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Abstract
A cross-sectional study of postural sway analysis in older non-fallers, once-fallers and multiple-fallers using five common
standing tests was conducted. Eighty-six older subjects with an average age of 80.4 years (SD ± 7.9) participated in the study.
The angular rotation and velocity of the trunk of the participants in the roll (lateral) and pitch (sagittal) planes were recorded using
an inertial sensor mounted on their lower backs. The GaussianMixtureModels (GMM), Expectation-Maximisation (EM) and the
MinimumMessage Length (MML) algorithms were applied to the acquired data to obtain an index indicative of the body sway.
The standing with feet together and standing with one foot in front, sway index distinguished older fallers from non-fallers with
specificity of 75.7% and 77.7%, respectively, and sensitivity of 78.6% and 82.1%, respectively. This compares favourably with
the Berg Balance Scales (BBS) with specificity of 70.5% and sensitivity of 75.3%. The results suggest that the proposed method
has potential as a protocol to diagnose balance disorder in older people.
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1 Introduction

Under conditions of quiet standing, the human body naturally
sways. However, sway can increase as the result of age or
disease [1, 2]. The postural body sway in older people has
been examined in many studies. For example, in a study con-
ducted by Fernie et al. [3], significantly greater average speed
of sway in older fallers compared with that in non-fallers is

reported. In a study by Melzer et al. [4], no significant differ-
ence in body sway whilst standing with feet wide apart was
observed. However, an increase in mediolateral sway was
identified for a narrow stance among the older subjects with
fall histories. Laughton et al. [5] report a significantly higher
degree of sway in the anteroposterior direction in older sub-
jects with fall histories whilst standing still. This is supported
by an earlier study by Maki et al. [6].

Many studies express sway as the displacements of the co-
ordinates of the Centre of Pressure (CoP), usually determined
by the utilisation of force platforms [7–9]. In a study by
Ladislao and Fioretti [10], anteroposterior displacements of
the CoP were recorded by force platforms and the nature of
obtained data is later analysed with a nonlinear determinism
test. In another study, by Rocchi et al. [11], the most sensitive
features of the COP trajectory to postural performance were
identified using force platforms.

In recent studies, inertial measurement units (IMU) have
been widely utilised in biomechanics and bioengineering
fields. The IMUs can be used for movement analysis of the
daily-living tasks performed in the real-world environments
whilst the force platforms provide information on the simulat-
ed activities in a clinical environment [12]. Inertial sensors are
used for balance assessment among older people and there are
several review papers summarising advances made in this
field [13, 14].
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Gill et al. [15] analysed trunk sway by measuring trunk
angular velocity and position in the anteroposterior and
mediolateral directions using an inertial sensor. Compared to
both young and middle-aged subjects, the older subjects re-
corded greater angular sway of the trunk and greater angular
velocity in both anteroposterior and mediolateral directions
whilst standing.

The present study is aimed at developing a method to
score the body sway in different standing conditions in
older people with different fall histories. An inertial sen-
sor was utilised for postural sway analysis. The protocol
used included all of the static tests of the Berg Balance
Scale (BBS) [16]. The tasks consisted of standing with
eyes open, standing with eyes closed, standing with feet
together, standing with one foot in front of the other and
where possible, standing on one foot. Using the data pro-
duced by the sensor, the angular displacement and veloc-
ity of the trunk for a range of subjects in different tests
were measured and analysed. Based on the analysis, a
single value for each subject in each test was defined as
the sway index. The BBS provided by a clinician was
used as a comparative balance measurement.

The remainder of this paper is structured as follows.
The experimental design and data acquisition process
are presented in Section 2. The data analysis algorithms,
methods and the proposed method of body sway assess-
ment are presented in Section 3. The results of the
experimental work are provided in Section 4. Some con-
clusions are drawn in Section 5 and potential future
work is discussed.

2 Methods

2.1 Participants

In total, 101 older subjects aged 61–95 were recruited for
this study. The subjects were older adults who were re-
ferred to two local hospitals (Bulli Hospital, Wollongong
Hospital) for either annual health check-up or senility is-
sues. Ten participants were excluded because of their
frailty and poor balance, and the data recorded for five
participants were excluded because of technical problems.
In total, 86 participants who met the following recruit-
ment criteria were included in the final analysis: (a) able
to stand for at least 2 min independently, (b) able to hear
and understand instructions.

Based on the fall histories of the participants, they were
categorised into three groups: non-fallers, once-fallers and
multiple fallers.

2.2 Experimental tests and protocol

The primary aim of the study was to measure the spontaneous
body sway. In this case, the standing tests from Berg balance
protocol were used. The following five standing tests were
conducted:

& Standing with eyes open test: In this test, subjects were
required to stand without any extra movements for 2 min,
look straight ahead and keep their hands at their sides.

& Standing with eyes closed: The participants stood quietly
with eyes closed for 30 s.

& Standing on one foot: Subjects were asked to stand on one
foot (whichever at their convenience) for 10 s without
holding. Although the initial target was 30 s, none of the
participants could stand on one foot for more than 10 s.

& Standing with feet together for 1 min.
& Standing with one foot in front of the other: Subjects

placed one foot in front of the other with one heel touching
the toes of the other foot for 1 min.

All of the subjects were given appropriate rest periods of up
to 10 min after each test so that the subsequent test was not
affected by fatigue. During the tests, the subjects were asked
to try to maintain their balance without any extra movements,
look straight ahead and keep their hands at their sides. An
attending physiotherapist supervised all the tests to prevent
any possible accident. The physiotherapist also assessed each
subject’s balance using the BBS protocol.

2.3 Motion capture

In this study, we utilised an inertial 3D motion sensor (MTw
from Xsens technology) mounted directly above the pelvis in
the back lumbar region (Fig. 1).

The sampling rate was 50 Hz. The data was transmitted
wirelessly to a computer and the recorded data for each test
was subsequently analysed with Matlab. To minimise the in-
fluence of any idiosyncratic body movement at the start and
termination of each task, the first and the last seconds of the
recorded data were not included in the data analysis.

2.4 Analysis

The angular displacement and velocity in two planes of roll
and pitch (mediolateral and anteroposterior) were recorded as
illustrated in Fig. 2.

In Figs. 3 and 4, representative examples of orientation
angle of the trunk and its angular velocity are shown, respec-
tively. According to Fig. 3, the multiple-faller has higher
mediolateral trunk sway compared to the non-faller whilst
standing with feet together. In Fig. 4, an increase in the sway
velocity of the roll and pitch directions for the feet together
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and one foot in front standing tasks in the older multiple-faller
can be observed.

The data obtained from the sensor was arranged in a matrix
of four columns of the angular displacement in the roll plane
(ADr), the angular displacement in the pitch plane (ADp), the
angular velocity in the roll plane (AVr) and the angular veloc-
ity in the pitch plane (AVp) (Eq. 1).

ADr; ADp; AVr; AVp½ � ð1Þ

Clustering was subsequently applied to the recorded data,
as a form of unsupervised learning and data reduction proto-
col, in order to identify meaningful patterns and associated
structures within the data. Clustering is useful in interpreting

data with high dimensionality [17]. The combined multivari-
ate data recorded for all subjects across all the standing tests
was employed to develop a global machine-learnt Gaussian
Mixture Model (GMM). The process of clustering the data
and the establishment of the best set of clusters in terms of
how well they fit or represent the data (the suitable number of
clusters) was conducted at the same time. This process was
determined based on an EM-MML algorithm utilising the
Expectation-Maximisation (EM) and the Minimum Message
Length (MML) algorithms [18]. Expectation-Maximisation is
an iterative algorithm, which alternates between two steps; the
expectation step (E-step) and the maximisation step (M-step).
It assigns each datum to a Gaussian probability density with a
maximum probability.

A GMM can be defined as a parametric probability density
function, represented as a weighted sum of Gaussian compo-
nent densities. The probability distribution can be described
by:

p xð Þ ¼ ∑K
i¼1πiN xjμi;∑ið Þ ð2Þ

Where N(x| μi,Σi) is the multivariate Gaussian Probability
Density Function (PDF) with mean μi ∈ Rd and a covariance
Σi ∈ Rd × d for a model of K clusters evaluated at data vector xn
[19].

Here, the number of clusters (K) is identified using MML,
which is based on the minimal coding length of combined
model and data representations [20]. From information theory,
the minimum coding length of any message is given by Eq. 3:

L Eð Þ ¼ −log P Eð Þð Þ ð3Þ
where E is the data, and H is a probable hypothesis.

Fig. 1 The MTw motion sensor
was worn at the pelvis level in the
lumbar region of the back

Fig. 2 Yaw, roll and pitch rotations of the human body. Roll and pitch
angles are indicative of sway respectively in left-right and forward-
backward planes
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Fig. 3 Representative examples
of the trunk angle orientation of a
multiple-faller and a non-faller
whilst standing with eyes open
and standing with feet together

Fig. 4 Typical examples of angular velocity of the trunk of a multiple-faller and a non-faller in all the standing tests. An increase in the sway velocity in
the roll and pitch directions for the feet together and one foot in front standing tasks in the older multiple-faller can be observed
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P EjHð Þ � P Hð Þ ¼ P H∩Eð Þ ð4Þ

Maximising the probability that the evidence supports the
hypothesis is equivalent to minimising the message length.

argmaxP H∩Eð Þ ¼ argmin
�
−log

�
P EjHð Þ

−log P Hð Þð Þ
� ð5Þ

Equations (4) and (5) model some of the probabilistic seg-
mentation processes that are facilitated within the EM-MML
algorithm [20]. Indeed, as E in Eqs. (3–5) represents the mo-
tion data, H is the hypothesised cluster to that E most likely
belongs. The MML algorithm continues the segmentation
process seeking the best cluster set which yields the shortest
message length. A reasonable balance point is found, i.e. a
minimal sufficiency between the number of clusters and the
message length [21]. The parameter K is increased until there
is a negligible improvement in message length reduction as
indicated in Fig. 5.

The algorithm was controlled and run inMatlab. Using this
approach, the multivariate time series data was progressively
segmented into a series of gradually improving GMMs, each
composed of a specific set of elements or clusters. This pro-
cess continued until the rate of improvement or the reduction
in the MMLmessage length plateaued. Using this process, the
near-optimum GMM was identified as a set of some six pos-
tural states (or clusters).

The temporal sequence of these postural states corresponds
to a subject’s sway motion. Some examples are provided in
Fig. 6 for three subjects undertaking the standing tests.

As shown in the various subplots of Fig. 6, most of the
postural states are aligned with cluster 6. This cluster (postural
state) is the most abundant, or the most common, to all sub-
jects, as it represents the bulk of the multivariable data. In the
context of sway, this cluster also indicates that the pelvis is at a
stationary position at the origin of the coordinate frame. Any
data outside this cluster can be viewed as resulting from in-
voluntary movements at the pelvis or, in other words, postural

sway. The body motion primitive pose can be observed using
the mean of the Gaussian mixtures (Fig. 7).

In order to compare each participant’s sway based on these
postural states or data clustering, we propose a sway index, as
defined by Eq. 6.

Sway Index ¼ Nd−Ncð Þ
Nd

ð6Þ

Where Nd is the number of all data samples, and Nc is the
number of data in the common cluster (in the example above,
cluster number 6). The sway index is presented as a
percentage.

3 Results

3.1 Non-fallers versus fallers

We were not able to analyse body sway in the one-legged
stance test, as 47 out of the 86 participants could not undergo
the task for 10 s. The other standing sway indices and the BBS
for the three groups are shown in Table 1.

There are statistically significant differences between par-
ticipant groups as determined by one-way analysis of variance
(ANOVA) in the standing with feet together sway index (F (2,
83) = 42.45, p < 0.001), the standing with one foot front sway
index (F (2, 83) = 36.03, p < 0.001) and the BBS (F (2, 83) =
42.45, p < 0.001). No statistically significant differences are
found between the standing with eyes open and the standing
with eyes closed sway index of the different groups.

ATukey post hoc test shows that the standing with one foot
in front sway index is significantly smaller in older non-fallers
(M = 37.09%, SD = 7.07%) compared to older once-fallers
(M = 47.70%, SD = 560%, p < 0.001) and older multiple-
fallers (M = 51.78%, SD = 9.04%, p < 0.001). No statistically
significant difference is found between the standing with one
foot in front sway index of older non-fallers and older once-
fallers.

Older non-fallers have a statistically smaller standing with
feet together sway index (M = 39.34%, SD = 14.56%) com-
pared to older once-fallers (M = 51.13%, SD = 20.40%,
p = 0.02) and older multiple-fallers (M= 58.99%, SD =
10.5%, p < 0.001). No statistically significant difference is
found between the older once-fallers and older multiple-
fallers standing with one foot in front sway index.

3.2 Correlation with BBS

The BBS was inversely correlated with the sway index when
standing with feet together (r =− 0.609, p < 0.001) and when
standing with one foot in front (r =− 0.667, p < 0.001). Small
negative correlations were found between the BBS and the

Fig. 5 Selection of number of clusters using MML. The near-optimum
GMM was identified as a set of some six postural states (or clusters)
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sway index when standing with eyes open (r =− 0.255, p =
0.001), and standing with eyes closed (r = − 0.231, p =
0.002).

4 Discussion

The present study illustrates how postural sway can be
analysed using an inertial sensor. The sensor proved to be
lightweight, did not hinder the subject’s natural freedom of
movement and was easy and fast to set up. In addition, the
inertial-based sway analysis technique was highly portable, as
it utilised wireless communications to transfer the acquired
data. Most of the other techniques employed to analyse body
sway use force platforms to investigate the movements of the
CoP [22]. Using a force platform, the body motion is often
assumed as an inverted pendulum, although this assumption is
rejected by some studies [15] [23]. Force platforms generally
require a significant amount of space and associated infra-
structure, and are not usually portable. This makes their de-
ployment rather limited in a clinical environment [24].

In this study, a multivariable matrix of angular displace-
ment and angular velocity data was recorded and subsequently
transformed with an EM-MML algorithm into a GMM con-
taining a univariate set of clusters. The EM-MML algorithm
integrated estimation and model selection in a single algo-
rithm that computationally outperformed other well-known
criteria such as the Bayesian Information Criterion (BIC)
[19]. Using data segmentation, a single index was proposed
as the sway metric in each standing test for all participants.

The experimental tests consisted of standing with eyes
open, standing with eyes closed, standing on one leg, standing
with one foot in front of the other and standing with feet
together.

For every standing test, statistical methods were used to
compare the results for different groups of subjects (non-
fallers, once-fallers and multiple-fallers). In two tests of stand-
ing with feet together and standing with one foot in front,
multiple-fallers and once-fallers had a significantly larger
sway index compared to non-fallers.

In the normal standing with eyes open test, we could not
identify any significant difference between non-fallers, once-
fallers and multiple-fallers. In the work byMelzer et al. [4], no

Fig. 6 Data clustering of the multivariate data of the trunk of an older non-faller, an older once-faller and an older multiple-faller participant whilst
undergoing the different standing tests. The data is classified into six different clusters
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significant difference was identified in the postural stability of
the different groups of young, middle-aged and older subjects.
Some other studies, however, found contrary results [5].

In the standing with feet together and standing with one-
foot front tests, the sway index of older non-fallers was sig-
nificantly smaller than the sway index of once-fallers and
multiple-fallers. Whilst standing with one foot in front, sub-
jects tended to sway more in the mediolateral direction. A
narrow stance was also reported to be a good test for postural
balance deficiency analysis [4, 22]. No significant difference
was found between the sway index of older once-fallers and
older multiple-fallers in these tests. This could be because of
the repetitive nature of falls in older people. Those who have
fallen once are at the risk of further falls and 52% of such
individuals fall again in the following 12 months [25].

In this study, the standing with eyes closed test was not
found to effectively distinguish between older fallers and
older non-fallers. Similarly, Brocklehurst et al. [26] did not
find such correlation between vision and postural sway.

In our experimental work, the standing on one foot
test proved impractical, as many participants were not
confident enough to attempt it for fear of losing their
balance. As the body support base significantly reduces
when standing on one foot, maintaining one’s centre of
gravity with a single supporting leg is difficult. In a
study by Potvin et al. [27], the one-legged stance test
was found to be the most sensitive standing test
concerning age. However, we were not able to analyse
body sway in the one-legged stance test as 47 out of
the 86 participants either could not undertake the test or
declined for fear of falling. Fear of falling is the main
psychological factor among older people and leads to
increased risks of falling [28]. In a study by Era and
Heikkinen [29], only 41% of the aged group could per-
form the one-legged stance test.

The BBSwas negatively correlated with the sway index for
the standing with feet together and the standing with one foot
in front tests.

Table 1 The means and the standard deviation of BBS and the standing tests sway indices of three groups of non-fallers, once-fallers and multiple-
fallers

Number Standing with eyes
open sway index

Standing with eyes
closed sway index

Standing with feet
together sway index

Standing with one foot
front sway index

BBS

Non-fallers 30 1.82% (SD= 1.38%) 1.51% (SD = 1.04%) 39.34% (SD= 14.56%) 37.09% (SD= 7.70%) 52.23 (SD = 2.21)

Once-fallers 18 2.23% (SD= 1.06%) 1.91% (SD = 0.88%) 51.13% (SD= 20.40%) 47.70% (SD= 5.60%) 51.06 (SD = 2.11)

Multiple-fallers 38 2.43% (SD= 1.21%) 2.31% (SD = 2.04%) 58.99% (SD= 10.5%) 51.78% (SD= 9.04%) 49.92 (SD = 4.01)

Fig. 7 A typical example of identified motion states or data clusters and the correspondingmediolateral and anteroposterior angular displacement. In the
context of sway, cluster 6 indicates that the pelvis is at a stationary position at the origin of the coordinate frame
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The receiver operating characteristic (ROC) curves for all
the standing sway indices and BBSwere generated (Fig. 8). In
order to quantify the sway indices and BBS performance, the
area under the curve (AUC), the sensitivity and the specificity
were measured. The results are shown in Table 2.

The results show that the standing with feet together yields
a sensitivity of 78.6% and a specificity of 75.7%, the standing
with feet together sway index yields a sensitivity of 82.1% and
a specificity of 77.7% and the BBS yields a sensitivity and
specificity of 75.3% and 70.5% respectively. The AUC for the
standing with feet together sway index and the standing with
one foot in front sway index is respectively 0.84 and 0.9, while
the AUC for the BBS is 0.79.

To the best of our knowledge, the present study is the first
to propose a single index for balance assessment. Our studies
show that standing with feet together and standing with one
foot in front are effective methods to assess balance in older
people.

There are several studies using a single inertial sensor for
postural balance assessment among faller and non-faller older
subjects. O’Sullivan et al. [30] showed that the acceleration
data recorded from a waist-mounted tri-axial accelerometer
was significantly different between fallers and non-fallers in
the standing with eyes open on a mat test. Although the cor-
relation of the results with the two standard clinical fall risk
assessment tools (BBS, timed get up and go (TUG)) was mea-
sured, the sensitivity and specificity of the results were not
reported.

Greene et al. [31] used support vector machine (SVM)
classifier models on data acquired from a body-worn inertial
sensor and a pressure sensitive platform sensor, yielding a
sensitivity of 65.38% and a specificity of 68.36%.

Giansanti et al. [32] reported a neural network-based meth-
od for balance and falls risk assessment using a body-worn
accelerometer and gyroscope. The authors reported high spec-
ificity (≥ 0.88) and sensitivity (≥ 0.87) of the model in
distinguishing patients classified as levels 1 to 3 on the
Tinetti balance scale. Similarly, in another study, a body-
worn inertial sensor was used along with Mahalanobis
distance-based statistical clustering to distinguish patients
with different Tinetti balance scales. A specificity of 93.0%
and a sensitivity of 93.9% were reported [33]. In contrast to
our study where subjects were classified based on their history
of falling, in those studies, the subjects were classified based
on their risk. This could be the reason for higher specificity
and slightly higher sensitivity values reported in those works
compared to those in the present study.

5 Conclusion

A study conducted to assess body sway using an inertial sen-
sor was reported in this paper. The analysis of the orientation
angles and angular velocities obtained from the sensor
mounted on the pelvis provided strong indication of postural
body sway. We were able to analyse the body sway for differ-
ent subjects in different standing tests and evaluate their per-
formance using a quantitative and objective method.

Fig. 8 a Receiver-operator characteristic (ROC) curve of standing tests’
sway indices for the prediction of fallers (once-fallers and multiple-
fallers). Area under the curve (AUC) is 0.84 (95% CI, 0.75–0.92) for
the standing with feet together sway index, 0.9 (95% CI, 0.82–0.97) for
the standing with one foot in front sway index, 0.66 (95% CI, 0.55–0.79)
for the standing with eyes open sway index and 0.62 (95%CI, 0.50–0.74)
for the standing with eyes closed sway index. b ROC curve of BBS for
the prediction of fallers (once-fallers and multiple-fallers). AUC is 0.79
(95% CI, 0.71–0.89)

Table 2 Comparison of the performance of the standing tests sway
indices and BBS

Standing
with eyes
open
sway
index

Standing
with eyes
closed
sway
index

Standing
with feet
together
sway
index

Standing
with one
foot in front
sway index

BBS

Sensitivity% 55% 58.9% 78.6% 82.1% 75.3%

Specificity% 76.7% 53.7% 75.7% 77.7% 70.5%

AUC 0.657 0.621 0.838 0.897 0.788
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Significant differences between older non-fallers and fallers
were observed in the body sway indices for standing with feet
together and standing with one foot in front. These two stand-
ing tests can be used to identify older subjects with disturbed
balance. The retrospectivity of this study is one of its major
limitations, which will be addressed in the future work. In
addition, the approach will be applied to a larger cohort of
subjects in different age groups including younger, middle-
aged and older people. An extended analysis of the data to
develop an effective balance assessment tool will also be
undertaken.
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