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Abstract
Automated segmentation and dermoscopic hair detection are one of the significant challenges in computer-aided diagnosis
(CAD) of melanocytic lesions. Additionally, due to the presence of artifacts and variation in skin texture and smooth lesion
boundaries, the accuracy of such methods gets hampered. The objective of this research is to develop an automated hair detection
and lesion segmentation algorithm using lesion-specific properties to improve the accuracy. The aforementioned objective is
achieved in two ways. Firstly, a novel hair detection algorithm is designed by considering the properties of dermoscopic hair.
Second, a novel chroma-based geometric deformable model is used to effectively differentiate the lesion from the surrounding
skin. The speed function incorporates the chrominance properties of the lesion to stop evolution at the lesion boundary.
Automatic initialization of the initial contour and chrominance-based speed function aids in providing robust and flexible
segmentation. The proposed approach is tested on 200 images from PH2 and 900 images from ISBI 2016 datasets. Average
accuracy, sensitivity, specificity, and overlap scores of 93.4, 87.6, 95.3, and 11.52% respectively are obtained for the PH2 dataset.
Similarly, the proposed method resulted in average accuracy, sensitivity, specificity, and overlap scores of 94.6, 82.4, 97.2, and
7.20% respectively for the ISBI 2016 dataset. Statistical and quantitative analyses prove the reliability of the algorithm for
incorporation in CAD systems.
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1 Introduction

1.1 Motivation

One of the most deadly forms of skin cancer is melanoma [1].
It refers to the malignancy of melanocytes. Although melano-
ma survival rate accounts to 20% when the disease metasta-
sizes to other organs, the deadly disease is associated with
high mortality and morbidity [2]. The melanocytic cells are
confined to the skin; they are further liable to metastasize and
spread to the lymph nodes. Several imaging modalities were
developed to aid dermatologist in examining the pigmented
skin lesions. One among the most popular imaging modalities

used by dermatologists to identify the presence of melanoma
is the dermoscope [3]. Dermoscopy is an in vivo non-invasive
method that uses polarized light for evaluation of colors and
microstructures of the pigmented skin lesions. Although
dermoscopy provides better accuracy in comparison to the
conventional ABCD (asymmetry, border irregularity, color,
dermoscopic structures) criteria, the diagnostic precision is
dependent on the dermatologist’s experience and is time-con-
suming. This discrepancy highlights the need for computer-
aided diagnostic tool that provides objective and accurate
diagnosis.

A complete computer-aided diagnosis (CAD) tool for mel-
anoma diagnosis mainly consists of three major steps: seg-
mentation, feature extraction, and lesion classification.
Although these steps are performed sequentially, the major
concern is that, the segmentation accuracy has a major deci-
sive influence on the lesion diagnosis [4]. Irrespective of the
surrounding skin, the region of interest (ROI) characteristics
pre-dominantly effects the lesion classification. However, due
to the smooth transition between the lesion and surrounding
skin, hair artifacts, and variabilities in skin texture, the
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accuracy of segmentation is adversely affected. This paper
aims to propose an effective system for detection of dermoscopic
hair and segmentation of lesion. The system incorporates the
domain knowledge of the skin lesions for ROI extraction.

1.2 Related work

The presence of hair greatly affects the accuracy of the segmen-
tation algorithm. Thus, the primary step for the development of
a CAD tool is the detection and exclusion of dermoscopic hair.
The literature reports numerous studies in this regard [5–11].
Abuzalegah et al. [5] constructed directional filters by
subtracting Gaussian filters from a set of isotropic filters. The
two most widely used algorithms for hair detection include the
dull razor [6] and E-shaver [7]. The former was based on using
morphological operation whereas the latter was based on the
use of Radon transform. It has been observed [8] that PDE
(partial differential equation)-based techniques result in blur
images. Morphological operators such as erosion and dilation
were exploited by Fleming et al. [9]. A comparative study of
hair detection and exclusion algorithm has been performed by
Abbas et al. [10]. Most of the hair detection methods are based
on the underlying assumption that the color of the hair is much
darker than the surrounding skin. None of the methods reported
in literature take into account the dermoscopic knowledge of
the hair shafts, as a result of which certain hair pixels are erro-
neously classified as lesion pixels. The proposed method is
based on 2D (2-dimensional) Gabor filtering using directional
filters. The Gabor filter parameters are selected taking into ac-
count the dermoscopic knowledge of the hair shafts.

The hair detection process is followed by lesion segmentation,
which forms the most crucial part of CAD system. Several seg-
mentation techniques have been proposed in the past for
segmenting the skin lesions [12–23]. These techniques can be
divided into two categories as given in [1], i.e., low-level seg-
mentation and high-level segmentation techniques. Low-level
segmentation techniques are conventional approaches that in-
clude methods that are computationally simpler and faster and
require post processing, whereas high-level segmentation tech-
niques include those approaches that are built using sophisticated
segmentation algorithms, to avoid post processing, and to deal
with low-contrast lesion boundaries. Thresholding, region-based,
and edge-based techniques belong to low-level techniques. The
quantitative differences such as abrupt changes in the intensity
values between the lesion and the skin form the basis of low-
level segmentation techniques. Most of the approaches use a
combination of two segmentation approaches, such as in [12]
where fuzzy theory and thresholding were used. A fusion of
thresholding methods was used by Celebi et al. [13], wherein a
Markov random field (MRF) fusion strategy is adopted.

Soft-computing and deformable models belong to high-
level segmentation techniques. Neural network and evolution-
ary computing algorithms form a part of soft-computing

approaches [14, 15]. However, these techniques are associated
with greater computational complexity. Recently,
convolutional neural network (CNN) has garnered significant
attention to increase the accuracy of segmentation [16–18].
Qui et al. [16] used a fully convolutional neural network with
a pre-trained VGG 16-layer net. Yu et al. [17] adopted a re-
sidual learning technique. However, limited availability of
training data, vanishing gradient, presence of artifacts, and
poor contrast degrades the segmentation accuracy.
Optimization techniques such as ant colony and dynamic pro-
gramming [15, 19, 20] have also been used for ROI detection.

Deformable models belong to a category of high-level seg-
mentation techniques [21–23], wherein the evolution and mov-
ing direction of the curve are determined by the speed function.
Geometric deformable models have several advantages in con-
trast to the other segmentation methods. To name a few, (i)
geometric deformable models form closed and smooth contours
even in complex imaging conditions and presence of noise. This
is mainly due to the fact that the geometric deformable models
are driven by probability fields computed from image features;
(ii) geometric deformable models possess the ability to handle
topological changes; and (iii) in contrast to the low-level seg-
mentation, deformable models avoid the necessity for post pro-
cessing. However, there are twomajor issues associated with the
deformable models. First, geometric deformable models are
semi-automatic and require manual delineation of the contour
close to the ROI boundary. Second, the speed function should
be appropriately defined, such that the moving contour achieves
a stable status when the lesion boundary is encountered.

1.3 Problem statement

Based on the literature, a clinically inspired framework must
incorporate the major requirements mentioned below.

1. Effective hair detection and exclusion algorithm
2. An automated and effective skin lesion segmentation algo-

rithm using chroma-based geometric deformable model
3. Achieve a balance in sensitivity and specificity in

distinguishing the lesion from the skin

1.4 Contributions

The main contributions of the paper are as follows.

& A novel and automated hair detection algorithm is pro-
posed using dermoscopic knowledge-based 2D direction-
al Gabor filters. To the best knowledge of the authors, the
hair detection algorithm considering dermoscopic hair at-
tributes is the first of its kind in literature.

& An automated segmentation algorithm is proposed using
geometric deformable models considering the
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chrominance characteristics of the lesions. Finally, we
show that the proposed system has achieved an acceptable
balance between sensitivity and specificity.

1.5 Comparison and novelty of the proposed work
with the state-of-art methods

The novelty of the proposed system is twofold. Firstly, a
dermoscopic inspired hair detection algorithm is proposed.
In comparison to the hair detection methods proposed in lit-
erature [5–10], the proposed hair detection algorithm takes
into account the dermoscopic knowledge of the hair shafts,
thus avoiding an overlap between the lesion attributes and hair
attributes. Barata et al. [24] used heuristic Gaussian parame-
ters for detection of hair masks, whereas in the proposedmeth-
od, the Gabor parameters are set according to attributes of
dermoscopic hair shafts. In addition to this, rather than using
an experimentally determined threshold as in [24], the pro-
posed hair detection method automatically determines the
threshold using gray-level based entropy thresholding.

Secondly, an automated lesion segmentation algorithm is pro-
posed taking into account the chrominance characteristics of the
lesions. In comparison to the method proposed by Ma et al. [4],
the proposed method is completely automatic. Additionally, the
method proposed in [4] takes into account the lightness and
saturation values, consequently producing a higher overlap error
in comparison to the proposed method. The lightness compo-
nent greatly affects the color difference between the lesion and
the surrounding skin, thereby causing unreliable segmentation.
The proposed segmentation algorithm takes into account the
lesion properties to mathematically define the speed function
in comparison to other complex segmentation methods based
on abstract image properties [12–23, 25]. Such an automatic
and computationally simpler segmentation algorithm may be
informative from a dermatologist’s perspective.

2 Methods

The proposed framework is succinctly described in this sec-
tion. An overview of the proposed methodology is depicted in
Fig. 1. The initial process includes pre-processing of the

Hair Detection

Inpainting

Dermoscopic Image

Chroma component

Segmented Image

ROI detected

Initial Contour

Deformable 

Model

Fig. 1 Overview of the proposed
system
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dermoscopic images to eliminate artifacts such as dark cor-
ners, ruler markings, hair, and dark frames. A bank of 2D
Gabor filters is employed for the detection of hair masks. This
is followed by automated segmentation of the dermoscopic
images. To efficiently eliminate the dark corners, circular masks
are created with a radius of c/2, where c indicates the image
column dimensions. The mask generated for the dermoscopic
image is illustrated in Fig. 2. These masks are subsequently
overlaid on the lesion-segmented images to eliminate the dark
corners. The proposed hair detection and lesion segmentation
method is described in the following sections.

2.1 Hair detection and removal

A novel Gabor filter-based hair detection algorithm using
dermoscopic knowledge is proposed. The motivation behind
developing such an algorithm is (i) most of the techniques
reported in literature are based on the underlying assumption
that the color of the hair is much darker than the surrounding
skin [5–10]. Such an assumption creates ambiguities in hair
detection process, since the color of the lesionmainly relies on
the localization of melanin [26]. In case of benign lesion,
melanin is present in the upper and lower epidermis, and
hence, these lesions appear dark brown to light brown or
sometimes black in color. Thus, a significant overlap between
the lesion attributes and hair attributes occurs. (ii) In case of
lighter hair, considering the color differences between the hair
and the surrounding skin would result in incorrect detection of
the hair shafts. This signifies the fact that color variation dif-
ference is not the only criteria to be considered for developing
an efficient hair detection algorithm.

The proposed hair detection algorithm takes into account the
attributes specific to the dermoscopic hair (such as hair width
and orientation). The band-pass frequency f of the Gabor filter
is derived with respect to the width of hair shafts. The filter
orientation (θ) takes into account the direction of the hair shafts.
The width of hair shafts is computed by considering the details
of the dermoscopic hair. Since these properties are unique to
dermoscopic hair, an overlap between the lesion attributes and
the hair features is eliminated. Thus, the novelty of the proposed

hair detection algorithm is that the Gabor filter parameters are
tuned by considering the properties of the dermoscopic hair.

The proposed hair shaft detection method starts by choos-
ing the luminance component of the CIE L*a*b color space.
The luminance component mimics the perceptual lightness
response of the human visual system (HVS), and hence, it is
used for processing. Further, the luminance channel is con-
volved with a bank of N + 1, 2D Gabor filters (N = 15). The
response of Gabor filtering is as given in Eq. (1).

R x; yð Þ ¼ G x; yð Þ � L x; yð Þ ð1Þ
where L(x, y) is the luminance component and G(x, y) is the
real part of the 2D Gabor filter defined as given in Eq. (2).

G x; yð Þ ¼ exp −π
xq2

σx
2
þ yq

2

σy
2

 !" #
cos 2πf xq
� � ð2Þ

where

xq ¼ xcosθi þ ysinθi; yq ¼ −xsinθi þ ycosθi

θi is the filter orientation, f is the band-pass central frequency,
and σx and σy indicate the standard deviation in x and y direc-
tion. Gabor filters are sinusoidally modulated Gaussian func-
tions withmajor properties such as ability of tuning it to specific
orientations, adjustable bandwidth, and robustness to noise.

2.1.1 Domain-specific estimation of Gabor parameters

The procedure for estimating Gabor parameters is adopted
from Liu et al. [27] with certain modifications. The frequency
f is derived with respect to the width of the hair shafts. It is set
as given in Eq. (3).

f ¼ β
t

ð3Þ

where β is the scaling constant associated with band-pass cen-
tral frequency f and t is the hair shaft width. The normal termi-
nal hairs viewed from trichoscopy (× 30 magnification) are
more than 55 μm wide [28]. Therefore, to accommodate the
thick and thin hair, the hair shaft width range is taken as 55–

Fig. 2 Illustration of mask. a
Dermoscopic image. b Mask for
image a
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140μm. Thus, the value of t is chosen as 4.6 (ratio of maximum
range to magnification). The spread of the Gabor filter (σx) and
elongation of filter (σy) are calculated as given in [27].

Accordingly σx ¼ 8λt
αβπ

and σy ¼ 0:8σx

where λ = √ (2 ln 2/π) is the wavelength of the cosine factor
of Gabor function and α is the scaling constant associated with
the orientation bandwidth. Here, the range of scaling constants
α and β is given as 1<α ≤ 1.5,β = [0.5–1]. For the possible
range of α and β values, the response images for 30 combina-
tions of σx and σy were plotted. It is observed that for σx =
10 and σy = 8, the hair strands were appropriately detected.
For values of (σx < 10, σy < 8), and (σx > 10, σy > 8),smoothed
and zero response images were obtained respectively. However,
none of the possible combinations of α andβ values resulted in
(σx < 10, σy > 8) and (σx > 10, σy < 8). The response images for
the possible cases of σx and σy are shown in Fig. 3. The rotation
parameter θ is varied in steps of π

N ð12° ) from 0° to 180°. It is
observed that a decrease in the step size (12°) resulted an aver-
age increase in processing time from 4.5 to 9.8 s, without any
change in the response. Subsequently, an increase in step size
resulted in loss of detail in the response image. The value of
N = 15 gives a step size of 12°, since the angle is varied from 0°

to 180°; 16 directional filters expressed in the form of N + 1 are
required. Thus, it can be inferred that the number of directional
filters depends on the step size of rotation parameter θ.

The output combination of the N + 1 filters is performed by
retaining themaximum response at each pixel as given in Eq. (4).

rmax ¼ maxθi r x; yð Þ½ � ð4Þ

The enhanced hair shafts are further extracted from the
Gabor response by applying entropy-based thresholding using
the gray-level co-occurrence matrix (GLCM). Entropy-based
thresholding using GLCM is employed to extract the hair
strands. The optimal threshold is computed by taking into
account the spatial distribution of gray levels embedded in
the co-occurrence matrix. The GLCM-based entropy is simple
and contains most of the information for threshold computa-
tion. The GLCM matrix of the response image is divided into
four quadrants (two local quadrants and two joint quadrants).
The local quadrants are considered since they represent the
gray-level transition that arises within the object and back-
ground of the image. The second-order entropy of the object
HA(Th)) and background HC(Th)) is computed from the local
quadrant as given in [29]. The local transition entropies are
summed up to compute the total second-order entropy of the
object and background (HT(Th)) as given in Eq. (5).

HT Thð Þ ¼ HA Thð Þ
�
þ HC Thð Þ

�
ð5Þ

Finally, the gray level corresponding to the maximum
HT(Th) is used as a threshold as given in Eq. (6).

T ¼ arg maxHT Thð Þ½ � ð6Þ

The threshold T is used to segment the hair strands from the
Gabor response image. Further, the isolated pixels are filtered
out by applying connected component labell ing.

Fig. 3 Illustration of Gabor filter
parameters for possible cases of
[σx, σy].a Dermoscopic image. b
[σx = 9, σy=7]. c [ σx =10,σy=8]. d
[σx = 11, σy=9]
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Consequently, Mumford-Shah-based inpainting [30] is ap-
plied to obtain the hair excluded dermoscopic image.
Figure 4 illustrates the results of hair detection and removal.
The proposed hair detection and exclusion algorithms also
effectively eliminate the ruler markings present in the
dermoscopic images. An illustration of the ruler markings
detected is depicted in Fig. 5.

2.2 Segmentation of region of interest

The performance of the geometric deformable models
mainly relies on the initial conditions used and the evo-
lution of the speed function. Color plays a very impor-
tant role in dermoscopy, since the color of melanin
mainly depends on the extent of the localization in the
skin. Thus, the segmentation approach is proposed by
exploiting the aforementioned domain knowledge of
skin lesions by considering the chroma component, rath-
er than the conventional RGB channels. The ROI refers
to the lesion area and non-region of interest (NROI)

refers to the surrounding skin. An illustration of ROI
and NROI in dermoscopic image is depicted in Fig. 6.

2.2.1 Initial curve

The speed function governs the movement of the initial con-
tour. Due to the variabilities in the intensity patterns of the
dermoscopic images, the curve evolution method proposed
in this work is flexible to contraction and expansion of the
initial contour in contrast to the method proposed in [4]. The
initial contour is placed close to the lesion boundary to speed
up the curve evolution. A coarse initial contour is obtained by
region growing the pixels into two groups. Region growing is
performed by automatic selection of a seed point and a thresh-
old t. The coordinates of maximum intensity are chosen as
seed point; lesion pixels have darker intensities compared to
the background skin pixels. The threshold is determined by
fitting a polynomial of degree 4 to the histogram of the
dermoscopic image. The degree of polynomial 4 is chosen
optimally to avoid overfitting and under fitting issues.
Further, the point of inflection on the polynomial

Fig. 4 Hair detection and exclusion. a Original images. b Gabor response. c Hair masks. d Hair occluded dermoscopic images

Fig. 5 Ruler marking detection. a Original images. b Ruler masks. c Ruler marking-occluded dermoscopic images
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is used as the threshold as illustrated in Fig. 7. The initial
contour is given in Eq. (7).

∅ x; y; 0ð Þ ¼ 1 if d S x; yð Þ; F x; yð Þð Þ≤ t
0 if d S x; yð Þ; F x; yð Þð Þ > t

� �
ð7Þ

where S(x, y) indicates the seed point. F(x, y) is the
dermoscopic grayscale image and d corresponds to the
Euclidean distance. Thus, the internal and external regions of
the initial contour ∅(x, y, 0) can be written as given in Eq. (8).

∅I ¼ x; yð Þ ∅ x; y; tð Þj i0f g
∅E ¼ x; yð Þj∅ x; y; tð Þ≤0f g ð8Þ

2.2.2 Speed function

TheCIE L*a*b color space provides the means to measure the
perceptual differences between any two colors. By excluding

L, the lightness component of the capturing device does not
affect the color dissimilarities between the lesion and normal
skin. Hence, the magnitude of the chroma component of
the CIE L*a*b color space is used instead of the lumi-
nance component. An illustration of chroma component
for the corresponding dermoscopic image is shown in
Fig. 8. The chroma component is computed as given in
Eq. (9).

C x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ð9Þ

Further, the speed function in [31] is modified as Eq. (10).

F ¼
�
FL x; yð Þ−uL

			 			2− FL x; yð Þ−vLj j2

 �

þ FS x; yð Þ−uSj j2− FS x; yð Þ−vSj j2
� �

ð10Þ

where

FL x; yð Þ ¼ e−
C x; yð Þ−μLð Þ2

2σL
2

ð11Þ

FS x; yð Þ ¼ e−
C x; yð Þ−μSð Þ2

2σs
2

ð12Þ

where uL and vL are the averages of FL(x, y) inside and outside
the initial contour respectively. Similarly, uS and vS are the av-
erages of FS(x, y) inside and outside the initial contour respec-
tively. The statistical values μL and σL are the mean and standard
deviation of the lesion region respectively and μS and σS are the
mean and standard deviation of the normal skin region respec-
tively. The aforementioned modification in the speed function
facilitates the incorporation of lesion and normal skin informa-
tion in the speed function. The minimization of the speed func-
tion is performed using gradient descent as given in Eq. (13).

d∅
dt

¼ F
max Fð Þ þ α� ∇∅ x; yð Þj j ð13Þ

As the initial curve covers the area of the lesions, the speed
function facilitates the evolving curve to contract and expand
until an appreciable difference in the chroma values with re-
spect to the normal skin is encountered. The statistical values
μL,σL, μS, and σS are computed approximately overlaying the
initial contour obtained from the automatic region growing
method on the dermoscopic image. The summary of the pro-
cedure is given in Algorithm 1 and Fig. 9 depicts the results of
segmentation. It can be observed from Fig. 9d that the area
differences between the lesion borders obtained by the

Fig. 6 ROI and NROI in a dermoscopic image

Fig. 7 Polynomial fitting to the smoothed histogram
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proposed method and the ground truth masks are minimum,
thus reducing the overlap error.

The major contribution of the proposed work in terms of
curve evolution lies in the modification of the well-known
Chan-Vese speed function [31]. The modified speed function
takes into account the lesion and the surrounding skin force.
The lesion forces are computed by considering the statistical
values such as mean and standard deviation of the lesion
area and the surrounding skin area. Such a modification is
performed to attract the motion of the curve towards the
lesion boundaries. In case of skin lesions due to the inho-
mogeneous variabilities in the dermoscopic images, the

curve evolution may lead to pseudo detection of the lesion
boundaries. In the proposed approach, the initial curve gets
attracted to the lesion boundaries irrespective of the back-
ground variabilities and low-contrast boundaries. Figure 10
illustrates the deformation of the curve using the proposed
method and the conventional Chan-Vese method. It can be
observed from Fig. 10 that the deformation obtained through
the proposed method is robust to surrounding inhomogene-
ities in comparison to the conventional Chan-Vese method
[31].

Fig. 8 Chroma. a Dermoscopic
image. b Chroma component of a
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Fig. 9 The proposed segmentation approach. a Original images. b Initial contour. c Segmented images. d Boundary of ground truth and segmented
region overlapped on the original image (red corresponds to ground truth; yellow corresponds to segmented output)

Fig. 10 Comparative analysis of the proposed segmentation approach
with conventional Chan-Vese. a Original images. b Deformation
through conventional Chan-Vese. c Mask obtained by corresponding

deformation given in b. d Deformation through the proposed
segmentation approach. e Mask obtained by corresponding deformation
given in d
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3 Results

3.1 Dataset and evaluation parameters

The experiments were performed using a multi-source
dataset of 1100 images taken from PH2 [32] and ISBI
(International Symposium on Biomedical Imaging) 2016
[33] datasets. The PH2 dataset consists of 160 benign
and 40 malignant melanoma lesions, whereas the ISBI
2016 dataset consists of 173 melanoma and 727 benign
skin lesions. The datasets consist of segmented ground
truths. Ground truth refers to the well-defined reference
masks used for evaluating the efficacy of the proposed
segmentation methods. The ISBI 2016 and PH2 data-
bases contain ground truth masks created by an expert
clinician using semi-automated and manual processes.
The algorithms used in this work were implemented in
MATLAB 2016®. The performance of the proposed le-
sion segmentation was evaluated using four metrics:
sensitivity (SE), specificity (SP), accuracy (ACC), and

overlap error (OE). The metrics are evaluated as given
in Eqs. (14–17).

SE ¼ TP

FNþ TPð Þ ð14Þ

SP ¼ TN

FPþ TNð Þ ð15Þ

ACC ¼ TNþ TP

FNþ FPþ TNþ TPð Þ ð16Þ

OE ¼ Area S⊕Gð Þ
Area Gð Þ ð17Þ

where true positive (TP) indicates the pixels which are accu-
rately recognized as lesion pixels. False positive (FP) indicates
the pixels incorrectly recognized as lesion pixels. True nega-
tive (TN) indicates the pixels which are effectively recognized
as non-lesion pixels. False negative (FN) indicates the pixels
which are incorrectly recognized as non-lesion pixels. S indi-
cates the segmented image using the proposed method and G
indicates the ground truth image. Overlap error is defined as a
quantitative difference in the lesion area between the segment-
ed result and the ground truth. It indicates an overlap differ-
ence between the lesion regions of ground truth and the pro-
posed segmented result. Figure 11 provides an illustration of

Fig. 11 Illustration of overlap
error. a Dermoscopic image. b
Ground truth mask for a. c
Segmented mask. d Non-
overlapped area between b and c

Table 1 Results of quantitative analysis of the proposed lesion
segmentation method

Dataset type Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Overlap error
(%)

μ σ μ σ μ σ μ σ

PH2 87.6 10.1 95.3 9.00 93.4 7.80 11.5 19.8

ISBI 2016 82.4 15.3 97.2 9.21 94.6 7.03 7.20 15.9

μ =mean, σ = standard deviation
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the overlap error between the ground truth and the segmented
masks. Table 1 reports the mean and standard deviation values
of the performance parameters for the proposed lesion seg-
mentation method.

4 Discussion

In the present study, an automatic segmentation method is
proposed. The discussion section is divided into three parts;
the first part indicates the effect of pre-processing on segmen-
tation accuracy, the second part deals with the effect of iden-
tification of initial contour automatically on segmentation ac-
curacy, and the third part provides a comparative analysis
between the state-of-the-art methods and the proposed
method.

4.1 Effect of pre-processing on segmentation error

Dermoscopic images contain extraneous artifacts such as hair,
dark corners, and ruler markings. Consequently, since these
artifacts are darker than the surrounding skin, they hinder the
process of segmentation. In order to eliminate the effects of
these artifacts on lesion segmentation process, the
dermoscopic images are pre-processed. In Table 2, a brief
summary of the steps that are performed to study the effect
of pre-processing on efficiency of lesion segmentation is
described.

The overlap error as given in Eq. (17) is computed for
segmented images with respect to the ground truth images
for a subset of 24 images. It can be observed from Fig. 12 that
the overlap error is significantly low with pre-processing in
comparison to without pre-processing. This implies the effi-
cacy of the hair detection algorithm in lesion segmentation.

4.2 Statistical analysis to assess the effect of initial
contour on performance

A paired t test is conducted to test the hypothesis stated below.
Paired t test is used because it gives the statistical significance,
by considering the effect of change on the segmentation

accuracy after the application of color information-based de-
formable model [34].

Statement: The accuracy of ROI detection has significant-
ly improved by employing color information-based de-
formable model segmentation at 5% significance level.
Step 1: Form alternate and null hypothesis based on the
statement.
Null Hypothesis (Ho): There is no significant increase in
the lesion segmentation accuracy by employing color
information-based active contour segmentation (Ho: μ1=
μ2).
Alternate Hypothesis (Ha): There is significant increase in
the lesion segmentation accuracy by employing color
information-based deformable model segmentation
(Ha: μ1< μ2).

According to paired t test, if the value of tcalculated is greater
than tstatistic, then, the null hypothesis falls in the rejection
region. The value for tcalculated is calculated from the sample
data as given in Eq. (18) and the value of tstatistic is obtained
from Student t-distribution [34]. To perform the paired t test,
for PH2 and ISBI 2016 datasets, the sample sizes chosen are
34 and 24 respectively. The minimum sample size required for
performing the paired t test is calculated by considering the
mean and standard deviation of differences for the paired sam-
ples by using the Medcalc statistical software [35]. The detail
description of the sample size calculation is given in [36]. The
first pair consists of accuracy values obtained from the

Table 2 Summary of steps for
demonstrating effects of pre-
processing

With pre-processing Without pre-processing

1. Hair detection and removal

2. Initial curve generation

3. Mask generation and subsequent multiplication with initial curve (dark corner
removal)

4. Lesion segmentation

1. Initial curve
generation

2. Lesion segmentation

Fig. 12 Effect of pre-processing on segmentation accuracy
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automatic region growing (initial contour), while the second
pair consists of accuracy values post segmentation (initial con-
tour + deformable model).

tcalculated ¼ D

σ=√n
ð18Þ

where D is the mean of differences, σ is the standard devi-
ation of differences, and n is the sample size. Using Eq. (18),
the value of tcalculated obtained for PH2 dataset using 34 sam-
ples is 1.771, and from Student’s t distribution for 5% signif-
icance level, the value of tstatistic obtained is 1.645. Similarly,
the value of tcalculated obtained for ISBI 2016 dataset using 24
samples is 2.44, and from Student’s t distribution for 5% sig-
nificance level, the value of tstatistic obtained is 1.714.
Since tcalculated > tstatistic, for both the datasets, the null hypoth-
esis is rejected. Thus, the alternate hypothesis is accepted,
implying the fact that the proposed segmentation method has
significantly improved the performance accuracy.

Figures 13 and 14 show the box plots for coarse and fine
segmentation for PH2 and ISBI 2016 datasets respectively.
Coarse segmentation refers to the initial lesion contour obtain-
ed through region growing and polynomial curve fitting. Fine
segmentation refers to the final lesion contour obtained after
application of chroma-based deformable models. It can be
observed that a significant improvement in the performance
can be observed after application of chroma-based deformable
models (fine segmentation). The box plots indicate the aver-
age performance values for 900 and 200 images of ISBI 2016
and PH2 databases respectively. The significant improvement
in the performance values after the application of chroma-

based deformable models signifies the efficacy of the pro-
posed method.

4.3 Comparative analysis

A comparative analysis of the proposedmethod with the state-
of-the-art lesion segmentation methods is illustrated in
Table 3. A brief overview of the pros and cons associated with
segmentation approaches stated in Table 3 in comparison with
the proposed lesion segmentation method is discussed in this
section.

Recently, CNNs have been used for segmentation of skin
lesions. Yuan et al. [18] proposed an automated skin lesion
segmentation technique by leveraging 19-layer deep CNN. In
addition to this, the loss function based on Jacquard distance is
designed to handle lesion-background imbalance. Although
good segmentation accuracy was achieved, automatic param-
eter tuning posed certain difficulties leading to few over and
under segmentation errors. Yu et al. [17] proposed deep resid-
ual networks of more than 50 layers for segmentation and
classification of skin lesions. The deeper network produced
more richer and distinguishing features for melanoma recog-
nition. However, the two-stage framework was computation-
ally expensive and suffers from limited data problem. Deeper
networks face degradation problem, which becomes severe as
the number of layers increases. Bozorgtabar et al. [37] pro-
posed a super pixel-based fine tuning method to enhance
CNN-based lesion segmentation. The super pixel approach
learns a global map for skin lesion and also acquires informa-
tion about the lesion boundary. However, the super pixel fine
tuning method is incorporated only in the last layer of the
CNN and is considered rudimentary in nature. Additionally,

Fig. 14 Box plots for ISBI 2016 dataset. a Sensitivity. b Specificity. c
Overlap error. d Accuracy

Fig. 13 Box plots for PH2 dataset. a Sensitivity. b Specificity. c Overlap
error. d Accuracy
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the differences from the training dataset are not considered for
learning, which is the major weakness of the method.

An automatic skin lesion segmentation method using
Delaunay triangulation was proposed by Pennisi et al. [38];
the method is completely automatic and computationally sim-
pler. However, the segmentation method is strongly sensitive to
images containing irregular borders and structureless areas (in
particular malignant lesions). A robust saliency-based skin le-
sion segmentation framework is proposed by Ahn et al. [39].
The method uses reconstruction errors from a sparse represen-
tationmodel. The reconstruction error is refined by employing a
Bayesian framework for accurate detection of lesion bound-
aries. Although good segmentation accuracy was achieved by
exploiting the human visual system, the method failed to iden-
tify small, visually indistinctive lesions and lesions present at
the image boundary. Fan et al. [40] proposed an automatic
segmentation that initially enhances the dermoscopic image
by fusing color and brightness saliency maps. Further, the im-
age is segmented using Otsu threshold. Although the segmen-
tation method was robust to challenging conditions, the optimi-
zation function used to improve the segmentation accuracy re-
lies on the histogram distribution of the enhanced image, pro-
ducing undesirable segmentation in the presence of artifacts.

In contrast to the segmentation methods proposed in [17, 18,
37–40], the proposed segmentation algorithm is computationally
simpler, works efficiently on smaller and large datasets, is inde-
pendent of the skin lesion type (benign/malignant), and provides
robust segmentation irrespective of the size and position of the
lesion.Additionally, robust segmentation in the presence of noise
with a low overlap error rate is obtained.

5 Conclusions

A novel approach for dermoscopic hair detection and lesion
segmentation is proposed. The proposed algorithm takes into
account the domain knowledge of the skin lesions and defines
the speed function based on chroma information and statistical

values. The curve evolution stops at the lesion boundary.
Numerical experiments illustrate the efficacy of the algorithms.
The implementation issues are discussed with the aid of quan-
titative and qualitative analysis. In comparison with the other
algorithms, the novel approach uses the color information from
the dermoscopic images. Color plays a prominent role in
dermoscopy, since the color of the lesion is a pathologically
significant feature for malignancy detection. Hence, the pro-
posed segmentation approach exploits the color property of
the skin lesions. The proposed hair detection method takes into
account the width, magnitude, and direction of the hair shafts
for efficient detection of the hair. The segmentation approach is
fully automatic without the need to explicitly define the initial
contour. Future work involves the use of color information to
extract the color features for classification of skin lesions.
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