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Abstract

With the advent of biomedical imaging technology, the number of captured and stored biomedical images is rapidly increasing
day by day in hospitals, imaging laboratories and biomedical institutions. Therefore, more robust biomedical image analysis
technology is needed to meet the requirement of the diagnosis and classification of various kinds of diseases using biomedical
images. However, the current biomedical image classification methods and general non-biomedical image classifiers cannot
extract more compact biomedical image features or capture the tiny differences between similar images with different types of
diseases from the same category. In this paper, we propose a novel fused convolutional neural network to develop a more accurate
and highly efficient classifier for biomedical images, which combines shallow layer features and deep layer features from the
proposed deep neural network architecture. In the analysis, it was observed that the shallow layers provided more detailed local
features, which could distinguish different diseases in the same category, while the deep layers could convey more high-level
semantic information used to classify the diseases among the various categories. A detailed comparison of our approach with
traditional classification algorithms and popular deep classifiers across several public biomedical image datasets showed the
superior performance of our proposed method for biomedical image classification. In addition, we also evaluated the performance
of our method in modality classification of medical images using the ImageCLEFmed dataset.

Keywords Biomedical image classification - Convolutional neural networks - Deep learning - Deep feature - Shallow feature

1 Introduction

A very large number of biomedical images are generated in
hospitals, imaging laboratories and biomedical institutions on
a daily basis to assist physicians in the diagnosis of patients’
health conditions. Types of biomedical images include those
derived from ultrasound (US), magnetic resonance imaging
(MRI), computed tomography (CT) and X-ray [1]. In the field
of biomedical and medical analyses, images still play a key
role in analysing the state of a disease and then in providing an
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accurate diagnosis for the patients. However, it is a big chal-
lenge to manage and analyse substantial collections of large
biomedical images produced every day; it is also extremely
tedious and impractical to perform this analysis task solely by
human annotation. Therefore, in order to better assist physi-
cians, more robust biomedical image analysis technology is
needed to assist medical practitioners to identify and distin-
guish the exact disease conditions in each patient’s report.

1.1 Related work

Many biomedical image classification methods and tech-
niques have been proposed to address this problem that pri-
marily focus on using visual cues from the generated images
[2-12]. The methods and techniques for the classification of
biomedical images can be roughly divided into two kinds,
namely, those based on a traditional model and those based
on a deep model. The traditional model, as the name implies,
combines traditional visual features and typical machine-
learning classifiers. Here, such traditional features are named
after hand-crafted image features, such as colour, shape,
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structure, texture, the widely used SIFT (scale-invariant fea-
ture transform), LBP (local binary pattern) and HOG (histo-
gram of oriented gradient). The extraction of a feature is the
first step towards representing each biomedical image, which
is akin to an image dimensionality reduction process. If we
want to identify and classify an image with its feature repre-
sentation, it must be with the help of a classifier, which needs
to be trained with a corresponding training dataset. Classifiers,
which are widely used in biomedical image classification
methods, include K-nearest neighbour, multiclass support
vector machine (SVM), multiple kernel SVM and their corre-
sponding variants.

In addition, as shown in previous works [2—5], the tradi-
tional classification algorithms include two independent parts,
namely, a good feature extractor and a robust classifier. For
example, Depeursinge et al. [2] proposed a new near-affine-
invariant texture feature to extract lung tissue patterns and
then added a one-versus-one support vector machine classifier
with a Gaussian kernel to train the classification boundaries
between any two categories. Song et al. [3] focused on design-
ing a new classifier called the large margin local estimate
model and combined multiple features that are rotation-
invariant Gabor-local binary patterns (RGLBP), multi-
coordinate histograms of oriented gradients (MCHOG) and
intensity. Khachane et al. [4] used a texture feature descriptor
and proposed a fuzzy rule-based system with 23 rules for
classifying multimodal medical images. Ertugrul et al. [5] pre-
sented a novel feature extraction approach, known as adaptive
local binary pattern (aLBP), to represent surface electromyog-
raphy (SEMG) signals, which can obtain a higher classifica-
tion performance than other popular feature extraction ap-
proaches. However, when faced with large collections of im-
aging data, the traditional classification methods have difficul-
ty in capturing more robust and discriminative biomedical
features using only hand-crafted features and classical
machine-learning classifiers.

With the further developments of deep neural networks,
deep learning technology has found many practical applica-
tions [13], particularly in the computer vision area, such as in
image classification and recognition [14], object detection
[15] and image segmentation [16]. The main reason for the
adoption of the deep learning technology is the availability of
large annotated image datasets and high-performance comput-
ing power with GPUs in recent years. Several recent studies,
as typical examples of deep models, have also introduced deep
neural networks to biomedical image classification tasks
[6-8]. Li et al. [6] proposed a convolutional neural network
with a few layers to classify lung image patches, wherein there
is only one added convolutional layer and three fully connect-
ed layers. Gao et al. [7] designed a specific deep neural net-
work with three convolutional layers, three max-pooling
layers and one fully connected layer for the classification of
human epithelial-2 (HEp-2) cells with limited biomedical
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training data. Abbas et al. [8] utilized a semi-supervised mul-
tilayer deep learning algorithm to learn deep visual features,
which can be used to classify and recognize five severity
levels of diabetic retinopathy. In addition, transfer learning
technique has also become popular in biomedical image pro-
cessing by using different pre-trained deep neural networks.
For instance, two very recent papers [9, 10] used the domain
transfer method to utilize deep neural networks as a kind of a
black box for extracting biomedical image features. Ahn et al.
[9] proposed the use of a pre-trained deep convolutional net-
work by Oxford’s Visual Geometry Group (VGG) [17] as a
deep transferred model to extract X-ray image features and
then combined a sparse spatial pyramid model to classify X-
ray images. Phan et al. [10] applied transfer learning to a pre-
trained deep convolutional neural network model to extract
general image features and further selected relevant features
with the minimum redundancy maximum relevance algorithm
to train three SVM classifiers for the classification of human
epithelial-2 cell images. Furthermore, Pang et al. [11]
exploited deep learning and transfer learning techniques to
learn the deep features of biomedical images online and, in
an end-to-end fashion, distinguish the categories of images in
several public biomedical image databases.

More recently, considering the lack of the availability of
large collections of annotated biomedical images, alternative
unsupervised deep learning method have also been proposed
using only a few parameters of a deep model. For example,
Shi et al. [12] improved an unsupervised principal component
analysis network (PCANet) with random binary hashing and
colour information to learn the deep feature of histopatholog-
ical images and classify them with a matrix-form classifier on
three datasets of small size (66, 100 and 66 images), which is
another research direction of introducing deep learning into
biomedical/medical image processing.

1.2 Observation and motivation

Although the deep models can capture more compact and
hierarchical features with many hidden layers, a trained non-
biomedical image classification model or standard deep archi-
tecture using deep neural networks cannot be directly used or
trained for biomedical image classification tasks. The feature
analysis, shown in Fig. 1 provides evidence for this observa-
tion. The trained deep model used is AlexNet [14], which
claimed the championship in the ILSVRC-2012 competition
with 1.2 million high-resolution images under 1000 different
categories. The current popular deep models, such as AlexNet,
aim to classify images or objects but in the presence of major
differences between the different categories. However, on dif-
ferent biomedical images, the retrained AlexNet cannot dis-
tinguish similar images from different classes, such as images
C01001 and C04001 that are from the OASIS-MRI dataset
but belong to different health conditions. This is because the
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Input Image

Fig. 1 Feature analysis of shallow

and deep layers using the

retrained AlexNet model on

different biomedical images. Each (a)

red circle represents a shallow NEMA-CT
feature map extracted from the C01001
corresponding input image; each

green circle represents a deep

feature map capturing the (b)
semantic mformatlfm of its input OASIS-MRI
image. a shows an image from the 01001
NEMA-CT dataset. b and ¢ show
some images from the different
categories of the same OASIS-
MRI dataset (c)

two deep feature maps with a green circle that AlexNet
exploited and learned for the C01001 and C04001 images of
the OASIS-MRI dataset are highly similar or even the same,
as shown in Fig. 1. However, as we can see from Fig. 1,
AlexNet can classify images from different datasets with ob-
vious and different deep feature maps. Meanwhile, we can
easily observe that the shallow features between the images
from the OASIS-MRI dataset can be used to distinguish them,
thus capturing more detailed local features than deep semantic
features. Therefore, motivated by the analysis of the differ-
ences among various images, we propose a novel
convolutional neural network that fuses shallow features and
deep features for biomedical image classification tasks.
Moreover, if we would like to achieve an excellent perfor-
mance on biomedical image analysis with deep learning, the
main point at present is that a large number of labelled bio-
medical images should be available in the first place so that we
can use them to train a deep neural network that has millions
of parameters. However, there are two key problems that need
to be addressed first. (1) Due to privacy considerations, it is
extremely hard to obtain a sufficient number of annotated and
labelled images that can be used to train such deep models in a
given biomedical domain. (2) There may be slight differences
between two given images from a biomedical or medical area,
and this could mean that the two images may indicate two
different types of diseases, as discussed before in Fig. 1b, c.
Therefore, to address these two key problems for biomedical
image classification, a fused convolutional neural network is
proposed that learns pre-trained information from another do-
main and transfers it into the biomedical area using data aug-
mentation, and subsequently constructs a deep model that ad-
equately exploits shallow features and deep features simulta-
neously to distinguish biomedical images. Moreover, the shal-
low layers provide more detailed local features that can be
used to distinguish different diseases from the same category,
while the deep layers convey more high-level semantic

Shallow Features (Conv1 Layer)

Deep Features (Convs Layer)

; .m

OASIS-MRI
C04001

information, which can be used to classify the diseases among
various categories.

1.3 Our contributions

The key contributions and highlights of our work are summa-
rized below:

1) We propose a novel fused deep neural network by
leveraging the low-level features from the shallow layers
and the high-level features from the deep layers, which
can accurately capture and discriminate the tiny differ-
ences between similar biomedical images from the same
category that belong to different classes.

2) We further validate the importance of transfer learning for
biomedical image classification tasks especially when
there is a lack of annotated biomedical images for training
deep neural networks.

3) We also observe that much deeper neural networks should
not really be used to classify biomedical images. Much
deeper neural networks tend to capture more abstract fea-
tures and hence, tend to overlook the minor variances
between similar images that may be the key to diagnosing
different diseases.

4) Furthermore, this paper highlights the main difference
between our fused convolutional neural network and the
current regular deep convolutional neural networks in the
aspect of designing a neural network architecture.
Moreover, this paper explains why we do not directly
use the current trained deep models to classify biomedical
images due to the different image types and application
purposes.

5) Finally, our novel biomedical image classification algo-
rithm is evaluated using three public biomedical image
datasets and the ImageCLEFmed dataset and it is com-
pared with other traditional methods based on hand-
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crafted features and current popular deep methods for
biomedical image classification. The analysis of the clas-
sification accuracy shows that our proposed fused
convolutional neural network approach for biomedical
images has stable performance and notable improvement.

The rest of this paper is structured as follows. Section 2
presents our proposed deep architecture for biomedical image
classification, including transfer learning technology, fused
convolutional neural networks, parameter learning and data
augmentation. Section 3 discusses several popular methods
which are compared with our method, such as traditional ap-
proaches and deep models; it also introduces several public
biomedical image datasets used as a benchmark in our exper-
iments. Most importantly, the experimental results together
with visualization analysis are presented in this section.
Section 4 presents a comparison between the fused deep mod-
el and non-fused deep model and discusses misclassification
cases and tiny differences between different classes. Finally,
Section 5 concludes the paper with a brief summary of our
contributions.

2 Methods

To overcome the two key problems of biomedical image anal-
ysis discussed above, transfer learning is used in our deep
neural network architecture, wherein we transferred a model
together with its millions of parameters, which are learned
from a different generic image domain for the biomedical
image domain. In this way, we offset the lack of training data
for supervised learning from biomedical images. In addition,
in order to better capture the tiny features and differences from
the same category of images, we redesign the traditional deep
convolutional neural network architecture for biomedical im-
age classification, which achieves superior performance with
accurate results. Finally, we introduce how to learn the param-
eters of the deep model and discussed why data augmentation
is needed.

2.1 Transfer learning technology

Transfer learning aims to train a robust and discriminative mod-
el across different domains [18]. Simply put, transfer learning
exploits the knowledge learned from a distinct domain to pre-
dict the probability distribution for a novel domain, which is, in
our case, biomedical image classification. However, this kind
of a method of transfer learning discussed in papers [9, 10],
which use deep neural networks as a kind of a black box, only
captures the general image features between different image
domains. When there is no further learning from the knowledge
transferred from a distinct domain, it is hard to achieve prom-
ising and stable performance in a novel domain.
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Therefore, to fully exploit the deep transfer learning tech-
nology, we not only transfer the learned knowledge using
deep convolutional neural networks from a different domain
but also further tune the new knowledge for biomedical image
classification for the novel domain. In this study, we use
CaffeNet [19], which is pre-trained on a large ImageNet
dataset that includes several millions of images with 1000
categories. Here, the natural question to ask was why we do
not transfer much deeper models, such as VGG [17] or
GooglLeNet [20], which have much better performance than
AlexNet in the ImageNet image classification task. This is
because biomedical images that are different from other gen-
eral images have a great deal of tiny information and patterns
inside as shown in Fig. 1. So, if we use the deeper layers to
extract more semantic and abstract features, the model may
ignore and lose the subtle differences between two similar
images from the same category which may after all belong
to two kinds of diseases.

Finally, deep transfer learning successfully alleviates the
lack of training data to train a robust and deep neural network
for the biomedical domain by transferring the learned knowl-
edge from a different generic image domain. Moreover, on the
basis of the domain transfer idea, we further propose our fused
convolutional neural network for biomedical image classifica-
tion in the next subsection and also discuss the differences
between our deep model and other deep models and show
how our deep model can effectively capture tiny biomedical
image features.

2.2 Fused convolutional neural network

With the aim of designing a more robust and adaptive deep
model for biomedical image classification, we propose a novel
convolutional neural network architecture that fuses shallow
features from the lower layers with the deep features from the
higher layers and then is retrained with corresponding bio-
medical images before the classification task is performed.
Different from the current CNN models, our proposed CNN
model can adequately mine detailed and tiny local features to
assist the biomedical image classification task and does not
only rely on high-level semantic information to distinguish the
different objects. Therefore, we redesign the traditional deep
convolutional neural network architecture for biomedical im-
age classification, which has been shown to achieve superior
performance with accurate results in our experiments.

The main difficulty of designing a new deep neural net-
work is to carefully consider the number of neurons and types
of each layer, the size and number of convolutional kernels,
and even how to match and connect any two layers. It is
generally not easy to design a novel deep model for a specific
domain and application. Our designed fused deep
convolutional neural network architecture is shown in Fig. 2.
For biomedical image classification, we use the Caffe
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framework [19] and tools to construct our model and to train it
with biomedical images, where this tool is exploited by the
Berkeley Vision and Learning Center.

As shown in Fig. 2, the designed deep neural network
architecture includes one trunk and two branches, which re-
spectively represent one-layered deep feature from the fifth
convolutional layer and two-layered shallow features from
the first and the second convolutional layers. As the most
significant highlight of this novel deep model, the fusion of
these three layers is the key point to realize our idea for bio-
medical image classification. To address the fusion challenge,
we analysed the size and type of each layer in detail and
considered the size of convolutional kernels and average-
pooling boxes. Finally, we respectively added a pooling layer
with different average-pooling boxes after the first pooling
layer and the second pooling layer and then made the output
size of each shallow feature the same as the size of the fifth
max-pooling layer. Before the fully connected layers, we need
to add a concatenated layer to join these three feature outputs
together. The above analysis is from the perspective of the
characteristic and difference of our proposed deep model com-
pared to other deep models that only have a main trunk to train
for image classification tasks. As shown in Fig. 2, this overall
deep convolutional neural network includes five
convolutional layers (convl, conv2, conv3, conv4 and
conv5), three max-pooling layers (pooll, pool2 and pool5),
two average-pooling layers (pooll1 and pool21), two normal-
ization layers (norml and norm?2), one concatenated layer
(concat) and three fully connected layers (fc6, fc7 and fcg)
for biomedical image classification. For example, for the input
image in Fig. 2, our proposed fused convolutional neural net-
work gives an accurate classification prediction that is the
fourth class of OASIS-MRI dataset (OASIS-MRI-4). In addi-
tion, for more detailed information about each kind of layer in
the whole architecture shown in Fig. 2, we refer the reader to
the introduction of the Caffe framework [19].

2.3 Parameter learning and data augmentation

Due to the numerous parameters of our model, we need to
choose an efficient algorithm to tune and update them in order
to accurately distinguish each biomedical image. Our proposed
convolutional neural network exploits the back-propagation
algorithm to update the network parameters 6 = {W, b;} by
minimizing the following loss function between the predicted
results and the real labels of images:

1 i| yri
L=-r7 X In(p(/|x))) (1)
X1 5
In this loss function L, we denote the number of training
data by | X|, and X" and )’ denote the ith training sample and its
real label, respectively.

Here, the goal when we train a deep model is to make sure
that the loss function is equal to zero when it is evaluated on
the testing dataset, which means that all of the predicted re-
sults are the same as their real labels. To achieve this goal, the
stochastic gradient descent method is used in our algorithm to
compute and update the network parameters 6. In this way,
after each modification of parameters 6, the loss function L
reflects the corresponding change and then it is used to predict
the result of all of the testing dataset again. In this way, a deep
neural network will be trained after many iterations until the
prediction result has 100% precision. Here, the updating pro-
cess of the network parameters 6 is given in the following:

O(t+1) = G(t)—AZ—g + aAO()—pX0(1) (2)

When the process is performed at iteration ¢+ 1, the net-
work parameters can be calculated based on the derivative at
iteration ¢, joined together with the momentum weight and the
weight decay to update it. X is the learning rate that controls
the learning speed. If A is too large, the loss function could
miss the optimal solution; if it is too small, the algorithm has to
spend a great deal of time looking for an optimal solution, and
it may even fall into the local optimum. « is the momentum
rate that speeds up the learning process and is helpful for
obtaining the global optimal solution rather than the local
optimum. 3 denotes the weight delay rate, which is used to
slightly reduce the decayed weight parameters towards zero at
each iteration and to improve the learning efficiency of the
overall network parameters.

Although we successfully overcome the lack of biomedical
training data by using the domain transferred learning method,
the lack of sufficiently many labelled biomedical images
needs to be addressed with other technology from the biomed-
ical image perspective. In addition, the lack of sufficient train-
ing data will result in trained deep neural networks with an
overfitting problem, which means that the trained model can
only recognize the training data but does not know much
about the testing data. To alleviate this overfitting phenome-
non, we use two kinds of data augmentation methods in the
process when training our fused deep convolutional neural
network. First, each category should have the same number
of images which is helpful to improve the classification accu-
racy of the deep CNN model. Here, we adopt a simple method
of repeating the images from the same class. Another key
method we used is that, during the training process, we resize
the input image into a 256 x 256-pixel resolution but only a
cropped image of a 227 x 227-pixel resolution is taken each
time. As we can see from Fig. 2, the image that is input into
our deep model is set to a 227 x 227-pixel resolution, and in
this way, we can enlarge the number of the training data by
different cropped samples to train our deep biomedical image
classifier. In the future, we may also consider other data
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Fig. 2 The deep architecture proposed for fused biomedical image classification. It shows the whole architecture for biomedical image classification,
where we can clearly see the feature-fusing process going from the shallow layers and the deep layers

augmentation methods; however, the simple data augmenta-
tion methods adopted in our work produces satisfactory
results.

3 Results

This section first presents six compared methods, including
traditional classification algorithms with perfect hand-crafted
features and machine-learning classifiers, and deep classifica-
tion models for biomedical images. In addition, several public
biomedical image datasets were used for training and testing
our fused deep convolutional neural network and comparing it
with other approaches. Most importantly, we introduce our
detailed implementation with model parameters, and then
compare our fused convolutional neural network with other
state-of-the-art methods for biomedical image classification.
The evaluation criterion is chosen as the accuracy rate for
classifying testing images. In addition, we also use t-SNE
visualization analysis to show the classification performance
by mapping the relationship from the high-dimensional space
into the two-dimensional space.

3.1 Traditional methods, deep methods and several
public datasets

The key points of traditional methods for image classification
is the design of a good feature descriptor and training a robust
classifier. The state-of-the-art features widely used in biomed-
ical image classification [2—4] include colour, LBP and HOG,
which have an excellent discriminative power to represent
different images and are the basis of training classifiers. In this
paper, we choose three kinds of traditional algorithms to eval-
uate the classification performance for biomedical images.
The first one uses the colour histogram to extract the biomed-
ical image features and then trains a multiclass support vector
machine with the same training data. The second method uses
a local binary pattern descriptor, which is a very popular
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texture feature in biomedical image analysis [21, 22] and then
combines it with a k-nearest neighbour classifier trained with
the same training data to label each testing image. The last
traditional model exploits the best hand-designed feature, his-
tograms of oriented gradients, into the biomedical image clas-
sification task and then trains multiple SVM classifiers with
one-versus-one strategy.

The deep methods used in the computer vision area have
achieved superior performance to address numerous visual
problems, including image classification [14—16]. The advan-
tage of deep models is that multiple hidden layers from deep
neural networks can represent many different levels of fea-
tures, such as the visual cortex of a human being. Therefore,
the deep features from different layers contain richer and more
compact features to recognize and distinguish an image than a
single hand-designed feature. Based on successful applica-
tions in image classification, several newest studies have
exploited deep learning in biomedical image classification
tasks. To compare them with our proposed method, we coded
their algorithms following the designed models in detail from
their papers. DeepModel A [6] and DeepModel B [7] are good
attempts to use deep learning methods to address the biomed-
ical image classification problem. As mentioned in the intro-
duction part and shown in Fig. 3, those deep models only
design their deep architectures with different combinations
among convolutional layers, pooling layers and fully connect-
ed layers. In effect, there is no major difference in essence
between these models and other popular and mature CNN
models, such as AlexNet and VGG.

To evaluate the performance of our proposed method, we
have tested all the biomedical image classification methods
mentioned above on three publicly available black-and-
white biomedical datasets, that is, NEMA-CT, TCIA-CT and
OASIS-MRI. Moreover, to avoid the randomness of the re-
sults, we have performed a 5-fold cross-validation on these
three biomedical datasets. By grouping all the images from
each dataset into five groups, we chose any four groups as the
training set to implement five fully independent experiments
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Fig. 3 The deep architectures
compared in this paper for
biomedical image classification.
a shows the deep model named
DeepModel A from [6], which

only includes one convolutional Dee;:/)lo el
layer and three fully connected
layers. b shows the deep CNN A
model for biomedical image
classification from [7] that
consists of three convolutional
layers and two fully connected
layers. ¢ shows the popular deep
CNN architecture used in many (b)
computer vision tasks, where we DeepModel
also select this model [14] as a B
non-fused deep model to compare
with our proposed fused deep
CNN model
(c)
Non-fused
Deep Model

and use the last group to test the classifier. For the grouping
method, we adopt that sequences of five images are placed
into a group, so there are a total of five groups.

The NEMA-CT dataset is from the National Electrical
Manufacturers Association [23], which involves different
body parts with various pictures that are in the DICOM for-
mat. This widely used dataset includes 499 images with a
512 x 512-pixel resolution. Based on the visual cues of these
images, these biomedical images are divided into eight cate-
gories (104, 46, 29, 71, 108, 39, 33 and 69 images of each
class). For each cross-validation, as an example, we could
obtain 696 images as our training set using the simple data
augmentation technology mentioned before and 87 images as
our testing set to train and test each biomedical image
classifier.

The TCIA-CT dataset is built by the National Cancer
Institute and Washington University to support the National
Institute of Health’s call and secondary research [24].
Following the same settings with other papers [21], 604 colon
images in the dataset are also divided into 8 categories with
44,43, 54, 88, 116, 96, 76 and 87 images respectively. Finally,
we construct the training dataset of 744 images and the testing
dataset of 117 images as one of the 5-fold cross-validations.

The OASIS-MRI dataset supplied by the Open Access
Series of Imaging Studies (OASIS) contains magnetic reso-
nance imaging (MRI) biomedical images that can be used
only for study and research [25]. This dataset contains 416
images from subjects 18 to 96 years old; however, it is very
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difficult to distinguish the images even if we observe them
very carefully. Finally, as was done in previous works, based
on the shape of the ventricular of images, they are divided into
4 classes, which have 141, 123, 86 and 66 images respective-
ly. For this dataset, we select 452 images as the training dataset
and 82 images as the testing dataset with the simple data
augmentation methods, as an example, to perform a cross-
validation.

Furthermore, in order to test the robustness of our fused
convolutional neural network, the ImageCLEFmed dataset is
used to evaluate the performance on modality classification of
medical images as a subtask of ImageCLEF2015. This
subfigure classification task was proposed first in
ImageCLEF2015 [26, 27]. This colourful classification
dataset includes not only regular diagnostic images (e.g. mag-
netic resonance imaging, ultrasound, computerized tomogra-
phy, X-ray) but also generic biomedical illustration images
(e.g. tables and forms, screenshots, flowcharts, gene se-
quences, statistical figures-graphs-charts, hand-drawn
sketches), which significantly increases the difficulty of
biomedical/medical image classification. Therefore, our aim
is to classify each image from the testing set into the 30 mo-
dalities. To fairly compare the classification accuracy of our
proposed algorithm with the competition results from
ImageCLEF2015, we only use the 4532-training set to train
each classifier and then evaluate it on the 2244 testing set of
ImageCLEFmed dataset. For the number of each class from
the training set, please refer to Table 1.
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Table 1  The number of images in the training set of each class in the
ImageCLEFmed dataset. The name of each class is the abbreviation of
each subfigure modality. For the full name of each class, please refer to
the overview paper of [26]

Class Number Class Number Class Number
D3DR 89 DRUS 26 GFLO 14
DMEL 148 DRXR 31 GGEL 228
DMFL 594 DSEC 10 GGEN 6
DMLI 430 DSEE 4 GHDR 84
DMTR 223 DSEM 4 GMAT 7
DRAN 10 DVDM 17 GNCP 54
DRCO 6 DVEN 12 GPLI 1
DRCT 55 DVOR 38 GSCR 20
DRMR 96 GCHE 53 GSYS 25
DRPE 10 GFIG 2190 GTAB 47

3.2 Model parameters

We train the traditional methods, DeepModel A [6] and
DeepModel B [7], following the parameter settings from the
relevant papers but by using the same training data and testing
data we used for our proposed algorithm. However, in order to
fairly compare our fused deep model and non-fused deep
model in the next section, we have used the same model pa-
rameters. For each dataset, the training mini-batch size is the
same, with 32 images each time. The learning rate is le-6 at
the beginning and it is then divided by 10 with a step learning
rate policy. In addition, the momentum and weight decay are
setto 0.9 and 0.0002, respectively. Moreover, in order to focus
on the convergent behaviour of each deep model, we control
the iteration times that makes each deep model attain its best
status on each dataset. Empirically, the pooling layers are used
with max pooling in the main trunk and average pooling in the
two branches, and the activation function in our proposed
deep model is the rectified linear unit (ReLU), which is a kind
of a non-saturating non-linear function that can prevent the
output gradient from dropping close to zero. In the next set
of experiments, we have fixed the values of all the parameters
discussed above in each experiment and investigated the
benefits of our fused deep model for biomedical image clas-
sification. Note that all the experiments were performed on a
computer with Intel(R) Core(TM) i7-4710HQ CPU @ 2.50
GHz, 16.0 GB RAM and 64-bit Windows 8.1 Operating
System.

3.3 Classification results

To comprehensively evaluate our fused convolutional neural
network for biomedical image classification and to compare it
with other popular classification methods, we have performed
a sufficient number of experiments on three public biomedical
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image datasets with 5-fold cross-validation. The classification
accuracy rates for all the methods are presented in Table 2. As
can be seen from the results, our proposed novel deep model
has achieved the best classification performance on each
dataset. Our work confirms that deep models have an advan-
tage in classifying biomedical images over the traditional
methods, combining feature extractors and typical classifiers,
respectively. In fact, the traditional method based on the HOG
feature and the SVM classifier also showed its powerful abil-
ity among all the traditional models. In particular, the tradi-
tional methods usually lack stable performance on different
datasets. When the biomedical images are hard to distinguish,
such as those in the TCIA-CT and OASIS-MRI datasets, the
first two methods cannot give a satisfying answer and produce
a large fluctuation in classification accuracy rates. In addition,
only our proposed method has achieved 100% classification
results on the TCIA-CT dataset. Moreover, our novel deep
architecture has yielded better results than the two other com-
pared deep models. In other words, a popular deep architec-
ture designed with different layers one by one is not much
useful to capture the shallow and tiny features of images from
the same category, and it is not suitable for classifying bio-
medical images, particularly those disease images with slight
differences but belonging to the same disease. For example,
the colon images in Fig. 8 are difficult to classify because the
differences from the CT images are very small. In a nutshell,
our proposed fused convolutional neural network is more ac-
curate and stable than other traditional methods and popular
deep models for biomedical image classification.

In addition, we also compared our proposed algorithm with
other classifiers from the ImageCLEFmed dataset from
ImageCLEF2015 regarding the modality classification of
medical images. As seen in Table 1, it is very hard to train a
good classifier with the training set, due to the serious imbal-
ance in the number of samples in each training class. When we
look into the dataset closely, we observe that the smallest class
(GPLI) has one training sample and the largest one (GFIG)
2190. As a result, based on the competition of
ImageCLEF2015, we can obtain the subfigure classification
results [26, 28-30]. Furthermore, we have also evaluated the
performance of our fused CNN model and other traditional
and deep classifiers, and the results can be seen in Table 3. As
we can conclude, the classification accuracy (70.24%) of our
model has outperformed the best competition result (67.60%)
from ImageCLEF2015 and was also better than the other com-
pared classifiers. Thus, for the modality classification task of
medical images, our algorithm also has a good classification
accuracy and strong competitiveness.

3.4 Visualization analysis

To evaluate our proposed algorithm for biomedical image
classification tasks, we have further studied classification
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Table 2 Accuracy (%)
comparison of classifiers across
three public biomedical image

Traditional and deep methods

Biomedical image datasets

databases, where the accuracy NEMA-CT TCIA-CT OASIS-MRI

rate is denoted with the mean

value and standard deviation ColorwithSVM 50.09 + 38.58 4722 £942 76.22 + 4.15

(mean % SD) on a 5-fold cross- LBPwithKNN 99.61 +0.54 71.38 + 4.09 4272 + 6.01

validation HOGwithSVM 100.00 + 0 98.68 + 0.72 81.01 + 6.65
DeepModel A 100.00 £ 0 98.33 £ 0.08 87.72 £ 0.10
DeepModel B 100.00 £ 0 99.47 + 0.03 89.23 + 0.08
The proposed model 100.00 + 0 100.00 + 0 93.44 + 0.04

performance from the perspective of image visualization.
Here, we have used a t-distributed stochastic neighbour em-
bedding (t-SNE) map to show the classification ability of our
fused convolutional neural network. The t-SNE algorithm
[31] is very suitable for the visualization of a high-
dimensional feature space by the dimensionality reduction
method, which exploits the Barnes-Hut approximation strate-
gy [32] to map a high-dimensional space into a two-
dimensional space. Furthermore, the t-SNE method can trans-
fer the approximate relation between images from the high-
dimensional feature space into the two-dimensional plane. In
this way, it becomes easy to observe whether similar images
are distributed into the same area or not, which in turn reveals
whether classification of biomedical images by our method is
good or not. Therefore, we have first introduced the t-SNE
evaluation algorithm into the biomedical image classification
task for visual analysis.

Figure 4 shows the performance of biomedical image clas-
sification based on our proposed deep fused convolutional
neural network. In particular, the t-SNE visualization map is
a kind of image exploration using the manifold learning idea,
which transfers the spatial relationship from a high-
dimensional feature representation into a low-dimensional
feature representation. However, we observe that the resulting
effect is very convincing and proves the classification ability
of our model of biomedical images. For the NEMA-CT and
OASIS-MRI datasets, we have observed that the clustered

images of each category are very clear as a whole, which
shows that our fused deep model is effective and accurate in
distinguishing different kinds of biomedical images. For the
TCIA-CT database, the resulting shape was similar to a man-
ifold structure, which also accurately classifies different im-
ages because this overall dataset was generated in a sequential
manner based on time. In other words, several images are
divided into two neighbouring categories. Moreover, the local
enlargement on a part of the whole map shown in Fig. 4, with
a five-pointed star, also has confirmed that the images that are
similar on the high-dimensional feature space are also close on
the two-dimensional plane. The detailed visualization maps
are available in our supplementary documents.

4 Discussion

To further evaluate the performance of our proposed fused
convolutional neural networks for biomedical image classifi-
cation, we have analysed the differences between our fused
deep model and non-fused deep model on all the biomedical
image datasets in detail. In addition, in order to identify and
elucidate the reason why the classification accuracy of our
proposed algorithm was not 100% on the OASIS-MRI
dataset, the misclassification cases are shown in this section
with a detailed description. Again, the OASIS-MRI dataset is
the most difficult dataset for classification as we have

Table 3 Subfigure classification

accuracy (%) on the ImageCLEF2015
ImageCLEFmed dataset with
different classifiers for modality Methods Accuracy (%) Methods Accuracy (%)
classification of medical images
ColorwithSVM 5.08 BCSGwithMixed [28] 67.60
LBPwithKNN 44.70 BCSGwithTextual [28] 60.91
HOGwithSVM 53.97
DeepModel A [6] 50.47 BCSGwithVisual [28] 60.91
CMTECH [29] 52.98
DeepModel B [7] 49.35
BMET [30] 45.63
The proposed model 70.24
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Fig. 4 Visualization analysis of
our proposed method on three
public biomedical image datasets.

Left (a—c): the classification (a)
results of the testing data. Middle NEMA
(a—c): the space relationship of all -CT

data as a whole. Righ (a—¢): a
detailed local enlargement of the
corresponding part annotated with
a five-point star in the middle
image

(b)
TCIA

(c)
OASIS
-MRI

explained in Section 3. Moreover, we have also analysed the
tiny differences between similar images belonging to different
categories.

4.1 Fused deep model vs non-fused deep model

In this experiment, we have attempted a detailed comparison
for the differences between our proposed fused deep method
and non-fused deep method. In Section 2, we have introduced
our proposed convolutional neural network by fusing the shal-
low features from the lower layers and the deep features from
the higher layers. To further demonstrate the superiority of our
fused biomedical classification model, we have performed an
experiment to compare the fused deep model and the non-
fused deep model on all the biomedical image datasets. For
the non-fused deep model, we have only needed to reduce and
move the fused layers added in our deep framework, which
are the poolll layer, pool21 layer and concat layer. Then, the
non-fused deep model can be tuned into one stream deep
convolutional neural network. Other parameter settings and
experimental data are the same between them and then the
non-fused deep model was trained iteratively. Finally, we have
obtained the classification accuracy curves with the increase
of iteration counts, as shown in Fig. 5.

For the NEMA-CT dataset, we have evaluated the classifi-
cation performance between the fused deep model and the
non-fused deep model to show that the convergence speed
of the former is much quicker than the latter. The fused deep
model only needed 200 iterations to achieve a 100% classifi-
cation accuracy, whereas the non-fused deep model needed up
to 400 iterations to achieve a 100% classification accuracy. In
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addition, we also applied these two deep models to the TCIA-
CT dataset with successively produced biomedical images to
evaluate their performance. The experimental results validated
that our fused deep model can achieve a quick convergence
status within 100 iterations, and it only needs 240 iterations to
achieve a 100% classification accuracy, in contrast with the
non-fused deep model that required 950 iterations. For the
same reason, these two deep models are also evaluated with
the OASIS-MRI dataset for biomedical image classification.
We emphasize that the accuracy of 86.59% is first obtained at
iteration 900 from our fused deep model; however, the non-
fused deep model only achieves that accuracy when it reaches
iteration 1800. Finally, our fused deep model converges to
92.68% for classification accuracy on the OASIS-MRI
dataset, but the 86.59% accuracy is the highest classification
result for the non-fused deep model.

Several interesting observations were made from the above
experimental results: fusing the shallow features from lower
layers yielded better accuracy than only using the higher
layers; the convergence speed combining the fused deep mod-
el was much quicker than that of the non-fused one. Therefore,
our fused deep algorithm for biomedical image classification
was helpful in improving the classification accuracy and in
accelerating the convergence speed compared to the normal
and non-fused deep convolutional neural networks.

4.2 Investigation of misclassification cases
To provide further analysis of the OASIS-MRI dataset, we

recorded all the prediction results for each tested brain image
and included the probability of each class that our algorithm
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Fig. 5 Performance comparison of our proposed fused deep model and non-fused deep model for biomedical image classification, for the NEMA-CT

dataset, the TCIA-CT dataset and the OASIS-MRI dataset

predicted, and then we counted the confusion matrices on all
the tested images from the OASIS-MRI dataset based on our
proposed biomedical image classification method. Figure 6
shows the confusion matrix for all four of the considered clas-
ses. For instance, there were four images from class C2 that
were misclassified as class C1 in this experiment. The relative
confusion and high misclassification cases between classes C1
and C2 could be justified by the fact that the similarity be-
tween them is hard to discover. Figure 7 presents the difficult
cases of these brain images that were misclassified, together
with the corresponding prediction output of our fused deep
model.

Referring to the correct sample images from Fig. 7a, the
misclassified image C01140 could also be recognized as class

Predicted Label
Yy O

NI

Categories

Fig. 6 The confusion matrices based on the prediction results of all the
testing images from the OASIS-MRI dataset. The entry in the X-th row
and Y-th column corresponds to the number of images from class CX that
were classified as class CY

C2 because it is very similar to C1, and it is really difficult to
classify the images from C1 and C2. Meanwhile, images
C02035, C02045, C02060 and C02070 also look as though
they belong to class C1. In the same way, we can also recog-
nize image C03020 as class C4 based on the large shape of the
ventricle in the image. As we can conclude, some especially
similar biomedical images are very hard for a deep classifier to
distinguish, whereas it is a normal phenomenon for any clas-
sifier without enough training in a biomedical image set.
Obviously, this point highlights the importance of collecting
large volumes of biomedical images annotated by physicians
and experts.

4.3 Tiny differences between the classes

In this subsection, the aim was to demonstrate the powerful
ability of our fused deep CNN algorithm to capture the tiny
differences between similar images from different classes in
the TCIA-CT dataset. As part of the motivation of this work,
we focused on how to design a biomedical image classifier to
capture much smaller, but key, differences between different
categories. In other words, the general deep architecture de-
signed with different layers one by one is not very useful to
capture the shallow and tiny features of images from the same
category, and it is not suitable for classifying biomedical im-
ages, such as those disease images with slight differences but
belonging to the same disease. For example, compared with
DeepModel B [7], which is a typical deep model used in
various tasks, our fused deep CNN model was more robust
in the detection of the key differences between similar images
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Correct Sample Images

Cl..CZ

C01140

C02035

Misclassified Image Labels

C02045

C02060

02070

C03020

99.95% 64.70% 99.92% 99.93% <0.01%
0.04% 35.29% 0.07% 0.06% <0.01%
<0.01% <0.01% <0.01% <0.01% <0.01%
<0.01% <0.01% <0.01% <0.01% 99.99%

OASIS-MRI
Dataset C1 2.59%
C2  97.40%
c3 . . c4 C3  <0.01%
C4 <0.01%
(a)

(b)

Fig. 7 Correctly classified images and misclassified images of the OASIS-MRI dataset. a The correct sample images from each category. b All the
misclassified images with their possibility outputs of our proposed fused CNN below each image

from different categories in the TCIA-CT dataset, as shown in
Fig. 8.

As we can see from the performance results, there were
several significant observations to be made: for these two
testing images, DeepModel B could not correctly discriminate
their class; moreover, our fused deep model, by combining the
low-level features and the high-level features, exhibited better
performance and correct classification results. Furthermore, as
it is analysed from the several training images, the tiny differ-
ences between classes C4 and C5 are the green and red arrow
positions with similar backgrounds between them. Therefore,
we also observed from all the training images from these two

Fig. 8 The performance of
capturing tiny differences from
two classes of images in the
TCIA-CT dataset using
DeepModel B and our proposed
deep CNN model. Here, we list
the misclassified images using
DeepModel B to classify colon
images. Meanwhile, we also give
the prediction and classification

results for our proposed method C05091

C05060

Prediction of Image CO5060
c5 Cé
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Model B
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categories that testing image C04005 should belong to class
C4 and image C05060 should belong to class C5. Due to the
tiny, but critical, differences between the biomedical images, a
generally designed deep CNN model, such as DeepModel B,
could not detect or classify them using only high-level fea-
tures, but our deep CNN model could accomplish this by
fusing the low-level features and the high-level features from
the shallow layers and the deep layers, respectively. Therefore,
our fused algorithm was better than other general deep models
in biomedical image classification with a higher accuracy be-
cause the fusion strategy helps us to effectively take the shal-
low features and the deep features into account together.
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5 Conclusion

In this paper, we have proposed a novel convolutional neural
network architecture for biomedical image classification,
which fuses shallow feature layers and deep feature layers
together. In this way, our trained fused deep model not only
accurately distinguishes images from different categories but
also captures more detailed but tiny differences between the
images from the same category, which is essential for identi-
fying biomedical image characteristics. In contrast, the
existing methods and general non-biomedical image deep
models usually ignore the local features when only using
higher semantic layers to classify different objects.
Moreover, we have proposed the use of a domain transferred
learning strategy to alleviate the lack of supervised biomedical
images. Finally, through sufficient experiments and visualiza-
tion analysis over three public datasets and through extensive
comparisons with the traditional models and the two deep
models, our fused convolutional neural network was shown
to have superior performance in biomedical image classifica-
tion. In addition, our proposed model has also shown a stron-
ger competitiveness than other classifiers in modality classifi-
cation of medical images by evaluating them using the
ImageCLEFmed dataset.

In our future work, we will further employ our novel neural
network architecture to handle other biomedical image classi-
fication problems. We also plan to extend our innovative ap-
proach by fusing shallow feature layers and deep feature
layers in other deep models to tackle many more image pro-
cessing problems in other domains of interest.
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