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Abstract
The analysis of cell characteristics from high-resolution digital histopathological images is the standard clinical practice
for the diagnosis and prognosis of cancer. Yet, it is a rather exhausting process for pathologists to examine the cellular
structures manually in this way. Automating this tedious and time-consuming process is an emerging topic of the
histopathological image-processing studies in the literature. This paper presents a two-stage segmentation method to obtain
cellular structures in high-dimensional histopathological images of renal cell carcinoma. First, the image is segmented to
superpixels with simple linear iterative clustering (SLIC) method. Then, the obtained superpixels are clustered by the state-
of-the-art clustering-based segmentation algorithms to find similar superpixels that compose the cell nuclei. Furthermore,
the comparison of the global clustering-based segmentation methods and local region-based superpixel segmentation
algorithms are also compared. The results show that the use of the superpixel segmentation algorithm as a pre-segmentation
method improves the performance of the cell segmentation as compared to the simple single clustering-based segmentation
algorithm. The true positive ratio (TPR), true negative ratio (TNR), F-measure, precision, and overlap ratio (OR) measures
are utilized as segmentation performance evaluation. The computation times of the algorithms are also evaluated and
presented in the study.

Keywords Histopathological image analysis · Cell segmentation · SLIC · SLIC-DBSCAN · Superpixels

1 Introduction

Approximately 14 million people are diagnosed with can-
cer by an expert each year, and 8 million of them die
of it or related complications. The early diagnosis of
cancer is of vital importance in surviving the disease.
With technological development, the use of technological
devices for diagnosis contributes to the early diagnosis of
many diseases and further helps to start necessary treat-
ment. Magnetic resonance imaging (MRI) and computed
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tomography (CT) are devices frequently used by experts
because they supply reliable information about the internal
human structure and functions by various means. Pathology
plays an important role in early cancer diagnosis. Following
the pathological pre-processes (staining, etc.), pathologists
examine the suspected cancerous tissues in the laboratory.
These examinations made by pathologists consist of diag-
nosis of the disease upon morphological and functional
analysis of cellular structures, tissues, and organs. One of
the most crucial processes for diagnosis is the determination
of cellular structures. The cellular structures of cancerous
tissues morphologically differ from the cellular structures
of non-cancerous tissues. Analyzing each cellular struc-
ture one by one is a difficult and time-consuming process
for pathology experts. The aim of this study is to auto-
mate this difficult and time-consuming process with the
help of imaging equipment and digital image processing
techniques. This process is called computer-aided diagno-
sis (CAD). The purpose of CAD is to establish secondary
decision support systems that contribute to early diagno-
sis by analyzing the digitized histopathological images in a
computer environment.
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In recent years, many studies have been carried out on
the segmentation of cellular structures in histopathological
images [13, 25, 30, 32]. These studies were performed
using clustering-based, thresholding-based, and graph-
based algorithms. In [3], Al-Lahham et al. proposed a
method of segmenting cellular structures. First the RGB
image was transformed to La*b* color space. Then,
a k-means algorithm was performed to find the local
regions. Finally, a global thresholding and a number
of morphological operations were performed to find the
cellular structures. In [31], Xu et al. performed the
segmentation process with an adaptive thresholding method.
After that, the segmented image was determined by
observing the elliptical curve to find near-circular nuclei.
Similarly, Lu et al. also proposed a robust method that
performs an adaptive filter and observes the elliptical curves
to detect the cellular structures [19].

Pathologists perform various pre-processing operations,
such as fixation, staining, cutting, and scanning, before
examining the tissue obtained by biopsy. The more
successful these pre-processes are, the better discriminated
the cellular structures are from cytoplasm and fatty tissue.
The various disruptions, which can occur at any stage
of these pre-processes, lead to the formation of various
artifacts that resemble the cellular construction. These
artifacts can reduce the segmentation success in computer-
assisted analyses. While cellular structures are segmented
in digital histopathological images, global assessment of all
pixels in the plane may reduce segmentation success. On
the other hand, an analysis at the local area may improve
the segmentation performance since it favors differences in
the cellular structures compared to the environment. From
this point of view, the superpixel approach, which focuses
on local area of the image, gains importance.

Superpixels are a group of pixels that are merged
according to their brightness information and neighborhood
relationship. Several superpixel approaches have been
proposed that are very successful in object recognition,
remote sensing and target tracking [9, 10, 27]. Ochs
et al. proposed a superpixel segmentation method for
the purpose of object detection in motion data [23]. A
distance measure was introduced that incorporates color,
spatial information (xyz), and temporal information [6].
The method is successful in detecting moving objects and
foreground objects. In [22], a novel segmentation method
was proposed by Meng et al. to segment common objects
from multiple images. Then, a digraph was constructed to
represent the relationships between different local regions
based on their similarities. In [24], Schick et al. proposed
a foreground segmentation superpixel method as a post-
processing framework based on probabilistic superpixel
Markov random fields. A robust superpixel method was

also proposed for foreground target detection [33]. In that
study, it was shown that the use of superpixels provides
flexible and effective mid-level cues. A local region around
the target was segmented into superpixels, and confidence
values were assigned to them to form a confidence map by
computing the distance between a superpixel and clusters.

While the superpixel approach has been applied in
some biomedical image processing areas, such as brain
MRI imaging segmentation, optic disc segmentation,
glaucoma screening, etc., [8, 17, 21], there are not
many studies on the superpixel approach in digital
histopathological image analysis. Superpixel methods used
in histopathological image analysis are about segmentation
of regions rather than cell segmentation [26]. In [5],
a superpixel-based method was used to separate small
segments of breast tissue images. Subsequently, the cell
nucleus and cytoplasm in each small segment were
separated into epithelial and stromal regions by a support
vector machine (SVM) classifier. Similarly, superpixel-
based SVM has been used to distinguish epithelial regions
from stroma in oropharyngeal squamous cell carcinoma [4].
In [2], superpixel classification algorithms were proposed
for tumor localization in breast tissue. The bag-of-words
method was adapted to incorporate spatial information. In
[29], a simple linear iterative clustering (SLIC) superpixel
algorithm was used as an initial step for colorectal
image segmentation. Each image was divided into 168
superpixels by SLIC. Then, a similarity metric between
those superpixels was calculated for further analysis.
Finally, a normalized graph cuts algorithm was applied
to merge them into one segment. The contribution of
the superpixel approach to this area is crucial, especially
when cellular structures are thought to have distinctive
characteristics from their local region.

This study aims to present four contributions to the field
of cell segmentation in histopathological images:

(i) To compare the performance of the clustering-
based segmentation algorithms (global clustering
where all pixels in the plane have equal weight)
and the segmentation performance of superpixel
segmentation algorithms (where neighbors’ distances
in local regions are added as a feature),

(ii) To examine the effect of SLIC superpixel segmenta-
tion method which is used as a pre-segmentation algo-
rithm to the clustering-based segmentation algorithms
in digital histopathological images,

(iii) To compare the segmentation performance of well-
known superpixels segmentation algorithms,

(iv) To perform time performance analysis of both
the global clustering algorithms and superpixel
segmentation algorithms.
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2Methods

In this section, we present the formulation of the proposed
two-staged segmentation method. We first introduce the
clustering-based segmentation methods and the superpixels
segmentation methods used in this study. In Section 2.3, the
detail of the proposed study is explained.

2.1 Global clustering-based segmentation

2.1.1 K-means clustering algorithm

The K-means algorithm is one of the unsupervised machine
learning methods used to group data which have no label
information [20]. Since there is no label information,
it performs grouping according to their similarities by
comparing the data with each other. The number of groups
is determined by the number of k clusters to be entered by
the user. The processing steps of k-means algorithm are as
follows:

2.1.2 Fuzzy c-means clustering algorithm

The fuzzy c-means (FCM) algorithm was first proposed by
Donn et al. and improved by Bozdek et al. [7, 11]. Unlike the
k-means algorithm, it is based on the probability that each
of the samples to be clustered belongs to a cluster center
in a certain place, rather than being precisely assigned to a
cluster center. The general process steps of fuzzy c-means
algorithm are listed below:

2.2 Superpixel-based segmentation

2.2.1 Simple linear iterative clustering (SLIC) algorithm

Simple linear iterative clustering (SLIC) is a superpixel
segmentation algorithm proposed by Achanta et al. [1].
SLIC is a k-means-based algorithm that clusters the
neighboring pixels by considering their color and coordinate
information. In that study, the color space was transformed
to CIE Lab color space since Lab is perceptually uniform for
small color distance. The SLIC algorithm does not directly
calculate the Euclidean distance of the color and coordinate
information in the same formula since one of them could
negatively affects the other. Equation 1 represents the
distance calculation of the intensity values within the same
specific grid size:

dlab =
√

(lj − li )2 + (aj − ai)2 + (bj − bi)2 (1)

where j represents the center pixel, and i represents the
value to be clustered. The value of dlab is the distance of
the corresponding pixel to the center. L, a and b represent
the brightness values of the respective pixels. The Eq. 2 also
represents the distance of the coordinates of each pixel to
the related cluster center,

dxy =
√

(xj − xi)2 + (yj − yi)2 (2)

where xj and yj are the horizontal and vertical coordinate
information of each center pixel, and xi and yi values are
the coordinate information of each pixel to be clustered.

ds = dlab + m/N ∗ dxy (3)

The value of ds is the sum of the (x, y) plane distance
normalized by the grid interval N and the lab distance.
Here, normalization is done so that the calculation of
the coordinate information does not directly affect the
brightness interval. The value of m is defined to set the
compactness of superpixels.

2.2.2 Simple linear iterative clustering via density-based
spatial clustering of application with noise (SLIC-DBSCAN)

SLIC-DBSCAN is a superpixel segmentation algorithm
using the density-based spatial clustering of applications
with noise (DBSCAN) [1, 12, 15, 16]. The DBSCAN
algorithm has more potential to segment irregular objects in
order to create more regular superpixels. In this algorithm,
the pixels in the image were merged to get initial superpixels
by using the SLIC superpixel segmentation algorithm.
Then, these initial superpixels are merged to obtain final
segments. The success of this algorithm is due to the use of
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DBSCAN as a segmentation algorithm to group the similar
neighbor superpixels. The DBSCAN algorithm improves
the performance of segmentation by adding local geometric
boundaries.

DBSCAN is a clustering algorithm based on the mea-
surement of density in regions close to a given object (super-
pixel). There are two important parameters in the segmen-
tation of the data in the DBSCAN algorithm, epsilon and
minimum points (MinPts). The epsilon parameter represents
the radius of a circle that encompasses superpixels around a
given superpixels center. It is called the ε-neighborhood of
x . ’MinPts’ is the minimum number of superpixels within
the epsilon distance. Figure 1 demonstrates the simple logic
of the DBSCAN algorithm.

Different types of points (core superpixels, border, and
outlier superpixels) are included in the Fig. x is a core point
because the neighbor of x is 6, and y is a border point
because neighbors of y are less than MinPts, but it belongs
to the ε-neighborhood of the core point x. Z is a noise
point. An initial SLIC algorithm is used to merge neighbor
pixels. Similar superpixels are then merged with the core
superpixels if they are in a specific ε area.

Any pixel in the plate which has a number of neighbors
grater than or equal to ‘MinPts’ is called a ’core pixel’.
However, x is border point, if the number of its neighbors is
less than ‘MinPts’.

2.2.3 Topology preserved regular superpixel (TPRS)

Topology preserved regular superpixel (TPRS) and entropy
rate superpixel segmentation (ERS) were used to segment
the nuclei in this proposed study. This is aimed at both
evaluating the segmentation performance of both algorithms
and to compare those algorithms with the proposed method.

TPRS is a comprehensive method proposed by Tang
et al. to generate regular superpixels in salience images
[28]. It basically consists of three steps: First, initial seeds
are arranged under a lattice grid and associated with
proper pixels over the boundary map. Second, each seed is

relocated to the pixel with locally maximal edge magnitude
depending on both distance term and probability term.
Finally, local optimal path connected of each relocated seed
is generated vertically and horizontally. The detail of the
method is well expressed in [28] and the source code of the
algorithm is also publicly available.

2.2.4 Entropy rate superpixel (ERS) segmentation

Entropy rate superpixel (ERS) segmentation is a graph-
based superpixel segmentation method proposed by Liu
et al. Unlike other well-known superpixel segmentation
algorithms such as SLIC or SLIC-DBSCAN, ERSS tries to
find compact, homogenous superpixels by using a graph-
based approach. A novel objective function on the graph
topology is presented. This objective function consists of
two components: entropy rate and balancing term. While
the entropy rate providing the formation of compact and
homogeneous clusters, the balancing term provides clusters
with similar sizes [18].

2.3 The proposedmethod for cellular structure
segmentation

K-means and fuzzy c-means algorithms assume red, green,
and blue intensity values of each pixel in the image as
features (1 × 3 feature vector - [R,G,B]) and calculate
an Euclidean distance between each pixel and the cluster
centers. Since only the color information is used in the
global-based segmentation approach, the calculation is done
independently from coordinate distance. So, adding the
coordinate information as a feature could increase the
segmentation performance. This is the motivation behind
the superpixel segmentation methods. In this study, we
propose a method that combines these two approaches
for segmentation of cellular structures in histopathological
images.

In the first experiment, segmentation results were
obtained by applying k-means and fuzzy c-means methods,

Fig. 1 Basic representation of
DBSCAN algorithm. Point ×
and the other orange point are
core points because the area
surrounding these points in an
epsilon radius contain at least
six points
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which are well known as segmentation algorithms. The k-
means and the fuzzy c-means methods assume that all the
pixels in the plane are of equal weight. So, the segmentation
performance obtained using these algorithms was evaluated
by calculating all the pixels in the image independent of the
distance. Therefore, it is important to compare the super-
pixel methods with these algorithms. For evaluating the
k-means and fuzzy c-means algorithms, each color image
in the data set was smoothed by applying a 5 × 5 median
filter before clustering. This process suppressed the noisy
pixels in the image and helped to achieve a more successful
segmentation. After that, a clustering algorithm with six
cluster centers was applied to each color image. At this step,
red (R), green (G), and blue (B) intensity values of each pixel
were used as input features in segmentation process. Then,
a morphological operation was applied to the image obtained
by segmentation. Small artifacts resembling cellular struc-
tures were eliminated. This process was done both for the
k-means and fuzzy c-means algorithms. Figure 2 represents

two different types of kidney renal cell carcinoma images
taken from the data set and the histogram of the grayscale
of those images to mention the pixel distribution. Figure 2a
represents a digitized image that does not include many
tissue-like structures. However, in Fig. 2b, there are some
tissue-like structures (connective structure) that could affect
the segmentation performance. Figure 2c and d represent the
histogram values of the grayscale of those images. Applying
clustering-based segmentation algorithms with three clus-
ters in histopathological images may not always achieve
promising results because of noise and artifacts. So, increas-
ing the number of clusters could be a solution to handle this
segmentation problem. A total of six clusters are thought
to be fat tissue, connective tissue, cellular structure and
cell-like, fat-like and connective tissue-like. The parameters
’exponent’ and the maximum number of iterations for FCM
were set to 2 and 100, respectively.

In the second experiment, the contribution of the super-
pixel method to cell segmentation as a pre-segmentation

Fig. 2 The cellular structures in each image may have different darkness depending on the quality of staining and scanning operations. a and b Two
images obtained from data sets which have cellular structures with different darkness. c and d Histogram values of the images after transforming
to grayscale
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Fig. 3 Processing steps of the proposed study

process was examined. Figure 3 shows the processing steps
followed at this stage. Unlike the first part of the study, the
superpixels in the plane were segmented by the k-means
and the fuzzy c-means methods. The superpixel segmenta-
tion algorithm proposed by Anchanta et al. was used for
this purpose [1]. Figure 4 represents (a) an original image
obtained from the data set, (b) a superpixel method imple-
mented to this image, and (c) the clustering result of the
superpixels created from the image. The minimum super-
pixel size can be taken as 10 × 10 when the average area
of each nuclei is assumed to be 20 × 20. Approximately,
ImageWidth×ImageHeight

10×10 = 1600 could be chosen as initial
superpixels for image to be segmented. When all the images
in the data set are examined, 4000 superpixels or greater per-
forms good results to extract the cellular structures. After
this process, the background information is eliminated when
cellular structures are obtained from the segmented image.

Finally, artifacts that resemble the cellular structure of the
segmented image are eliminated if their area is less than 100
pixels. The value of 100 is not greater than the smallest cel-
lular structure in the ground truth. The RGB color space is
used for SLIC superpixel segmentation algorithm in order
to make fair comparison with k-means and fuzzy c-means.

In the third experiment, the performance of SLIC-
DBSCAN, ERS, and TPRS superpixel segmentation algo-
rithms in histopathological images are represented. Similar
to the previous two stages, a median filter with 5 × 5
windows size is applied to the color images. For each super-
pixel segmentation algorithm, the numbers of superpixels
between 500 and 1500 were tested empirically. Since the
best segmentation performance was achieved with 1000
superpixels, its results are represented for comparison pur-
pose. In SLIC-DBSCAN, the weighting factor (m) between
color and spatial differences was determined as 30. The

Fig. 4 a The superpixel
segmentation result applied to
an image. b The clustering result
of that image. c The extraction
of the cellular structures from
the corresponding image
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large value of m enforced the superpixels to be more regu-
lar. The radius for merging the region was set to 1. Regions
smaller than the radius were merged with the adjacent
regions. The resulting superpixels were updated to have
average information about the pixels they contained. Then,
any superpixels whose brightness value was greater than the
threshold level of 130 were eliminated.

ERS and TPRS algorithms were also used for compari-
son with other segmentation algorithms. Similar processing
steps were followed for TPRS and ERS superpixel meth-
ods. First, the obtained image is smoothed with 5×5 median
filter. Then, the smoothed image is segmented to 1500
and 3500 superpixels for ERS and TPRS, respectively.
One point to note when using such superpixel methods
in cell segmentation is that less than a certain number of
superpixels may reduce the segmentation performance. In
this case, since there are more than a certain number of
superpixels, segmentation does not significantly affect the
performance. Then, superpixels which had a value below 80
were assumed as cellular structures, the rest were assumed
as noncellular structures (background information). Finally,
artifacts resembling the cellular structure were eliminated.

3 Results

3.1 Data set description

The data set used in this study is obtained from Beck
Laboratory at Harvard University. The data set consisted
of high-resolution histopathological images of renal cell
carcinoma selected from The Cancer Genome Atlas
(TCGA) data portal and publicly available for usage. There
are 810 high-resolution 400×400, histopathological images
of ten kidney renal cell carcinomas. Images were scanned

using 40× magnification. TCGA is a high-scale cancer
research organization financed by the American National
Cancer Institute and the National Human Genome Research
Institute. In addition, TCGA conducts surveys to find
solutions to the 25 most common cancer types. In addition
to collecting molecular and clinical data, TCGA also obtains
whole slide images (WSI) under cancer research. Figure 5
represents sample images taken from the data set and the
ground truth images annotated by pathologists of those
images. The data set was introduced in [14].

3.2 Performancemetrics

Segmentation results of the proposed study were compared
with ground truth images, which were labeled by pathology
experts. The segmentation metrics used to evaluate segmen-
tation annotation include: true positive (TP), true negative
(TN), false positive (FP), false negative (FN), precision, and
recall. True positive represents the number of pixels in the
cellular structure area that are correctly labeled as positive
samples, while true negative represents the number of pixels
that are outside of the cellular structure area and labeled as
negative. False positive and false negative correspond to the
number of pixels outside of the cellular structure area that
are, however, labeled as positive and the number of pixels
located in the cellular structure area and labeled as nega-
tive, respectively. Equation 4 represents the precision value
which is the ratio of TP value to the positive predictions.

precision = T P

T P + FP
(4)

TPR (recall) value which is the ratio of TP to the all
observations in actual class is calculated in Eq. 5.

T PR(recall) = T P

T P + FN
(5)

Fig. 5 Sample histopathological
images and the ground truths
taken from data set
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Precision and TPR should be used together to illustrate
the overall performance of the evaluated method. Hence,
the Eq. 6 represents the F-measure (F-M), which is the
harmonic mean of precision and recall.

F − M = 2 × precision × recall

precision + recall
(6)

True negative rate (TNR) denotes the proportion of
negatives that are correctly identified.

T NR = T N

T N + FP
(7)

Equation 8 shows the overlap value, which is the ratio
of intersection of segmented output image and ground truth
image to the union of segmented image and ground truth.

OverlapRatio(OR) = A(S) ∩ A(G)

A(S) ∪ A(G)
(8)

where A(S) represents the area of segmented image and
A(G) represents the area of ground truth.

3.3 Evaluations

Figure 6 represents the (a) precision, (b) recall, (c) f-
measure values and the (d) overlap ratio of the proposed
method, which uses SLIC algorithm as a pre-segmentation
algorithm and k-means as post-segmentation algorithm. The
horizontal axis indicates the number of superpixels from
2k (2000) to 20k (20,000) and the vertical axis shows the
variation metrics depending on the superpixels numbers.
In Fig. 6a, the lowest precision value is obtained with
three cluster centers. The precision value increases as the
number of cluster centers increases. Figure 6b represents
the variation of recall value depending on the number of
superpixels. In this case, the greatest recall value is obtained
with three cluster centers and the recall value decreases
as the number of cluster centers increases. Obtaining high
or low value of precision and recall alone is not enough
to assess the segmentation performance. Combining the
precision and recall is more valuable for the segmentation

a b

dc

Fig. 6 Segmentation performance of k-means and FCM clustering methods after using SLIC superpixel algorithm as a pre-segmentation method.
a precision, b recall, c f-measure and (overlap) are represented, respectively
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Fig. 7 The effect of compactness value to the proposed method with
6000 superpixels and 4-means, which gives the best results

success than using each one. Therefore, the harmonic mean
of precision and recall, which is also known as f-measure,
is used for evaluation. Clustering of 6000 or greater
superpixels with 4-means gives the best f-measure value
according to Fig. 6c. It can be seen from the graphs that use
of the superpixels as pre-segmentation algorithm provides
less cluster usage and better segmentation performance
because superpixels eliminate the local variances of pixels.
According to Fig. 6, the overlap ratio of four cluster of 6000
superpixels is also the best while comparing with the other
combinations.

SLIC superpixels algorithm has compactness value for
the regularity of superpixels. Figure 7 represents the
segmentation performance of the proposed algorithm with
different compactness value to evaluate the effect of the
compactness. First, the compactness values were tried from
1 to 20, as mentioned in [1] but an acceptable change could
not be observed. A low value of m does not effect distances
of intensity and coordinates values, which is mentioned in

Eq. 2, so much. Although, very large value of m causes the
recall, f-measure, and overlap ratio to decrease.

Table 1 represents the segmentation results obtained
from the proposed study. The results are quite close when
compared to the results of the paper, which introduces the
data set [14]. The metrics used to evaluate segmentation
annotation include true positive ratio (TPR), precision
(Pre.), F-Measure, true negative ratio (TNR), and overlap.

According to Table 1, the accuracy of estimating the
cellular structures as cell of k-means algorithm is 60.00%.
The non-cellular structures including fat and blood tissues
are segmented with 97.4% performance. On the other hand,
the fuzzy c-means algorithm segments the cellular structures
by 60.14% success. Fuzzy c-means can segment the non-
cellular structures successfully with 97.3%. Although the
performances of the algorithms are approximately the
same, the fuzzy c-means algorithm works relatively slowly
compared to k-means.

The segmentation results of all the seven algorithms
are presented in Table 1. From left to right, the columns
show the true positive ratio (TPR), precision, F-measure,
true negative ratio, overlap, and time performance values
of segmentation algorithms. From the results of seven
algorithms applied in this study, it can be shown that the best
performance results were achieved by SLIC+FCM, SLIC-
DBSCAN, and SLIC+K-means, which all achieved F-M
scores between 63.7% and 65%. The single K-means and
FCM algorithms showed worse performance results with
F-M scores of 61.5%. Using the SLIC algorithm as a pre-
segmentation method increases the TPR, F-M, overlap, and
time performances of the algorithms. The results are also
comparable with the results of Irshad et al. (Fig. 8).

The performance criteria in Table 1 are based on the
performance criteria in the paper that the data set is
published. Accordingly, TPR (true positive ratio) represents
the performance of the system that predicts cell region as
cell. On the other hand, TNR (true negative ratio) represents
the knowledge of pixels not marked as cells by the system
and not marked as cells in the ground truth.

Table 1 Comparison of the segmentation performance for seven algorithms on the kidney renal cell carcinoma data set

TPR Pre. F-M TNR Overlap Time

k-means 0.600 0.690 0.616 0.974 0.450 60s

FCM 0.601 0.683 0.612 0.973 0.447 546s

SLIC+k-means 0.694 0.675 0.637 0.966 0.472 27s

SLIC+FCM 0.666 0.682 0.644 0.968 0.480 365s

SLIC-DBSCAN 0.745 0.614 0.642 0.947 0.480 183s

ERS 0.658 0.648 0.610 0.958 0.452 61s

TPRS 0.659 0.632 0.618 0.960 0.452 487s

Irshad et al. 0.76 0.62 0.65 0.960 0.49 -
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Fig. 8 Sample results obtained
by applying all the seven
algorithms to an image taken
from the data set

3.4 Evaluations for computational time

The experiments were performed on a workstation with
a 4.0-GHz Intel core i7-6700K and 48 GB of RAM.
All of the seven algorithms are implemented on CPU
only, in Matlab 2016a. Superpixels segmentations take 0.1
s per image of size 400 × 400. All computations are
represented at the last column in Table 1. Single K-means
algorithm clusters all the images in the data set within
60 s. While applying SLIC superpixels algorithm before
k-means, the computation time is decreased to 20 s. The
FCM algorithm is a slow algorithm while comparing with
k-means, respectively. Because instead of directly assigning
the label to the candidate pixels, a member function is
calculated for each candidate pixel. This operation is a
time-consuming process. Similar to the k-means algorithm,
applying superpixels before the FCM algorithm decreases
the time complexity. Depending on the its complexity,
some superpixel segmentation algorithm may perform
better than global clustering algorithms. SLIC-DBSCAN
performs faster than FCM and SLIC+FCM algorithms

but it is slower than the K-means and SLIC+K means
algorithms.

4 Discussion

This study aimed to contribute to the cell segmenta-
tion process in high-resolution histopathological images by
using the SLIC superpixel segmentation method as a pre-
segmentation algorithm and to compare the performance of
this algorithm to other well-known superpixel segmentation
algorithms. SLIC was used as a pre-segmentation algorithm
to improve the segmentation performance of the state-of-
the-art clustering-based segmentation algorithms. Results
of SLIC-DBSCAN, ERS, and TPRS superpixel methods
were also compared with the results of the state-of-the-
art clustering-based segmentation algorithms, k-means, and
fuzzy c-means. ERS and TPRS are chosen as segmenta-
tion algorithms since each of them is one of the most well
known superpixel segmentation algorithms that use differ-
ent algorithmic approaches to find the superpixels. ERS is a
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graph-based superpixel segmentation algorithm and TPRS
is an entropy-based superpixel segmentation algorithm. In
this study, we also aim to show the segmentation perfor-
mance of those superpixel segmentation algorithms for the
researchers who study histopathological image segmenta-
tion. According to the results obtained from this study,
the segmentation performance of the superpixel method is
successful in high-resolution histopathological images com-
pared to the clustering-based segmentation algorithms. The
results showed that clustering of histopathological images
with SLIC superpixel algorithm improved both the segmen-
tation performance and computation time while comparing
with k-means and FCM. The segmentation performances
depending on the parameters of superpixel segmentation
algorithms were also represented. It has been observed
that the results obtained using the superpixel segmentation
methods improved the cell segmentation performance when
compared with the study that the data set introduced. The
TPRS and ERS methods were also used for comparison
to determine the segmentation performance of superpix-
els methods. In the ERS and TPRS methods, segmenting
the given image to less than a certain number of super-
pixels may affect the segmentation performance negatively.
Instead, choosing a number of superpixels greater than a
certain value does not significantly affect the segmenta-
tion performance. As mentioned in Section 2.3, the initial
area of each superpixel should be determined smaller than
average nuclei area. Time performance of ERS and TPRS
methods was also compared to the other methods. ERS
was faster than the FCM, SLIC+FCM, and SLIC-DBSCAN
algorithms. However, TPRS was the slowest algorithm in all
seven methods because of its performance depending on the
quality of the pre-computed boundary maps.

5 Conclusions

In this study, the contribution of superpixel algorithms
to cell segmentation in high-resolution histopathological
images was examined. The study consists of two parts: first,
using the SLIC superpixel algorithm as a pre-segmentation
algorithm and using SLIC-DBSCAN superpixel algorithm
as an alternative segmentation algorithm to the existing
clustering-based segmentation methods. The SLIC super-
pixel algorithm was applied as a pre-segmentation algorithm
to increase the segmentation performance of k-means and
fuzzy c-means. There are three main tissues in histopatho-
logical images including fat tissue, connective tissue, and
cellular structures. So, the optimum cluster number for
state-of-the-art clustering-based segmentation algorithm is
three. However, various artifacts occur while scanning
images and transferring them to a computer environment.
These cause the images to have more than three segments.

Using six clusters for k-means and fuzzy c-means gave the
best results in this study. The details were explained in
the first part of Section 3. The advantages of using SLIC
superpixel segmentation algorithm is that SLIC smoothens
the local variance of neighbor pixels and eliminates the
artifacts. This helps k-means and fuzzy c-means to cluster
the segmented image with lower cluster centers. Reducing
the number of cluster centers also reduces the computa-
tion time. The results show that the segmentation perfor-
mance improved as a result of using the SLIC algorithm
as a pre-segmentation algorithm before using clustering-
based algorithms, instead of using the single clustering
algorithm alone to segment the data. The segmentation
performance of the superpixel algorithm was obtained by
applying the SLIC-DBSCAN superpixel algorithm. In addi-
tion, the effect of superpixel segmentation algorithms on
high-resolution histopathological images of renal cell carci-
noma obtained from the Cancer Genome Atlas (TCGA) data
set was compared to the best-known global-based clustering
algorithms, k-means and fuzzy c-means.

While comparing TPRS and ERS with SLIC-DBSCAN,
the major advantage of these algorithms is that they are
not hyper-parametric. However, the major drawback of TPS
is the performance, which depends on the quality of the
pre-computed boundary maps.
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Slic superpixels compared to state-of-the-art superpixel methods.
IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

2. Akbar S, Jordan L, Thompson AM, McKenna SJ (2015)
Tumor localization in tissue microarrays using rotation invariant
superpixel pyramids. In: IEEE 12th International Symposium on
Biomedical Imaging, ISBI’15, IEEE, pp 1292–1295

3. Al-Lahham H, Alomari R, Hiary H, Chaudhary V (2012)
Automation proliferation rate estimation from breast cancer ki-
67 histology images. Proceedings of the SPIE Medical Imaging:
Computer-Aided Diagnosis 8315 83:152A

4. Ali S, Lewis J, Madabhushi A (2013) Spatially aware cell
cluster (SPACCL) graphs: predicting outcome in oropharyngeal
p16+ tumors. In: International Conference on Medical Image



664 Med Biol Eng Comput (2019) 57:653–665

Computing and Computer-Assisted Intervention, MICCAI’13,
Springer, pp 412–419

5. Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, van de
Vijver MJ, West RB, van de Rijn M, Koller D (2011) Systematic
analysis of breast cancer morphology uncovers stromal features
associated with survival. Sci Transl Med 3(108):108ra113–
108ra113

6. Van den Bergh M, Van Gool L (2012) Real-time stereo and flow-
based video segmentation with superpixels. In: IEEE Workshop
on Applications of Computer Vision, WACV’12, IEEE, pp 89–96

7. Bezdek JC (2013) Pattern recognition with fuzzy objective
function algorithms. Springer Science & Business Media, Berlin

8. Cheng J, Liu J, Xu Y, Yin F, Wong DWK, Tan NM, Tao D, Cheng
CY, Aung T, Wong TY (2013) Superpixel classification based
optic disc and optic cup segmentation for glaucoma screening.
IEEE Trans Med Imaging 32(6):1019–1032

9. Cheng X, Wang Y, Yuan X, Li B, Ding Y, Zhang Z
(2015) Improving video foreground segmentation and propagation
through multifeature fusion. J Electron Imaging 24(6):063,017–
063,017

10. Du M, Wu X, Chen W, Wang J (2016) Exploiting multiple con-
texts for saliency detection. J Electron Imaging 25(6):063,005–
063,005

11. Dunn JC (1973) A fuzzy relative of the isodata process and its use
in detecting compact well-separated clusters. J Cybern 3:32–57

12. Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based
algorithm for discovering clusters in large spatial databases with
noise. In: KDD, vol 96-34, pp 226–231

13. George YM, Bagoury BM, Zayed HH, Roushdy MI (2013)
Automated cell nuclei segmentation for breast fine needle
aspiration cytology. Signal Process 93(10):2804–2816

14. Irshad H, Montaser-Kouhsari L, Waltz G, Bucur O, Nowak
J, Dong F, Knoblauch NW, Beck AH (2014) Crowdsourcing
image annotation for nucleus detection and segmentation in
computational pathology: evaluating experts, automated methods,
and the crowd. In: Pacific Symposium on Biocomputing, PSB’15,
NIH Public Access, pp 294–305

15. Kovesi P (2013) Image segmentation using SLIC superpixels
and DBSCAN clustering. http://www.peterkovesi.com/projects/
segmentation/index.html, accessed: 2017-04-22

16. Kovesi PD (2000) Matlab and octave functions for computer
vision and image processing. Online: http://www.csseuwaeduau/
∼pk/Research/MatlabFns/#match

17. Liu F, Lin G, Shen C (2015) CRF learning with CNN features for
image segmentation. Pattern Recognit 48(10):2983–2992

18. Liu MY, Tuzel O, Ramalingam S, Chellappa R (2011) Entropy
rate superpixel segmentation. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR’11, IEEE, pp 2097–2104

19. Lu C, Mahmood M, Jha N, Mandal M (2012) A robust automatic
nuclei segmentation technique for quantitative histopathological
image analysis. Anal Quant Cytol Histol 34:296–308

20. MacQueen J et al (1967) Some methods for classification and
analysis of multivariate observations. In: Proceedings of the 5th
Berkeley Symposium on Mathematical Statistics and Probability,
Oakland, CA, USA., vol 1-14, pp 281-297

21. Malamateniou C, Rutherford M, Hajnal JV, Glocker B, Rueckert
D (2015) Automatic brain localization in fetal MRI using
superpixel graphs. In: Machine learning meets medical imaging:
1st international workshop, MLMMI’15, conjunction with ICML
2015, Lille, France, July 11, 2015, revised selected papers,
Springer, vol 9487, p 13

22. Meng F, Li H, Liu G, Ngan KN (2012) Object co-segmentation
based on shortest path algorithm and saliency model. IEEE Trans
Multimedia 14(5):1429–1441

23. Ochs P, Malik J, Brox T (2014) Segmentation of moving objects
by long-term video analysis. IEEE Trans Pattern Anal Mach Intell
36(6):1187–1200
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