
tory structure governed by non-linear processes and mecha-
nisms controlled by the brain stem [7]. From Table 1, it is
evident that the averaged mean RR of the elderly subjects is
higher than that of the young subjects, implying that the heart
rate of the young subjects is greater than that of the elderly
subjects. Also, the data segments derived from the young sub-
jects have higher averaged SDNN than the elderly subjects
conf i rming greater HRV in the young subjects .
Physiologically, this is due to sluggishness in the control
mechanisms governing HRV due to aging. This is further
confirmed by the higher value of RMSSD in the young sub-
jects. These descriptive statistics alone are not enough to cap-
ture the real non-linear characteristics of the ANS processes

Table 1 Mean and SD of various
indices of the young and the
elderly subjects calculated for
1040 data segments with N = 300,
extracted from recorded and
fantasia dataset

Measures Elderly subjects Young subjects p value

Mean SD Mean SD

Mean RR 1.05 0.15 0.97 0.14 < 0.05

SDNN 0.04 0.02 0.07 0.04 < 0.05

RMSSD 0.02 0.01 0.06 0.04 < 0.05

rmin
opt 0.18 0.04 0.22 0.03 < 0.05

rmax
opt 0.31 0.05 0.27 0.04 < 0.05

RD 0.12 0.02 0.05 0.01 < 0.05

ApEnmax 1.22 0.07 1.23 0.07 0.11

%REC 3.73 1.07 3.40 0.68 < 0.05

%DET 32.41 5.53 30.62 4.33 < 0.05

%LAM 18.51 5.91 12.84 5.39 < 0.05

Fig. 11 Indices computed for RRi

time series of the elderly and
young subjects from the Fantasia
database [43]
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and controls. To address this issue, the present work utilizes
the features obtained from non-linear method of RQA and
ApEn to quantify and classify HRV of the young and the
elderly subjects. The bias introduced in the ApEn due to the
“not defined” conditional probability (CP) is addressed by
substituting the CP to 0.5 [28]. A unification approach utiliz-
ing the indices obtained from RQA and ApEn is presented to
refine the RQA based on optimum threshold values rmin

opt , r
max
opt

and a newly proposed index RD.
Considering this, an effort has been made to extract these

non-linear features, derived from indices listed in Table 1. In
this work, traditional RQA method is fine-tuned by the selec-
tion of appropriate threshold based upon the maximum value
of ApEn. From Table 1, it can be realized that, there is no
substantial difference in the value of ApEnmax for the elderly
and young subjects, further confirmed by a higher p value. On
the contrary, rmin

opt and r
max
opt and RD are found to be significant,

having a considerably different values for the elderly subjects
and young ones. This is also depicted in the box and whisker
plot shown in Fig. 11.

It is observed from Fig. 7 that, irrespective of data lengthN,
rmin
opt has a lower mean value for the elderly subjects than the

young subjects. This is because, for the elderly subjects, self-
matches rapidly overpower other matches than the young

subjects due to lesser variability in the heart rate of the elderly
subjects than the young ones.

From the results shown in Table 2, it can be seen that rmin
opt ,

rmax
opt , and RD are influenced by the sampling frequency of

ECG. However, the indices calculated for a relative study of
elderly and young subjects under similar data acquisition tech-
niques still provide significant distinguishing features. The
lowest value of RD, i.e., mean minus the SD, is 0.04 for young
subjects at 250-Hz-sampled ECG signal. This value is in fact
the resolution of the ECG signal at this sampling rate.
However, the value of RD for elderly subjects is higher than
this lower limit of 0.04. Similar results are obtained for ECG
sampled at 500 Hz and 1000 Hz. In a more generalized study,
it is proposed to sample the ECG signal at a higher rate than
250 Hz to get a good resolution for fast as well as slow chang-
ing signals.

From Table 3, it is observed that RD is significantly corre-
lated (p value < 0.05) to SDNN with a CC value of − 0.8927
and − 0.8597 respectively for elderly and younger subjects.
Similarly, it is significantly correlated (p value < 0.05) to
RMSSD with a CC value of − 0.6893 and − 0.6632 respec-
tively for the elderly and younger subjects. This drop in
SDNN is due to the decrease in HRV with age. RD being
strongly correlated to SDNN and RMSSD shows the similar

Table 2 Effect of sampling
frequency of ECG on ApEn
indices

Index Sampling frequency Elderly subjects Young subjects p value

Mean SD Mean SD

rmin
opt 250 Hz 0.1827 0.0382 0.2248 0.0320 < 0.05

500 Hz 0.1831 0.0490 0.2011 0.0361 < 0.05

1000 Hz 0.1977 0.0479 0.2094 0.0378 < 0.05

rmax
opt 250 Hz 0.3080 0.0492 0.2733 0.0362 < 0.05

500 Hz 0.2653 0.0584 0.2223 0.0382 < 0.05

1000 Hz 0.2486 0.0527 0.2160 0.0383 0.09

RD 250 Hz 0.1151 0.0236 0.0533 0.0133 < 0.05

500 Hz 0.0821 0.0246 0.0211 0.0164 < 0.05

1000 Hz 0.0509 0.0129 0.0066 0.0082 < 0.05

Table 3 Pearson cross correlation
(CC) between descriptive
statistics and ApEn indices for the
elderly and young subjects

rmin
opt rmax

opt RD

CC p value CC p value CC p value

Elderly subjects Mean RR 0.2386 0.0754 0.2385 0.0875 − 0.1492 < 0.05

SDNN 0.5994 < 0.05 − 0.6676 < 0.05 − 0.8927 < 0.05

RMSSD 0.4631 < 0.05 − 0.4290 < 0.05 − 0.6893 < 0.05

Young subjects Mean RR 0.09961 0.0531 0.0447 0.3090 − 0.0465 0.2893

SDNN 0.5766 < 0.05 − 0.6057 < 0.05 − 0.8597 < 0.05

RMSSD 0.5327 < 0.05 − 0.6390 < 0.05 − 0.6632 < 0.05
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behavior. However, signal amplitude (RR variability amount
sized by SDNN) is not coincident with complexity. Linear
measures like SDNN does not capture the dynamics involved
in the genesis of HRV. Non-linear measures like RQA face the
limitation of dimensionality. Complexity-based measures like
ApEn are used to characterize these dynamics quantitatively.
The utility of RD is towards the unification of RQA and ApEn
and highlighting uncertainty in calculating “ropt,” hence pro-
vide an alternative index to measure the complexity of HRV.
The radius indices rmin

opt and rmax
opt show moderate positive and

negative correlation with SDNN and RMSSD respectively
and that confirms to the results obtained in Fig. 5. From
Figs. 5, 9, and 10, it is seen that index RD, which signifies
the uncertainty in calculating ropt, shows a relative difference
between the younger and elderly subjects. There is no signif-
icant correlation between mean RR and ApEn indices, i.e.,
rmin
opt and r

max
opt . This is because mean RR provides no informa-

tion about the complexity of the signal. Table 4 shows the
cross correlation between ApEn and the RQA indices. Amod-
erate correlation is observed between the %REC,
%LAM, rmin

opt , and r
max
opt indices. The cross correlation between

RQA indices and descriptive statistics is tabulated in Table 5.
A significantly lower correlation is observed between these
two classes of indices. This is because complexity is a differ-
ent phenomenon than the amount of variability as measured
by the variance and the standard deviation of a signal. Though,
SDNN and RMSSD quantify the variations in a signal, these
do not quantify the information about recurrence of samples of

a given signal as measured by the RQA indices, viz., %REC,
%LAM, and %DET.

A classification% accuracy of 81.2% is obtained by feed-
ing the descriptive features (Category-I) to SVM in compari-
son to 78% using MLPNN classifier is shown in Fig. 12a.
Moreover, from Fig. 12b, c, the recall values can be observed
as 0.70 and 0.684 and precision values of 0.667 and 0.611
respectively for SVM and MLNPP. The classification indices
for the quantification of the young vs. the elderly subjects can
be enhanced if the non-linear characteristics of ANS control
are captured using non-linear and information theory-based
techniques such as RQA and ApEn respectively. Similar clas-
sification was done using RQA indices (Category-II) and a
reasonable accuracy was obtained.

A significant improvement in the classification accuracy is
observed when rmin

opt , r
max
opt , and RD features (Category-III) are

used for the classification with % accuracy of 84.6% and
79.6% for SVM and MPLNN respectively. The classification
accuracy improved further when a combination of two cate-
gories of features was used. The best results were obtained
when descriptive indices (Category-I) were used along with
ApEn features (Category-III) for the classification with %
accuracy of 92.8% and 87.2% using SVM and MLPNN
respectively.

Lastly, all the features were combined for the classification
of data. The classification% accuracy of 99.7% was achieved
using SVM with recall and precision values of 0.998 and
0.996 respectively. Using MLPNN resulted in % accuracy

Table 4 Pearson cross correlation
(CC) between ApEn and RQA
indices for the elderly and young
subjects

rminopt rmax
opt RD

CC p value CC p value CC p value

Elderly subjects % REC 0.4378 < 0.05 0.5383 < 0.05 0.5310 < 0.05

% DET − 0.0930 < 0.05 − 0.0312 0.4776 0.0557 0.2046

% LAM − 0.3263 < 0.05 − 0.2572 < 0.05 0.0092 0.8336

Young subjects % REC 0.4040 < 0.05 0.5427 < 0.05 0.3629 < 0.05

% DET − 0.1258 < 0.05 − 0.0420 0.3390 0.0733 0.0948

% LAM − 0.3551 <0.05 − 0.2592 < 0.05 0.0644 0.1421

Table 5 Pearson cross correlation
(CC) between descriptive
statistics and RQA indices for the
elderly and young subjects

%REC %DET %LAM

CC p value CC p value CC p value

Elderly subjects Mean RR − 0.1159 < 0.05 − 0.1644 < 0.05 − 0.1228 < 0.05

SDNN − 0.1469 < 0.05 − 0.0091 0.8344 0.0422 0.3366

RMSSD − 0.0781 0.0749 − 0.1586 < 0.05 − 0.2007 < 0.05

Young subjects Mean RR − 0.0797 < 0.05 − 0.1764 < 0.05 − 0.1300 < 0.05

SDNN − 0.2326 < 0.05 − 0.0104 0.8123 0.0379 0.3878

RMSSD − 0.1736 < 0.05 − 0.1607 < 0.05 − 0.2010 < 0.05
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of 96.6% with recall value of 0.971 and precision values of
0.962.

The results of this work are in line with the previous studies
reported [7, 24–26, 39, 47, 49]. The decrease in the value of
RD indicates the decreases complexity on HRV series with
advancing age as concluded by Y. Shiogai et al. [7], Iyenger
et al. [25], Voss et al. [49], and many other researchers. The
optimized data length N of 300 for the quantification of HRV
by ApEn and RQA confirms the choice of length of RR time
series for the HRVanalysis as reported in [13, 50, 51]

5 Conclusion

Non-linear physiological control mechanisms associated with
ANS are captured by adding the indices obtained from non-
linear and information-based methods to the traditional de-
scriptive statistics used for quantification of HRV. Enhanced
classification accuracy is observed using the combination of
these indices to segregate the young from the elderly subjects.

Compared with the classification performed earlier using the
descriptive statistics, with the addition of indices like %REC,
%DET, %LAM, rmin

opt , r
max
opt , and newly defined RD, significant

improvement in the quantification and classification of HRVis
observed. Feature classification methods can be employed in
future to optimize the choice of extracted features to success-
fully classify the HRV.
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