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Objective detection of chronic stress using physiological parameters
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Abstract
The aim of this study was to design a system to diagnose chronic stress, based on blunted reactivity of the autonomic nervous
system (ANS) to cognitive load (CL). The system concurrently measures CL-induced variations in pupil diameter (PD), heart rate
(HR), pulse wave amplitude (PWA), galvanic skin response (GSR), and breathing rate (BR). Measurements were recorded from
58 volunteers whose stress level was identified using the State-Trait Anxiety Inventory. Number-multiplication questions were
used as CLs. HR, PWA, GSR, and PD were significantly (p < 0.05) changed during CL. CL-induced changes in PWA (16.87 ±
21.39), GSR (− 13.71 ± 7.86), and PD (11.56 ± 9.85) for non-stressed subjects (n = 36) were significantly different (p < 0.05)
from those in PWA (2.92 ± 12.89), GSR (− 6.87 ± 9.54), and PD (4.51 ± 10.94) for stressed subjects (n = 22). ROC analysis for
PWA, GSR, and PD illustrated their usefulness to identify stressed subjects. By inputting all features to different classification
algorithms, up to 91.7% of sensitivity and 89.7% of accuracy to identify stressed subjects were achieved using 10-fold cross-
validation. This study was the first to document blunted CL-induced changes in PWA, GSR, and PD in stressed subjects,
compared to those in non-stressed subjects. Preliminary results demonstrated the ability of our system to objectively detect
chronic stress with good accuracy, suggesting the potential for monitoring stress to prevent dangerous stress-related diseases.

Keywords Stress . Pupillometry . Autonomic nervous system (ANS) . Physiological parameters . State-Trait Anxiety Inventory
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Abbreviations
ANS Autonomic nervous system
BR Breathing rate
CL Cognitive load
ECG Electrocardiogram
EMG Electromyogram

GSR Galvanic skin response
HR Heart rate
HRV Heart rate variability
PD Pupil diameter
PPG Photoplethysmography
PWA Pulse wave amplitude
SNS Sympathetic nervous system
STAI State Trait Anxiety Inventory

1 Introduction

Stress generally refers to unpleasant feelings aroused bymental,
emotional, or physical challenges that we encounter in our lives
[38]. Short-term stress is healthful, since it helps us solve prob-
lems that we face in our lives by causing us to stay focused,
energetic, and alert. However, chronic stress, associated with a
state of anxiety, causes lack of coordination between the human
body and the mind and reduces productivity. If chronic stress is
not identified and controlled in its early stages, it can cause
hypertension [42], increased likelihood of infections [38], de-
pression [44], and cardiovascular diseases [20, 22, 30]. Chronic
stress can be controlled by relaxation and with suitable
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management techniques, including exercise, healthful eating
habits, positive attitudes and goals, and social life, for primary
prevention of stress-related diseases. The incidence of chronic
stress in modern life is increasing for both old and young peo-
ple. For example, the stress levels in college students have been
raised due to adjusting to college life, dealing with unexpected
societal event, and fulfilling developmental tasks, which con-
tributed to physiological and psychological problems [5, 39].
But identifying stress accurately without help from a medical
expert remains a challenge. Developing a system for monitor-
ing people to objectively identify chronic stress in its early
stages is important to control stress before it causes chronic
untreated diseases.

Stress stimulates the sympathetic nervous system (SNS),
producing a stress response with psychological and physiolog-
ical symptoms [19]. Psychological symptoms are related to the
mind or mental activity without execution of an action [35].
The psychological symptoms are generally evaluated by sub-
jectivemethods, based on counseling using a questionnaire [24,
40, 52]. The questionnaire asks about how one generally feels,
and the subject circles an appropriate number that indicates his/
her degree of feeling [40]. If a subject reads each question with
understanding, and describes his/her actual feelings without
bias, the output from the questionnaire gives a good measure
of stress [17]. A definitive questionnaire for measuring anxiety
in adults is the State-Trait Anxiety Inventory (STAI), which is
the leading measure of personal anxiety used worldwide [10].
STAI is simple and ideal for evaluating individuals with chron-
ic stress and anxiety. In this study, the score of STAI was used
as a ground truth for identifying subjects with chronic stress.

Physiological symptoms result from normal functioning of
bodily parts [34]. Even though physiological symptoms are
non-voluntary actions, which are difficult or impossible to be
seen by an external observer, they can be detected using bio-
medical sensors. Several objective techniques have been used
to investigate evaluating stress by measuring biomarkers and
physiological parameters. Measurements of biomarkers, in-
cluding cortisol and catecholamines in blood or saliva, were
used to evaluate chronic stress in several studies [28, 43].
Catecholamines are known to control the initial response to
stress, while glucocorticoids take a longer time to be secreted
[3]. People with chronic stress had elevated cortisol levels
[23]. However, these studies were invasive, costly, used slow
methods of analysis, and required special expertise [26], thus
limiting the use of these methods for monitoring stress.

As an alternative way to measure biomarkers, researchers
have studied several physiological signals and parameters to
identify which of these are sensitive to stress. The physiological
signals studied were ECG, EEG, EMG, photoplethysmography
(PPG), respiration, electrodermal activity, and pupillometry.
Changes in these signals were induced by cognitive loads
(CL), including simple motor tasks [36], Stroop color-word con-
flict tests [26], arithmetic and memory tasks [49], and simulated

driving tasks [13, 33]. The physiological parameters extracted
from these signals were heart rate (HR) and HR variability, from
ECG [49]; HR and pulse wave amplitude (PWA), from PPG
[26, 53]; mean amplitudes of event related potential (ERP) com-
ponents, from EEG [11]; galvanic skin response (GSR), from
electrodermal activity [32]; mean and standard deviation of
EMG [13]; mean of pupil diameter (PD), from pupillometry
[21, 53]; and breathing rate (BR), from respiration [13, 47].
The physiological parameters that changed most significantly
due to CL, and provided reliable information about stress levels,
were HR [49], PWA [26], GSR [54], and PD [33, 36]. In many
of these studies, the words Bmental stress^ or Bstress^were used
to indicate CL. However, none of the studies compared CL-
induced changes in physiological parameters between people
who are stressed or non-stressed as determined by a STAI score.

A recent study reported that chronic stress caused degradation
in the autonomic nervous system (ANS) reaction to CL [43],
based on measurements of blood cortisol and salivary alpha-
amylase concentrations. Building on their conclusion, we hy-
pothesized that the reduced ANS reaction to CL in stressed sub-
jects appears also in physiological parameters. Thus, accurate
measurements of CL-induced changes in physiological parame-
ters that are innervated by the SNS may permit the identification
of stressed people, based on their blunted SNS reaction to CL.

The aim of this research was to investigate the influence of
chronic stress on the variation of physiological parameters due to
CL. We designed a system to evaluate SNS responses by simul-
taneously measuring variations in HR, PWA, BR, GSR, and PD
between rest and CL. STAI scores were used as a ground truth to
classify subjects as stressed (high STAI scores) or non-stressed
[27]. CL-induced changes in physiological parameters were
compared between stressed and non-stressed people to identify
the parameters sensitive to chronic stress. The goal of this study
was to diagnose people with chronic stress by measuring their
CL-induced changes in physiological parameters.

Four signals were used to investigate physiological parame-
ters: a forehead PPG to monitor HR and pulse wave amplitude
(PWA), respiration to measure BR, grove electrodes to measure
galvanic skin response (GSR), and pupillometry tomeasure pupil
diameter (PD). The device sensitivity for PD was optimized
based on recommendations from previous studies [15, 41]. The
system was calibrated using phantoms, and validated using a
human study of 58 healthy volunteers, to document the feasibility
of detecting differences in CL-induced changes in physiological
parameters between stressed and non-stressed subjects.

2 Materials and methods

2.1 System description and validation

In this section, we describe the design and implementation of a
chronic stress detection system, which relies on measuring
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physiological parameters noninvasively for the purpose of de-
tecting SNS’s degradation caused by chronic stress.

Figure 1 shows a schematic diagram of the system compo-
nents that include four sensors: 5-megapixel Raspberry Pi
camera, reflective forehead plethysmography, two-grove sil-
ver plating electrodes, and a thermistor. A personal computer
was used to control and store data. Novel elements of the
proposed system are imaging the left eye under complete
darkness and using a fixed camera-pupil distance to eliminate
motion artifacts.

A 5-megapixel Raspberry Pi camera module was mounted
on a virtual reality headset to image the left eye from a close
distance (4 cm) and under only infrared illumination. Since
light variations reached the right eye varied PD in both eyes
[31], the right eye was also in darkness. The relative location
and distance between the camera and the left eye was fixed
even during head and body movements, which eliminated
motion artifacts and enabled accurate detection of the pupil
diameter. One more advantage of fixing distance in the front
of both eyes was reducing accommodation reflex, which
was spontaneous changes in pupil diameter when focusing
on near and far objects [4, 33]. Near objects required foveal
focusing and caused reduction in PD in the range of 1–
6 mm [4], which was larger than the expected changes in
PD due to cognitive loads (< 2 mm). Figure 2 shows a pho-
tograph of the headset mounted on a volunteer’s head. A

Raspberry Pi microprocessor board with a 900-MHz quad-
core ARM Cortex-A7 CPU and 1 GB RAM was used to
capture and buffer images from the camera and send them
to the PC via an Ethernet cable with an imaging rate of 15
images per second.

The PPG signal was detected using TCRT1000 reflective
optical sensor from Vishay Semiconductors (Tokyo, Japan).
Many features of this sensor made it suitable for our measure-
ment and that includes small size, electrically insulated for

Fig. 1 Functional block-diagram
of the system. sps samples per
second

Fig. 2 A photograph of the headset attached to a volunteer’s head. VR
virtual reality
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electrical safety, and having a daylight-blocking filter to de-
crease the interference from room light. The transmitter wave-
length is 950 nm, and the receiver type is Phototransistor. An
instrumentational amplifier with a common mode rejection
ratio of 85 dB was used to reject common mode signals in
the PPG signal, and a high-pass filter with a 0.1-Hz cutoff
frequency was used to block the large DC component of the
PPG signals. Next, a low-pass active filter with a 2.34-Hz
cutoff frequency was used to amplify the signal (in the range
of − 2 to 2 V) and attenuate power line and high-frequency
noise. Then, the PPG signal was converted into digital signals
with 16-bit resolution and sent to the PC with 60 samples per
second using a data acquisition card USB-6251 DAQ from
National Instruments (Austin, TX, USA).

GSR was measured using two grove silver-plated elec-
trodes. A safe electrical current (1 μA) was passed using the
two electrodes that were attached to two fingers in the left
hand to convert skin resistance into voltage. The voltage
across the electrodes was connected into an analog channel
in the USB-6251 DAQ to be converted from analog to digital
signal with 16-bit resolution and stored on the PC at a sam-
pling frequency of 60 samples per second. The linear operat-
ing range was from 0 to 2.1 MΩ.

A small 100-kΩ negative temperature coefficient (NTC)
Thermistor from Semitech Semiconductor Ltd. (Melbourne,
Australia) was fixed in the headset to monitor respiration. The
sensor was placed close to the outlet of the right nostril to
detect changes of breath temperature between ambient tem-
perature (inhalation) and lung temperature (exhalation). A
voltage divider was first used to convert variations in resis-
tance into voltage by connecting the 100 kΩ NTC thermistor
in series with a 100-kΩ carbon film resistance and bias them
by 5 V. The voltage across the thermistor increases when the
resistance increases (decrease temperature) and decreases
when the resistance decreases (increase temperature). This
voltage signal that is inversely proportional to the temperature
of the inhaled and exhaled air from nostril was inputted into a
first-order low-pass active filter with a cutoff frequency of
30 Hz to remove external noise. The output of the amplifier
was connected to an analog input of the USB-6251 DAQ to be
converted into digital signals with 16-bit resolution and stored
on the PC at 60 samples per second.

Knowing that changes in GSR signal tends to decrease very
fast due to CL, we sampled the GSR signal with high sampling
frequency (60 samples per second) to permit capturing any
delay between CL and changes in GSR with high temporal
resolution (1/60 s). Since the specification of the USB-6251
DAQ requires the sampling frequencies of all analog input
channels to be the equal, the PPG signal was oversampled to
keep the sampling frequency the same as GSR signal.

A graphical user interface (GUI) designed in Matlab
R2015a software (The MathWorks Inc., MA, USA) was used
to control the operation of the system and store data. The

system permits 15 high-resolution images per second of the
left eye and 60 samples per second with 16-bit resolution of
the physiological signals: PPG, breathing, and GSR. During
experimental setup, the captured images of the left eye and the
physiological signals were being displayed in real time to do
any necessary adjustment of the headset and the grove elec-
trodes to ensure the quality of the recorded data.

System calibration was done using laboratory phantoms
made from QM Skin 30 (Quantum Silicones Specialties,
Richmond, VA). Eyeball-like phantoms (a sphere) were made
with 1.6 cm radius as shown in Fig. 3a, and each one had a
painted iris and artificial cornea with varying pupil diameter (3
to 8 mm) and iris color. Each phantom was placed 4 cm away
from the camera to resemble the actual location of the eye
during the study, and 100 images of each phantom were taken
after covering the headset and the phantom with a black
clothes. The calculated pupil diameter (PD) from the images
is modeled as shown in Eq. 1:

PD ¼ φþ ϵ ϵ∼N μ;σð Þ ð1Þ

where φ was the true diameter of the pupil (measured directly
using a caliper) and ϵ is the measurement error. PD and ϵwere
random variables that took on new values for each measure-
ment. The instrument’s accuracy was calculated as the abso-
lute value of the bias |μ|, and its stability was calculated as the
standard deviation (σ) of the measurement error (ϵ).

Figure 3b shows a photograph of gray slabs of 2 cm thick-
ness and different optical densities that were made from QM
Skin 30 silicone; the optical densities were controlled in by
adding India ink (changing the silicone color from white to
different degree of gray). The darker color of the silicone slab
was made to represent darker skin color in human that tended
to reflect less light, hence producing smaller PPG signals. The
long-term stability of the PPG sensor was calculated by
placing a slab over the PPG sensor and getting reading
under room light for 15 min. Since there were no changes
in the optical properties of each silicone slab, the measured
light (reflected light) by the PPG sensor should be constant
and does not changes over time. Then, the standard devia-
tion of the PPG signals was calculated to quantify the long-
term stability of the PPG readings and their robustness to
noise and ambient light.

Stability of the GSR sensor was evaluated by attaching a
fixed resistor (0.5 MΩ) between the two GSR electrodes and
calculating the standard deviation of a 15-min signal. GSR’s
accuracy was validated using 18 resistor’s value with 0.1 MΩ
increasing step of electrical resistance (0.3–2.1 MΩ). The
square root of the average square differences between the
resistance readings from our device and a Fluke Ohmmeter
(Norfolk, UK) was used to evaluate the accuracy of GSR
reading. Finally, stability of the thermistor (breathing sensor)
was evaluated by immersing the tip of the thermistor in a
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water with fixed and known temperature (23 °C) and calcu-
lating the standard deviation of a 15-min signal. On the other
hand, accuracy was calculated from the square root of the
average square differences between the temperature readings
from our thermistor and from a commercial thermometer
(Fisher Scientific, USA), over the expected variation in
breath’s temperature (20–40 °C).

2.2 Participants

Human studies were conducted at Jordan University of
Science and Technology (JUST). The study protocol was ap-
proved by the Institutional Review Board of JUST. Eligible
participants were neither having psychological illness nor
drug abuse and were not wearing contact lenses, because they
affect PD reading. Fifty-eight healthy students from JUST (26
males, 32 females, 19–25 years old, average 21.52 years) were
included in this study. The subjects were asked to refrain from
caffeinated food or drinks, smoking cigarettes, and exercising
during the 3 hours prior to the experiment.

2.3 Subjective measures of chronic stress

Two forms of STAI for Adult questionnaires (form Y-1 and
form Y-2) were used to assess anxiety of subjects included in
our study [40]. After gaining the approval from the original
author, two health psychologists translated the English ver-
sions of STAI-Y1 and STAI-Y2 questionnaires into Arabic
language to lessen barriers of assessment with participants.
Each form consisted of 20 items to measure anxiety, and a
4-point Likert scale from 1 to 4 was used to rate each item
with higher scores indicating high anxiety. These question-
naires were filled by each participant right before the experi-
ment. The total STAI score for each subject was calculated
from the sum of both STAI-Y1 and STAI-Y2 scores. Test-
retest reliability of the STAI was done by calculating the
Pearson correlation coefficient for a subsample of participants
(n = 26) who repeated the two questionnaires 3 days after the
initial administration [2].

We used STAI total score to assess chronic stress level of
our subjects. A subject was considered stressed or non-
stressed if his/her score was larger or smaller than the average
STAI scores of all subjects, respectively [1, 18].

2.4 Experimental setup

All subjects were informed about the nature of the study.
Informed consent form and brief medical history were obtained
from participants, and the STAI questionnaire was adminis-
tered. After that, participants were seated in a comfortable ad-
justable chair positioned sufficiently close to the system to allow
for placing the headset on a participant’s face in order to image
the left eye, read PPG from forehead, and monitor inhalations
and exhalations. The two grove electrodes were attached to the
middle phalanges of the index and middle fingers of the left
hand to measure GSR response. The room of the experiments
was quiet, and its temperature was maintained at 23 ± 2 °C.

Adjustable support of the arms and feet was employed to
ensure subject comfort and tominimize the tendency ofmove-
ment. Following this, the operator pressed a START button to
begin performing the Math protocol and storing all images
and signals on the PC. In addition, the whole experiment
was voice-recorded on the PC.

Math protocol was implemented to provoke changes in
physiological parameters, by asking subjects to answer
number-multiplication questions using headphones. Figure 4
outlines the Math protocol, which includes a baseline of 30 s
where subject was sitting quietly and then asking aloud the
subject to pronounce the answer of three multiplication ques-
tions. To keep consistency, Math questions were played auto-
matically by Matlab in pre-specified time (at 30, 50, and 70 s)
from a recorded file. The total time of applying the Math
protocol was 90 s, and the difficulty of questions was asked
in order: easy (e.g., 6 × 7), then moderate (e.g., 13 × 6), and
then difficult (e.g., 12 × 14). The headset of the device was not
removed between asking questions. The interval before asking
the first question (30 s) was called baseline interval (rest in-
terval), and the time after asking the first question to the end of
data collection (60 s) was called cognitive load (CL) interval.

Fig. 3 Photographs of the
phantoms used for calibrating the
camera and the PPG sensor. a An
eye-like phantom to calibrate the
accuracy of measuring pupil
diameter. b Slap phantoms to
evaluate stability of PPG signal
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2.5 Data processing and analysis

In this section, we present processing left eye’s images and
physiological signals to calculate HR, PWA, BR, GSR, and
PD and extracting features from them. These processing
and feature extraction were done offline using Matlab. In
addition, we explain analyzing the influence of CL and
stress state on the extracted features using SPSS 19.0
(SPSS, Chicago, IL, USA). Finally, five classification algo-
rithms were implemented to detect chronic stress by input-
ting all parameters using WEKA software (University of
Waikato, New Zealand).

Each image of the left eye was processed to measure PD
using the following steps: (1) filtering the image using a novel
filtering techniques called 2D total variation denoising (2D-
TVD) to filter noise in the image without smoothing sharp
edges such as the boundary between pupil area and its sur-
rounding [37, 45], (2) adaptive thresholding to isolate the
pupil area and convert the image into binary based on the gray
level of each pixel in the image, (3) applying close and fill
techniques to remove unwanted scattered regions around the
pupil and fill small-undetected points inside the pupil area
such as reflected-light spots on the cornea, and (4) detecting
pupil edges and finding a best fitted circles for the pupil area to
measure PD. It is worth mentioning that eyeblink artifacts
encountered during imaging the left eye were detected by a
Matlab code based on the average brightness of each image.
During eye blinking, the brightness of an image became sig-
nificantly high as infrared light highly reflected from eyelid.
Once an eye blink was identified, the reading of pupil diam-
eter during this blink was calculated using cubic interpolation
for the adjacent pupil readings. The number of points in PD
time series (vPD[n]) was 1350 data points for the whole exper-
iment (15 images per second × 90 s).

Forehead PPG signals were processed to find heart rate
(HR) and pulse wave amplitude (PWA). The processing pro-
cedures were the following: (1) filtering PPG signals by a fifth-
order Butterworth band pass filter with cutoff frequencies of

0.5 and 10 Hz to remove DC wandering, attenuate high-
frequency noise, and smooth diacritic notches [48], (2) finding
local peaks (minima and maxima) and determine their ampli-
tude and time index, (3) finding HR from the reciprocal of
peak-to-peak periods and multiplying the result by 60 to con-
vert HR into beats per minute (bpm), and (4) calculating pulse
wave amplitude (PWA) as the difference between the peak
(maximum) and nadir (minimum) values of each cardiac cycle
[26, 53]. The number of data points in HR and PWAwas equal
to the number of local peaks in PPG during the experiment
(depends on heart rate), and they were between 92 to 168 data
points for the whole experiment. Linear interpolation of the
readings was used to produce 1350 points for HR time series
(vHR[n]) and 1350 points for PWA time series (vPWA[n]) to
match the number of points in vPD[n].

GSR signals were filtered using 1D total variation
denoising filter (1D-TVD), which is remarkably effective at
simultaneously preserving edges while smoothing away noise
in flat regions in GSR signal [37]. There were 5600 data points
in GSR time series (60 samples per second × 90 s). Down-
sampling of the 5600 points was done to produce a 1350 data
points GSR time series (vGSR[n]) to match the number of
points in vPD[n], vHR[n], and vPWA[n].

Breathing rate (BR) was extracted from the periodic signal
coming from the thermistor placed close to nostril. Fifth-order
Butterworth low-pass filter with a cutoff frequency of 0.9 Hz
was used to smooth the signal and remove unwanted high-
frequency noise. Local peaks and time indices of cycles were
found using Matlab. BR was calculated from the reciprocal of
breath-to-breath intervals. The number of readings in BR
ranged from 21 to 37 points, which was dependent on breath-
ing rate. Linear interpolation was used to produce 1350 data
points for BR time series (vBR[n]).

Five physiological parameters were produced for each sub-
ject, and each one contains 1350 data points. To reduce inter
subject’s variabilities in these physiological parameters, nor-
malization to baseline was implemented. For each time series,
normalization was done by subtracting its average value

Fig. 4 Timing diagram of the
Math protocol implemented for
the clinical study. a.u Arbitrary
unit
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during baseline interval (B ) from each point in the time series,
then dividing the resulted time series by (B ), and after that
multiplying the result by 100% to have a percentage changes,
as explained in Eqs. 2 and 3:

B ¼ ∑N1
n¼1vx n½ �
N1

; ð2Þ

ύx n½ � ¼ vx n½ �−B
B

� 100%; ð3Þ

where ύx[n] denotes the normalized time series, x = { HR,
PWA, BR, GSR, and PD}, and N1 is the end of baseline inter-
val and was equal to 450 data points (30 s of baseline × 15
points per second). As a result, the normalized time series
showed percentage increase or decrease in the physiological
parameters relative to their average values during baseline
interval. CL-induced changes in the physiological parameters
(Δ) were calculated from the average value of v̇ n½ � during
cognitive-load intervals as shown in Eq. 4. TheseΔs denoted
percentage changes in ύx[n] between cognitive load and base-
line intervals. A cognitive load interval was defined as the
time from asking the first Math question (N1 = 450) to the
end of the experiment (N2 = 1350):

Δx ¼
∑N2

n¼N1
vx˙ n½ �

N2−N1 þ 1
ð4Þ

For each subject, five features were produced:ΔHR,ΔPWA,
ΔBR,ΔGSR, andΔPD. The one-sample T test was used to test
if the average across all subjects for Δ was significantly dif-
fered from zero, in order to specify features sensitive to cog-
nitive loads. The two-sample T test (two-tailed) was used to
determine significant difference in Δ between stressed and
non-stressed subjects, in order to specify features that were
sensitive to chronic stress. The area under the receiver-
operating characteristic curve (AUC) was used to illustrate
the diagnostic ability for each individual feature (ΔHR,
ΔPWA,ΔBR,ΔGSR, andΔPD) to discriminate stressed subjects
from non-stressed subjects, and the Spearman’s rank correla-
tion coefficient RHO was calculated to determine the correla-
tion between ΔHR, ΔPWA, ΔBR, ΔGSR, and ΔPD, and STAI
scores. Finally, five classification algorithms were used to
combine the diagnostic power of all features in order to dis-
criminate stressed from non-stressed subjects. The used algo-
rithms were logistic linear regression, Naïve Bayes,
Multilayer Perceptron, Random forest, and K-star (K*) [25].
The WEKA software, which can be freely downloaded from
http://www.cs.waikato.ac.nz/ml/weka, was utilized for the
classification process [9]. The classification performance
was evaluated using 10-fold cross-validation method to obtain

a more accurate and realistic assessment of the classifiers [50].
Ten-fold cross-validation was based on randomly partitioning
the 58 subjects into 10 subsamples. Eight of the subsamples
had six subjects and two of the subsamples had five subjects.
Of the ten subsamples, nine were used to train a classifier, and
the tenth was used to validate the classifier. This process was
repeated 10 times—each of the 10 subsamples was used ex-
actly nine times for training and one time for validating. The
10 results obtained from applying classifiers on the validating
subsamples were combined to produce a confusion matrix that
contains information about actual and classified states of sub-
jects. We calculated the sensitivity of each classifier by divid-
ing the number of subjects correctly classified as stressed by
the actual number of stressed subjects (n = 36). We calculated
the specificity by dividing the number of subjects correctly
classified as non-stressed by the actual number of non-
stressed subjects (n = 22). In addition, predictive accuracy,
which is the number of correctly classified subjects divided
by the number of total subjects (n = 58), was calculated for
each classifier [25].

Availability of data and material The datasets used and/or
analyses during the current study are available from the cor-
responding author on a reasonable request.

3 Results

Calibration is an important step to ensure the quality of the
measured parameters in medical devices. Table 1 shows the
results of the calibration experiments performed to evaluate
the accuracy and stability for the measured physiological sig-
nals. The stabilities of measuring PD, PPG, GSR, and temper-
ature were 0.03 mm, 3 mV, 0.004 MΩ, and 0.021 °C, respec-
tively, which indicated stable baseline reading and low noise
level. The accuracy of measuring PD, GSR, and temperature
was 0.1 mm, 0.05 MΩ, and 0.1 °C, respectively.

Descriptive summaries of age, weight, height, BMI, and
STAI scores for the 58 subjects are given in Table 2. The test-
retest reliability coefficient for the STAI total score was 0.86 (p
< .001), indicating excellent stability over time. The average
scores were (38.43 ± 9.02 SD), 39.78 ± 8.73, and 78.21 ±
16.79 for the STAI-Y1, STAI-Y2, and total STAI score, respec-
tively. The average score of STAI for females (77.41 ± 14.97)
was slightly smaller than that for males (79.19 ± 19.05), but not
statistically significant (p = 0.691). Subjects with STAI scores

above the average (STAI ¼ 78:21Þwere considered as stressed
subjects, and those with STAI scores below the average were
considered as non-stressed. Twenty-two subjects (10 males and
12 females) were classified as stressed, and 36 subjects (16
males and 20 females) were classified as non-stressed. There
was no significant difference in age between stressed subjects
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(21.50 ± 1.26 years) and non-stressed subject (21.52 ±
1.58 years).

Figure 5 shows an examples of normalized HR (ύHR[n]) and
GSR (ύGSR[n]) during math questions for a 23-year-old female
subject, who was classified as non-stressed subject (STAI
score equal 67). Inspection of the figure reveals an increase
in HR and a decrease in GSR in range of 5 to 10% during the
cognitive load intervals (30–90 s). Normalization to baseline
was done to reduce intersubject variabilities of physiological
parameters and hence allowed comparisons of CL-induced
changes in physiological parameters between subjects.

Figure 6 shows a bar graph of the average value of v̇ n½ �
during cognitive-load intervals (Δ) across all subjects (n =
58). The average and standard deviation were 5.25 ± 4.83,
11.58 ± 19.71, 1.63 ± 8.22, − 11.11 ± 9.09, and 8.88 ± 10.75
forΔHR,ΔPWA,ΔBR,ΔGSR, andΔPD, respectively. Note that
HR, PWA, GSR, and PDwere significantly changed (p < 0.01)
during cognitive load intervals across subjects (different from

zero), while BR was not significantly changed. There were no
significant correlations between changes in physiological pa-
rameters. The correlation between the total STAI scores and
changes in the physiological parameters are shown in Table 3.
The only significant correlation was found betweenΔPWA and
STAI scores (p < 0.05), with a negative correlation coefficient
(− 0.300).

Figure 7 shows the average value of ύx[n] during cognitive-
load intervals (Δ) for stressed subjects (n = 22, red bars) ver-
sus non-stressed subjects (n = 36, blue bars). The average
values and STD of ΔHR, ΔPWA, ΔBR, ΔGSR, and ΔPD for
non-stressed subjects were 5.92 ± 4.31, 16.87 ± 21.39, 0.92

Table 1 System performance
Type Parameter Value

Sampling the physiological signals Sampling frequency 60 samples per second

Imaging the left eye Imaging rate 15 images per second

Pupil diameter (PD) Stability over 100 images using a phantom
with 5 mm pupil diameter)

0.03 mm

Accuracy 0.1 mm

Galvanic skin response (GSR) Stability over 15 min using a 1-MΩ resistance 0.004 MΩ

Accuracy 0.05 MΩ

Linear operating range 0–2.1 MΩ

PPG Stability over 15 min when covered by the
densest slap of silicon

3 mV

Thermistor (for breathing
monitoring)

Stability over 15 min at 23 °C 0.021 °C

Accuracy 0.1 °C

Linear operating range 20–40 °C

Fig. 5 An example of normalized heart rate (HR) and galvanic skin
response (GSR). This data was from a 23-year-old female during
baseline interval (0–30 s) and cognitive load interval (30–90 s)

Table 2 Demographic, STAI scores, and physiological parameters
information of the subjects

Parameter Min Max Average Std deviation

Age (year) 19 25 21.52 1.45

Weight (kg) 41 95 64.66 12.83

Height (cm) 146 187 167.19 9.87

BMI (kg/m2) 14.53 30.70 23.03 3.45

HR rest (bpm) 56.4 109.3 83.2 13.7

PWA rest (V) 0.23 1.64 0.82 0.37

BR rest (breath per min) 7.5 24.8 17.6 2.9

PD rest (mm) 3.25 8.41 6.32 2.67

GSR rest (MΩ) 0.26 1.95 1.04 0.51

STAI-Y1 21 59 38.43 9.02

STAI-Y2 22 61 39.78 8.73

STAI (total score) 46 120 78.21 16.79
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± 7.84, − 13.71 ± 7.86, and 11.55 ± 9.85, respectively, and
those for stressed subjects were 4.17 ± 5.52, 2.93 ± 12.89,
2.82 ± 8.87, − 6.87 ± 9.54, and 4.51 ± 10.94. Interestingly,
the average values ofΔPWA andΔPD for non-stressed subjects
were significantly greater than that for stressed subjects (p <
0.01 for ΔPWA, p < 0.05 for ΔPD). Furthermore, the average
values of ΔGSRfor non-stressed subjects were significantly
less than that for stressed subjects (p < 0.01). In contrast, the
average values ofΔHR andΔBR were not significantly differ-
ent between stressed and non-stressed subjects (p = 0.183 for
ΔHR, p = 0.396 for ΔBR). These results suggest that PWA,
GSR, and PD are sensitive to the presence of chronic stress
and can be used to detect stressed subjects.

Figure 8 shows the area under ROC (AUC) ± standard
error of the five Δs for classifying stressed subjects from
non-stressed subjects. Acceptable AUC values 0.742 ±
0.078, 0.724 ± 0.071, and 0.740 ± 0.071 were obtained for
ΔPWA, ΔGSR, and ΔPD, respectively. While AUC values
0.572 ± 0.079 and 0.451 ± 0.078 for ΔHR and ΔBR were not
significantly greater than 0.5. The ROC plots are provided in
the Supplementary Material.

In this study, we applied five classification algorithms to
build models that discriminated stressed subjects from non-

stressed subjects inputting all extracted features:ΔHR,ΔPWA,
ΔBR, ΔGSR, and ΔPD. The applied classifiers were logistic
regression, Naïve Bayes, Multilayer Perceptron, Random for-
est, and K-star (K*). The goal of using these classification
algorithms was to develop and train a system that accept all
extracted features as input and then indicate whether an unla-
beled subject has chronic stress (stressed) or not (non-
stressed). The confusion matrix and predictive accuracy of
the classification algorithms are shown in Table 4. The itali-
cized values represent the number of correctly classified

Fig. 7 The average value of CL-induced changes (percentage) in
physiological parameters for stressed subjects (22 cases) versus non-
stressed subjects (36 cases). Error bars: standard error. *p < 0.05; **p <
0.01

Fig. 6 The average values of changes (%) in physiological parameters for
58 subjects between cognitive load intervals and baseline intervals. Error
bars: standard error. **p < 0.01

Table 3 Correlation coefficients between changes in the physiological
parameters of participants and their STAI total scores

Physiological parameter ΔHR ΔPWA ΔBR ΔGSR ΔPD

Correlation coefficient (ρ) − 0.049 − 0.300 − 0.026 0.189 − 0.130
p value 0.718 0.022 0.845 0.155 0.32

Fig. 8 The area under ROC of the five physiological parameters for their
ability to differentiate between stressed subjects (22 cases) from non-
stressed subjects (36 cases). Results are shown as average ± standard
error (SE, nonparametric bootstrap-based estimator in SPSS). **p < 0.01
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subjects. The confusion matrices were produced by applying
classification algorithms on subjects in the validating subsam-
ples; hence, they give an estimate of the performance of each
algorithm for unseen future data. The numbers of correctly
classified subjects were 49, 52, 50, 49, and 50 using the logis-
tic regression, multilayer perceptron, Naïve Bayes, random
forest, and K*, respectively. The maximum predictive accura-
cy of 89.7% was produced by using multilayer perceptron,
while logistic regression and random forest algorithms pro-
duced the minimum predictive accuracy (84.5%). A maxi-
mum sensitivity of 91.7% was achieved by using either mul-
tilayer perceptron or Naïve Bayes, and a maximum specificity
of 86.3% was achieved by using either multilayer perceptron
or the K* algorithm.

4 Discussion

In the present study, a system was designed to measure CL-
induced changes in physiological parameters, to identify
people with chronic stress, assuming that these changes
would reveal SNS reactions that were blunted by chronic
stress. An easy-to-use device was designed to simulta-
neously measure five physiological parameters (HR,
PWA, BR, GSR, and PD) innervated by the SNS, during
baseline and cognitive load (number-multiplication tasks).
These parameters were recorded from 58 healthy subjects,
who were identified as either stressed or non-stressed,
based on their STAI scores.

The merit of measuring changes in physiological parame-
ters due to cognitive load (answering multiplying questions
with different difficulty levels) is to reduce intersubject varia-
tions in physiological parameters and to reveal the autonomic
nervous system (ANS) response to CL. For example, heart
rates for non-stressed people ranged from 60 to 95 bpm, and
heart rates for stressed people also ranged from 60 to 95 bpm.

The same hold true for other physiological parameters such as
PD and GSR. Hence, absolute measuring of these parameters
will less likely be helpful for predicting the presence of chron-
ic stress, because of normal (natural) intersubject variations in
these parameters. We used cognitive load (CL) to induce
changes in physiological parameters that are under the con-
trol of ANS, in order to obtain relative changes to baseline.
The relative changes can then be normalized to baseline
values in order to reduce interpatient variations in these
parameters. The magnitude of normalized changes, which
depends on the ANS responses to CL, has the potential to
reveal the level of chronic stress for two reasons: (1)
intersubject variations are minimized or eliminated, and
(2) chronic stress has been reported to impair ANS re-
sponses to CL (reduced response) [43].

The system design was optimized to increase its sensitivity
and specificity to CL-induced changes in PD. The optimiza-
tions were based on recommendations from previous studies.
Measuring PD while both eyes are covered by the headset
(complete darkness) was reported to eliminate spontaneous
variations in PD due to accommodation responses [4, 33]
and to enhance CL-induced changes in PD [33]. Subjects were
asked the number-multiplication questions verbally, since CL-
induced changes in PD were reported to be larger when ques-
tions were asked verbally than when they were presented vi-
sually [21].

Figure 6 shows statistically significant increases in HR,
PWA, and PD, and a statistically significant decrease in
GSR in all subjects during CL intervals, compared to their
values during baseline intervals. An increase in HR during
CL was reported in several previous studies [14, 49, 53], as
were an increase in PD [53, 54] and a decrease in GSR [49, 53,
54]. Minakuchi et al. [26] reported a decrease in PWA (some-
times referred to as blood volume pulse) determined from
finger PPG during CL, indicating a vasoconstriction and re-
duction of blood flow to peripherals. PPG has also been

Table 4 Confusion matrix, sensitivity, specificity, and predictive accuracy for chronic stress detection using five classification algorithms (italicized
values in the confusion matrices are the number of correctly classified states)

Classification Sens. (%) Spec. (%) Predictive accuracy (%)

Stressed Non-stressed

Actual Logistic regression Stressed 32 4 88.8 77.3 84.5
Non-stressed 5 17

Multilayer Perceptron Stressed 33 3 91.7 86.4 89.7
Non-stressed 3 19

Naïve Bayes Stressed 33 3 91.7 77.3 86.2
Non-stressed 5 17

Random forest Stressed 32 4 88.9 77.3 84.5
Non-stressed 5 17

K* Stressed 31 5 86.1 86.4 86.2
Non-stressed 3 19
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documented to be sensitive to increased blood flow in the
frontal vessel of the forehead during CL [46].The increased
PWA seen in the current study, determined by using a fore-
head PPG, indicated increased blood flow to the forehead.
In addition, the large CL-induced changes in GSR and PD
(> 8% each) indicated their sensitivity to CL, consistent
with the findings of other researchers [26, 49, 54].
However, a large CL-induced increase in PWA (> 10%)
determined from a forehead PPG has not been reported
before. This finding increases the number of physiological
parameters known to be sensitive to CL.

A controversial result was the CL-induced increase in BR,
which was not statistically significant (p > 0.05) in this study.
Minakuchi et al. [26] showed a significant BR increase during
a Stroop color-word conflict test, while Wijsman et al. [49]
showed an insignificant BR increase during calculations and
logical puzzle tasks. The number-multiplication protocol used
in the present study was similar to the calculation task used by
Wijsman et al. and gave a comparable (insignificant) increase
in BR during CL. Another potential reason of why BRwas not
a good feature for stress detection is that our techniques for
measuring BR depend on the detected increase in temperature
due to exhaled air from nostril, which is accurate for detecting
BR if the subject during measurement keep breathing from
his/her nose. Hence, breathing from mouth was not detected.
Furthermore, saying answers of questions aloud during mea-
surement might alter breathing rhythm. Indeed, the effects of
CL on BR were far from being useful for stress detection [13,
47].

The results of this study provide a major step forward in
monitoring chronic stress, since they showed not only that
HR, PWA, GSR, and PD are sensitive to CL but also that
PWA, GSR, and PD are sensitive to the presence of chronic
stress that is diagnosed by STAI. Figure 7 shows significantly
greater CL-induced changes in PWA, GSR, and PD in non-
stressed subjects than in stressed subjects. In addition, the
AUCs for PWA, GSR, and PD were significantly larger than
0.5 (Fig. 8), indicating the acceptability of each physiological
feature for use in diagnosing chronic stress. In addition, pre-
dictive accuracies of using different classification algorithms
(see Table 4) to combine the diagnostic power of all features
yielded high levels (up to 89.7%) of differentiation between
stressed and non-stressed subjects. Of the five classification
algorithms, multilayer perceptron produced the highest sensi-
tivity, specificity, and predictive accuracy. Multilayer
perceptron has been shown to outperform other classifiers
for many medical applications, since it uses a learning algo-
rithm to find the best relationship between input and output
variables [7, 12].

Indeed, the reported information of the classifiers in
Table 4 were calculated using 10-fold cross-validation,
where each data point has the chance of being in the train-
ing and validation set [6]. Particularly, these accuracies are

more realistic than using all data for training, and they give
an estimation of the performance of our system for unseen
future data. No other studies have compared CL-induced
changes in physiological parameters in people classified
as stressed or non-stressed by their STAI scores.

Since variations in PWA, PD, and GSR are known to reveal
SNS reaction to cognitive loads [26, 33, 54], the decreased
variations in these parameters in stressed subjects suggested
that the SNS mechanisms controlling these parameters were
blunted. An explanation of this result is that CL in non-
stressed subjects induces SNS reactions from rest into active
states, while CL in stressed subjects induces SNS reactions
from active to slightly more active states. This is seen in
stressed subjects as reduced variations in the physiological
parameters.

Teixeira et al. [43] studied CL-induced variation in saliva
alpha-amylase activity, which is well accepted as a surrogate
biomarker of ANS activity. In their study, high concentrations
of cortisol and high scores of perceived stress were used to
determine which subjects were stressed, and a Stroop test was
used as a CL. They investigated CL-induced variations in
saliva alpha-amylase activity between stressed and non-
stressed subjects. They observed an increase in saliva alpha-
amylase activity after CL in non-stressed males. This increase
was not observed in stressed males or in females regardless of
their stress state. Their results indicated that chronic stress
leads to a hypo-activity of the ANS during CL and described
the blunted response of the ANS in stressed males. From
studying the ANS response to CL by measuring physiological
parameters, which is easier to perform, our results indicated
that people with chronic stress have a blunted reactivity of the
ANS, regardless of their gender.

A limitation of the research design was that both eyes were
covered by the headset during the measurement, which was
inconvenient for some subjects (13 subjects). The weight of
the headset was 0.330 kg (0.73 lb). After mounting the headset
on the head using the lateral and medial bands, it was consid-
ered lightweight from subjects’ point of view. The short time
period of the measurement (< 2 min) relieved its inconve-
nience. We were aware that the headset might induce stress
to volunteers during measurement. However, any possible in-
duced stresses should be the same for all subjects and that
minimize its effect on measuring CL-induced changes in
physiological parameters. In contrast, covering both eyes by
the headset might help creating constant experimental condi-
tions for all subjects by preventing external light (room light)
from inducing large changes in pupil diameter. For improve-
ment, the design of the headset can be made lighter by placing
the Raspberry Pi board beside the DAQ (not mounted on the
headset), and that will make it more convenient for subjects
during measurement.

Another limitation was the relatively small sample size,
which included only young adults (19–25 years old). To
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generalize the results, a larger sample with a wider range of
ages (19–65 years old) should be studied. We are aware that
the age range of participants in our study was narrow and
included only 58 undergraduate students, but we still can com-
pare the stressed with non-stressed among those participants
because many studies reported that the depressions and anxi-
ety affect more than 15% of undergraduate students [8, 51]. In
one study, 3100 students were studied and found that nearly
half of them were experiencing stress-related problems during
the previous 12 months [16]. In addition, according to the
National Survey of Counseling Center Directors in 2011,
91% of directors agreed that the number of students with
severe psychological problems continues to rise [29]. On
the other hand, the narrow age range of participants can be
considered as an advantage in our study, since the measured
CL-induced changes in physiological parameters are affect-
ed solely by the level of chronic stress rather than the age
difference between subjects. In other words, the effect of
age on the measured physiological parameters was elimi-
nated by studying participants of narrow age range. From
the previous reasons, we believe that our human study on
the 58-student sample included good portion of stressed
and non-stressed participants, which allowed us to reason-
ably compare stressed with the non-stressed subjects. For
future directions, it will be important to evaluate the effect
of aging on CL-induced changes in physiological parame-
ters. In addition, future studies should investigate whether
CL-induced changes in physiological parameters are sensi-
tive to menstrual cycles.

We believe that there are more parameters that can be ex-
tracted from the measured signals using variability [13], fre-
quency domain [13, 36], and principal component analysis
[49]. Additionally, investigating more physiological signals,
such as ECG, EEG, and EMG, may lead to the discovery of
more parameters that are sensitive to the presence of chronic
stress. However, adding these signals may make the measure-
ments more difficult. Identifying more physiological parame-
ters that are sensitive to chronic stress has the potential to
increase our ability to early diagnose stress to help preventing
long-term secondary diseases.

One of the advantages of the system described here is
that performing the measurements is quite easy; the opera-
tor positions the headset and GSR sensors and makes sure
they are stable, using the GUI, and then presses a BSTART^
button. Generation of signals, image processing, and ex-
traction of physiological parameters proceed automatically,
and the results of the test can be available within seconds
after the measurement. Another advantage is that the length
of measurement is only 90 s, which makes it easy to con-
duct and comfortable for most subjects. With small modi-
fications, the proposed device could be made low-cost, por-
table, and plug-and-play to be connected to any personal
computer after installing a stand-alone software. This

would allow measurements to be taken anywhere, even at
home, for better stress monitoring.

5 Conclusions

In the future, we may want to check our level of chronic stress
regularly to prevent serious disorders resulted from late dis-
covery of chronic stress. A customized system was presented
in this study to test the applicability of physiological signals
sensing, which can be easily done non-invasively, for deter-
mining a subject’s chronic stress presence. Five physiological
features were measured, namely galvanic skin response, pupil
diameter, photoplethysmography, and breathing rate. A major
challenge we encountered was large interpatient variations in
these signals, which limit the ability for accurate detection of
chronic stress. This limitation was overcome in this study by
normalizing changes in physiological signals due to cognitive
load to their values during rest.

Interestingly, normalized changes in three features (PWA,
GSR, and PD) extracted from the measured physiological sig-
nals were more pronounced in non-stressed subjects than they
were in subjects determined by STAI to be stressed. The values
of area under the curve (AUC) for PWA, GSR, and PD were
significantly higher than 0.5 illustrating the usefulness of each
feature to identify chronic tress. Predictive accuracies of using
five classification algorithms by inputting all features were
sufficient even after 10-fold cross-validation (up to 89.7%),
indicating the ability of the system to objectively diagnose
chronic stress for unseen participants. In conclusion, the re-
duced CL-induced changes in PWA, GSR, and PD in stressed
people support the hypothesis that chronic stress impairs the
ANS reaction to CL. In addition, measuring the normalized
changes in PWA, GSR, and PD can be easily used to detect
the presence of chronic stress before it causes life-threatening
disorders.
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