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Abstract
For describing the state of the wrist, either the force or movement of wrist can be measured as the training target in the
simultaneous electromyography control. However, the relationship between the force and movement is so complex that only
the force or movement is not precise enough to describe its actual situations. In this paper, we propose a novel platform that can
acquire three degrees of freedom (DOF) wrist motion/force synchronously with multi-channel electromyography signals in a
hemi-constraint way. The self-made wrist force-movement mapping device establishes a stable relationship between the wrist
movement and force. Meanwhile, the elicited wrist movement can be directly fed back to the subjects via laser cursor. The
information of the cursor can directly reflect the 3-DOF movement of the wrist without any decoupling algorithms. Through this
platform, the support vector regressionmodel learned from the training data can well predict the arbitrary combinations of 3-DOF
wrist movements. The cross-validation result indicates that the regression accuracy of free 3-DOFmovements can reach a similar
performance to that of 2-DOF regular movements (in terms of R2, regular movement vs. free movement, p > 0.1).

Keywords Wrist motion . Simultaneous control . Surface electromyography . Regression

1 Introduction

For regulating hand movements, our central nervous system
sends action potentials (APs) to the targeted motor units
(MUs) that further contract the muscles on the forearm accord-
ingly. At the same time, the myoelectric signal (electromyog-
raphy, EMG) can be measured by detecting the electric poten-
tials on the skin or inside the muscle using surface (sEMG) or
intramuscular electrodes (iEMG), respectively. As an electric
manifestation of the neuromuscular activities, the EMG sig-
nals can well reflect the level of muscle contractions, as well

as the pattern of movement intentions. It has been widely used
in muscle neuropathy testing, motion analysis, rehabilitation,
and prosthetic control.

At present, by processing the EMG signals collected from
the forearm muscles, the patterns of several hand and wrist
movements can be well recognized in the literature. On the
other hand, commercial products like Myo Armband
(Thalmic Labs, USA), multi-functional EMG controller
(Coapt, LLC, Chicago, USA) [1], etc., also start to be avail-
able. Through a series of steps including signal segmentation,
feature extraction and classification, the motion-related infor-
mation can be detected from EMG signals; thus, a discrimi-
native model for classifying a variety of hand gestures can be
well established [2–6]. However, despite the diversity of var-
ious pattern recognition approaches, their performance may
have no significant difference in terms of its real practical
usability.

After reviewing many EMG control studies of these years,
C. Castellini et al. pointed out that, to improve the prosthetic
hand’s functionality, the simultaneous EMG control of multi-
ple degrees of freedom (DOFs) were urgently needed [7].
Relative investigation on this direction just starts recently
and has very limited achievements. One big different is that,
for hand gesture recognition, the motion classes used for
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training can be directly observed and recorded; while for the
simultaneous EMG control, the high-precision multi-DOF
movement labels are very difficult to measure by hand. At
present, the methods for acquiring the multi-DOFs wrist ac-
tivities (either motion or force) can be divided to four types.

1. Vision prompt-based A moving cursor was displayed
on the screen to prompt the degree of force, and the
subject was instructed to elicit corresponding forces of
multiple DOFs [8–10] according to the movements of
the cursor. This approach is easy to achieve but its per-
formance was largely dependent on the subject’s control
experience. The force elicited was so subjective that it
might be both deviated and delayed from the prompt
cursor. Some influencing factors are highly related to
the subjects’ states (reaction speed, fatigue, etc.), which
are very difficult to detect, resulting in the low accuracy
and repeatability. Besides, when the subjects attempted
to elicit multi-DOFs forces, it was very difficult for
them to plan these forces synchronously. Rather, the
subjects would like to perform only simple combina-
tions of independent DOFs. Another shortage is that,
the wrist motion detected by this method was not rich
enough to cover its whole workspace.

2. Position-based This method placed position trackers on
the forearm of the subject, and calculated the wrist motion
according to the relative position between the trackers and
the signal source [11]. Although the rotation angles of the
wrist could be exactly measured, they can be only used to
reflect the spatial movement, but not the elicited force of
the wrist. The relationship between the movement and the
force is ambiguous that requires lots of manual operation
to establish and maintain.

3. Motion capture-based The motion capture device
(Vicon, PTI, etc.) was employed to detect the movements
of the joints on the forearm (wrist, hand, and fingers) [12,
13]. Similar to the position-based method, this method
can also measure the kinematic information of the fore-
arm simultaneously. However, the forces elicited by the
joints could not be explicitly given according to the kine-
matic information. The relationship between the force and
movement of the joints still needed the manual operation
to establish and maintain.

4. Force-based A six-dimentional force transducer was uti-
lized for detecting the multi-DOFs force elicited by the
wrist indirectly (the force/torque output by the hand was
recorded and then transformed into the wrist’s coordinate)
[14–16]. The repeatability of this methodwas high, and its
accuracy was largely depended on the performance of the
transducer. However, the subjects could only know the
force level through their own perception, or by observing
the results displayed on the screen. In addition, the testing
hands were always fixed throughout the experiments,

having very limited movement range that differentiates
from its nature condition, resulting in a gap between the
research and real practice of this method.

All of the methods above tried to utilize existing sensors for
acquiring multi-DOFs wrist motion/force. In general, either
the forces or the motions of the wrist are measured as the
training target in the simultaneous EMG control. Comparing
these two means, although multi-DOFs movements are more
visible and convenient for the subjects to plan, it is the force
manifestation that can better represent the degree of the con-
trol wills sent from our central nervous system (CNS) to a
specific group of muscles. However, none of them can acquire
the force and motion of a joint synchronously, or establish a
stable relationship between them. In both (2) position-based
and (3) motion capture-basedmethods, there could be no force
getting involved in the motion planning phase that makes the
joint in test totally unconstrained. On the contrary, in (1) vi-
sion prompt-based and (4) force-based method methods, there
could be no movement during force eliciting that makes the
joint in test fully constrained. Both fully unconstrained and
constrained conditions neglect the complex relationship be-
tween the joint’s movements and force output, which are dif-
ferent from their application scenario. Meanwhile, these
methods were not intuitive enough and it was difficult for
subjects to perform complex motions of multiple DOFs. The
most complex motions the subjects performed in these
methods were some simple combinations of two DOFs.
Also, these measurements were not precise enough to describe
the actual situations. All these factors led to limit achieve-
ments in the field of simultaneous EMG control, since reliable
targets for effective regression cannot be obtained.

In this paper, we propose a novel platform that can acquire
3-DOF wrist motion/force in a hemi-constraint way, as well as,
collect multi-channel EMG signals at the same time. Within
the platform, we design an elastic structure with a group of
springs for transforming the 3-DOF wrist force into a measur-
able movement. The collected wrist movement (via machine
vision) can keep a stable relationship with the force informa-
tion, and thus can be utilized directly as the learning target for
the simultaneous EMG control. Meanwhile, the elicited wrist
force (include both the orientation and scale) can be directly
fed back to the subjects via graphic demonstration. Subjects are
able to observe and control their wrist’s movement/force in
real-time, and do not need to pay too much attention to coor-
dinate different wrist DOFs. The EMG control experiment
conducted with this device is intuitive and repeatable. The
motions that the subjects performed during the experiments
are more similar to their nature counterpart. The wrist move-
ments and multi-channel EMG signals measured on this plat-
form are synchronous, thus the EMG samples with reliable,
supervised labels can be acquired in the study of simultaneous
EMG control for finding the inner relationship between the
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EMG signals and 3D wrist force. Besides prostheses control,
this platform could also be applied to human robot interaction
and virtual reality technology.

2 Materials and methods

2.1 Materials

2.1.1 Platform design

The platform proposed in this paper should be designed ac-
cording to three main principles: (1) the platform should not
restrict the subject’s wrist to allow free movements, (2) the
platform should be able to establish a stable relationship be-
tween the 3-DOFswrist force andmotion, and (3) the platform
should be able to give an intuitive feedback to the subject for
improving the simultaneous control performance.

The diagrammatic sketch of the whole platform is shown in
Fig. 1. The platform mainly consists of a self-made wrist
force-movement mapping device (WFMMD), an EMG

acquisition device (Trigno Wireless, Delsys, USA), a camera
(avA1000-12kc, Basler, Germany), a computer (Dual Core
3.4GHz, 8GB RAM), a projector (PT-X600, Panasonic,
Japan), and a display screen. The subject’s hand and forearm
are respectively fixed on two separate parts (frames) of the
WFMMD, and a total of eight EMG electrodes are placed
on the forearm in a circumambient configuration. The
WFMMD provides suitable resistance forces to any wrist
movements in a hemi-constraint manner; by doing so, the
multi-DOF wrist force can be quantified by measuring the
wrist’s movements. The laser installed on the WFMMD emits
a cross cursor onto the screen to display the degree of the wrist
movement as an intuitive feedback to the user. Meanwhile, the
camera captures the pictures of the cursor on the screen and
streams them into the computer, within which image process-
ing algorithms are implemented to extract the exact position of
the cursor. This detected position/orientation of the cursor is
also projected on the screen using a ring-shape indicator,
which is easy to follow for the subject. The EMG signals are
collected and synchronized with the wrist movements (within
the software). The projector also displays the target (final
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Camera

Projector

Screen

Computer
Detect the position of laser

EMG signal                       Picture

Show the 
result

Force-movement mapping device

Collect 
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Sample and save EMG signals and pictures 
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Fig. 1 The diagrammatic sketch of the platform. The movement of the
wrist will influence the position/orientation of laser cursor on the screen.
The computer calculates the position and orientation from picture, and

then saves this information with EMG signals simultaneously. The
calculated result could be shown on the screen through the projector
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position/orientation) and expected trajectory of the cursor,
which can be used to validate the effectiveness of various
simultaneous control methods.

2.1.2 The wrist force-movement mapping device (WFMMD)

When human wrist moves, the rotation axes of its three
DOFs (pronation/supination, flexion/extension, and ulnar/
radial deviation) have a deviation of 6.8 mm [17]. On de-
signing the WFMMD, we considered these rotation axes to
be coincided, and set the coincided point as the center of the
device. The schematic diagram and pictures of the
WFMMD are shown in Fig. 2. The device is composed of
two cuboid frames as in its inner side (for fixing the hand)
and outer side (for fixing the forearm), respectively. The
connecting points fixed on these two frames constitute two
cubes, and the center points of these two cubes are coincid-
ed, as shown in Fig. 2a). Eight springs were installed for
connecting the vertices of the inner cube and the outer cube.
For lightening the operation load, the inner frame was
welded by square aluminum alloy. In the inner frame, the
handle and fixtures were installed for fixing the hand. The
placement of the handle on the inner frame is adjustable,
thus the rotation point of the wrist can coincide to the center
of the two cubes. The fixture installed on the outer frame is
also an adjustable ring-shape structure composed of pieces
of bandages. It can help fixing the forearm on the outer
frame and keeping it horizontal during the experiment.
The outer frame is fixed on the table, while the inner frame
is a hemi-constraint part (through springs) that can move
along with the hand caused by the 3-DOF wrist movements.

During the experiments, the forearm and hand of the sub-
ject were fixed at the two frames of the WFMMD, respec-
tively. All subjects moved their wrists freely, which in turn
drove the inner frame to rotate. To improve the comfort,
only one fixture was applied to fix the forearm, and thus
the forearm was not completely fixed and might move in a
small range. This movement would lead to the translation of
the inner frame, and it was very difficult to avoid when the
subjects were instructed to move their wrists only. The
springs were arranged according to the symmetrical struc-
ture of the cubes. When the inner frame was driven to trans-
late (or rotation) alongside a single wrist DOF, outside the
moving direction the resultant force (or moment) produced
by the springs was zero. For example, when the inner frame
rotates along the −Z-axis, all the springs would extend the
same length and the resultant moment is on the exactly op-
posite direction of the rotation (+Z-axis). On the other hand,
when the inner frame translates along −Y-axis, the right four
springs will be shortened and the left four springs will be
extended, as shown in Fig. 3b). The resultant force along the
+Y-axis is a compound effect of these changes. The relation-
ship between the 1-DOF translation (or rotation) and the
resultant force (or moment) is shown in Fig. 4. The size of
the outer cube and inner cube are 310 and 155 mm, respec-
tively, and the stiffness of springs is 0.2 N/mm. The 1-DOF
rotational movement of the inner frame (Δϕ, Fig. 4a) would
reach 15~20°; while the translational movement of the inner
frame (Δy, Fig. 4b) seldom exceeded 40 mm. When the
subject produced requested wrist movements, the force
arms were highly related to their hand’s size and did not
exceed 80 mm at present. According to Fig. 4, the resistance
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a) Schematic diagram of the 

device. The frames are cuboid and 

connected by springs. 

b) The forearm of the subject was fixed with the outer frame by the 

fixture, and the hand kept holding the handle in the inner frame. 

Fig. 2 The wrist force-movement mapping device
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force to rotational movements is about an order of magni-
tude larger than that to translation movements.

For acquiring wrist motion, our method does not use any
inertial measurement unit (IMU) sensors on the inner frame.
Our motivation is that, from the WFMMD itself, an intuitive
feedback could be given to its user during the operation. The
subject should be able to directly observe the resultant mo-
tions and thus instantly adjust their wrist. On the other hand,
this feedback information could be also measured precisely by
the computer at the same time. As shown in Fig. 1, a laser
transmitter was installed on the inner frame of the WFMMD.
This laser transmitter can display a cursor in the shape of cross
on the screen. Through acquiring and processing the image of
the cursor on the screen, we can get the cursor’s exact position
and orientation. This information can reflect the posture of the
inner frame (or, the hand). The laser transmitter contains two
pieces of lens for scattering the point laser to two line lasers
that constitutes the cross. The scattering angle δ is influenced
by the parameter of lens, and the angle we selected is 30°. The
distance from the laser to the screen (S) determines the size of

the cursor. During our experiment, the S was set to 4.5 m, and
the length of the line of cross cursor reached 2 m.

Because the cursor was projected onto the screen, the trans-
lational motion of the inner frame would be displayed with the
same size. However, its rotational movement would be en-
larged along with the distance S. As shown in Fig. 5a), when
the inner frame rotatesα (or θ) along x (or y-axis), the center of
the cross cursor would produce the movement of cx (or cy),
which keeps a linear relationship with the distance S, as

cx ¼ Stanα; ð1Þ
cy ¼ Stanθ: ð2Þ

During the experiment, both cx and cy can reach about 1 m.
But the translation of the inner frame could only displace the
cursor a maximum 40 mm on the screen.

When the inner frame rotates ϕ degree along the Z-axis, as
shown in Fig. 5b), the projected cross cursor would also rotate
the same degree. The length of the line of the cross, u, and the

a) The inner frame rotates along Z-axis. b) The inner frame translates along Y-axis  

Fig. 3 The diversification of
springs while controlling the
inner frame. When the inner
frame rotates, all the springs will
be extended. But when the inner
frame translates, four springs will
be shortened and the other four
springs will be extended

a) Relationship between the rotation and the

resultant moment   

b) Relationship between the translarion and the

 resultant force  

Fig. 4 The calculated resultant moment and force while inner frame rotating or moving
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movement of the end point of the line (along Y-axis), cz, keeps
a linear relationship with the distance S, as

u ¼ Stan δ=2ð Þ ð3Þ
cz ¼ usinϕ ¼ Stan δ=2ð Þsinϕ ð4Þ
where, the δ denotes the scattering angle (δ = 30°). Thus, the cz
would also increase along with the distance S. Giving different
S, an identical wrist motion would result in different cursor
movements, in terms of cx, cy, and cz. The resolution ratio of
the motion could be improved by giving a reasonably large
distance S.

As mentioned before, to operate theWFMMD, the subjects
need to elicit an appropriate force to overcome the resistance
force of the springs, which produces a hemi-constraint condi-
tion to the subjects’ wrist. Even the subjects’ forearms were
loosely fixed by the fixture and required to keep static during
the operation, the inner frame would inevitably translate be-
cause of human body’s synergistic movement (it very still
difficult for the subject to rotate his wrist purely). For the
translation part, it was not the information we need. In this
paper, the translation of the inner frame can be neglected be-
cause (1) the movement of the cross cursor on the screen
caused by translation was trivial enough to be considered as
deviation (40 vs. 1000mm, 4%) and (2) the force requested by
translation was much lighter than the one requested by wrist
rotation. By magnifying the rotation effect through linear pro-
jection, the WFMMD can well suppress the influence of the
inner frame’s translation to its rotation, which largely im-
proves the detection quality. Through the image processing,
we can obtain each motion component (supination, flexion, or

ulnar deviation) of the 3-DOF wrist movements without any
complex decoupling algorithms. This kinematic information
can be directly used to describe the multi-DOF force output by
the wrist, on account of the stable force-motion scheme pro-
vided by the WFMMD. In this paper, we do not try to detail
the relationship, especially the non-linear part, between the
wrist’s force and the cursor’s motion, because an intelligent
machine with appropriate learning capability (like ANN,
CNN etc.) can well address this issue. Further experiments
were conducted to directly evaluate the relationship between
the EMG signals and the cursor’s movements, as well as to
find whether the 3-DOF wrist motion control is intuitive or
not.

2.1.3 Motion detection

For detecting the 2D position (translate along X-axis and Y-
axis) and 1D posture (rotate along Z-axis) of the cursor, image
processing methods were applied. The resolution of the cam-
era (avA1000-12kc, Basler) is 1024 × 1024 and the update
frequency can reach 120 fps. In addition, the exposure time
of the camera is adjustable and can be tuned according to the
environment. In practice, the exposure timewas set to 5 ms for
decreasing the brightness of the background, so that clear
pictures of the cursor could be obtained. The camera commu-
nicated with the frame grabber (Xcelera-CL_PX4, DALSA)
through CameraLink, and the communication frequency was
set to 65 MHz. The CameraLink could enlarge the clock fre-
quency seven times and contained four differential signals for
transmission. These all reduced the time needed for transfer-
ring the picture (14 ms/frame).
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a) While rotating the inner frame for θ along Y-axis, the 

center of the cross cursor would produce the movement 

of cy.

b) While rotating the inner frame for 

along Z-axis, the cross cursor projected 

would rotate the same degree

Fig. 5 The movement of the cross laser cursor while rotating the inner frame
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While detecting the position of the cursor, the applied
wavelength of the laser was 650 nm and the color was red.
Besides, the environmental brightness was reduced and the
exposure time of the camera was shortened. Thus, only the
red channel of the picture was able to collect light while the
other channels were nearly black, as shown in Fig. 6. After
image binarization, segmentation, and erosion, the key points
of the two lines constituting the cursor were well extracted.
The Hough transform [18] was applied to distinguish which
line these points belong to. Through the least square fitting,
the equations of these two lines can be obtained, so as the 2D
position and 1D posture of the cursor. The steps of the image
processing were detailed in Fig. 6. The resolution of the posi-
tion can reach sub-pixel and the resolution of the posture can
reach 0.02°. Our algorithm first tried to directly call the func-
tions within the OpenCV library, which needed at least 25 ms
that did not fit to the control frequency (at least 50 Hz). The
image was a high contrast picture of the cross cursor with a
black background. Thus, the steps of image binarization and
segmentation were combined within traversing the pixels of
the picture. Besides, during the step of image erosion, only the
key points of the cursor were extracted and saved in the array.
In the steps of Hough transform and least square fitting, the
coordinates of these core points could be directly acquired
from the array without searching the picture. After the optimi-
zation, the detection of the position and posture could be com-
pleted within 5 ms for one frame picture.

By using this method, the calculated cursor’s position and
posture inevitably have deviations with their real targets.
Thus, the results needed calibration to establish a reliable re-
lationship with the actual cursor. This calibration was accom-
plished after setting up the camera. At first, the window, with-
in which the predicted cursor was displayed, was fixed during

the experiment. This window needed to firstly display a chess-
board for the camera to detect. Then, the border of the chess-
board was detected and an affine transformation between the
border of the displayed chessboard and the window was
established. The predicted cursor indicating the calculated re-
sult should rapidly follow the movement of the cursor
projected by the laser after calibration.

After optimization, the predicted cursor delayed nearly
30 ms (exposure time, picture transference, and image pro-
cessing) with relative to the laser cursor. In addition, since
the display frequency of the projector was 60Hz, the predicted
cursor could not be displayed on the screen at once. Thus, the
delay between the displayed cursor and the actual cursor
would be longer. But when saving the motion information into
offline datasets, each frame was added with a label indicating
on which time the exposure signal was sent. The whole pro-
gram applied the structure of assembly line. The sampling
frequency was determined by the longest part of the assembly
line and could reach 50 Hz stably. This parameter exceeds the
natural, distinguishable frame rate of human eyes, and sat-
isfies the demand of the EMG control.

By using the WFMMD, the wrist movements were sam-
pled simultaneously with the EMG signals that provided reli-
able samples with supervised labels for training the model. An
intuitive online control experiment could be achieved by
employing this platform.

2.2 Subjects, data collection, and algorithm

For testing the stability of the relationship between the wrist
motion detected by the platform and the EMG signals, the
experiment on simultaneously sampling the EMG signals
and the wrist motion was conducted.

`The raw picture camera acquired

Extracting the 

red channel

(negative film)

Image binarization 

& sub-region 

extraction

Image 

erosion

Position & 

posture of the 

laser cursor Hough 

transform & 

least square 
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Equations of 
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Fig. 6 The flowchart of image
processing. Through controlling
the light of environment, the
background is nearly black. The
Hough transform step detects the
line in low accuracy and
determines which line these
points belong to. Then, the
position and posture of the laser
cursor could be calculated exactly
through the least square fitting
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A total of eight wireless surface EMG electrodes (Trigno,
Delsys INC, USA) were applied in the experiment. Those
electrodes were arranged around the forearm, approximately
1/3 of the forearm length near the olecranon. The sampling
frequency was set to 1926 Hz. The acquisition program was
compiled in VS2010, which also contained the detection and
display of the cursor, synchronous sampling, and storage of
the EMG signals and wrist motion. The analysis of the data
was performed inMATLAB (Version 8.0, Dual Core 3.4GHz,
8GB RAM). The EMG signals were firstly filtered by a
fourth-order Butterworth band pass filter (20–500 Hz) and a
notch filter (50 Hz). The feature selected was the root mean
square (RMS) of each channel with a moving window of
200 ms. The overlap was configured to 20 ms, according to
the sampling rate of the wrist motion (50 Hz). The support
vector regression was applied to establish the models, and
each DOF had an independent support vector regression
(SVR) model [19]. The input of the SVR model was the eight
RMS features, and the features were normalized along each
channel before feeding into the model. The raw data of wrist
flexion/extension and abduction/adduction motions used the
pixel as the unit, while the raw data of wrist supination/
pronation motion used the rotational degree (angle) of the
cursor. Both types of the raw data were normalized into the
same scale before use. Then, the wrist motions were selected
as the output data for the SVRmodels of each DOF. The SVR

algorithm was realized by the libsvm package [20]. The pa-
rameters were selected according to the grid search method
(C = 16, gamma = 4). The kernel of radial basis function
(RBF) was selected to map the RMS feature into infinity
space. It has the capability to describe the mapping from the
multi-channel EMG signals to the wrist forces and then to the
3-DOF cursor movements. The stability of this model was
tested in this paper.

Six subjects were invited to participate in this experiment
(age 26.0 ± 1.2 years, girth of forearm 25.0 ± 0.7 cm). Four
subjects placed the electrodes on their right hands, another
two placed electrodes on their left hands (non-dominant
hand). The subjects needed to move their wrists according to
the required cursor movements listed in the Fig. 7. The rhythm
of the movement was determined according to their own
habits. However, the speed could not be too fast so that the
subjects could observe the state of the cursor clearly and con-
trol it exactly at any time. The frequency of the movement was
about 0.2–0.5 Hz. Before the experiment, subjects were given
enough time to be familiar with the system. Each trial of the
movement lasted 10 s, wherein 500 samples with labels were
collected. In a data-collection session, 20 trials of different
movements were performed and an enough rest was given
between two trials to avoid fatigue. Each session cost nearly
20 min, and the rest between two sessions needed about
10 min. The subjects needed to avoid excessive exercise

a) Rest b) Horizontal movement c) Vertical movement d) Rotation movement

e) Movement between 
second and forth quadrant 

f) Movement between 
first and third quadrant 

g) Horizontal movement 
with rotation

h) Vertical movement 
with rotation

i) Clockwise 
movement

j) Anticlockwise 
movement

k) Free movement with 
combination of all DOFs

Fig. 7 Diagrammatic sketch of
the movements. (a–j) were the ten
regular movements, within, (a–d)
were the 1-DOF movements, (e–
j) were the 2-DOF movements,
(k) was the sample of the free
movement, subjects were
required to activate all three
DOFs simultaneously without a
specified track
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during the rest to get rid of electrode shifting. Each subjects
collected six sessions during the experiment. The 20 trials of
movements within a session were divided into two parts ac-
cording to their implementation difficulty, as shown in Fig. 7.
The first ten movements were the 1-DOF movements and 2-
DOF movements, which had high repeatability for the sub-
jects to perform. For these movements, the subjects were re-
quested not to actuate the third DOF deliberately. The other
ten movements were the free movements of all three wrist
DOFs. The subjects were required to activate all three DOFs
simultaneously without a specified track. These movements
expanded the workspace of the wrist and increased the mo-
tion’s detection complexity.

The performance of SVR was evaluated by the coefficient
of determination (R2),

R2
i ¼ 1−

∑
N

t¼1
pi tð Þ− f i tð Þð Þ2

∑
N

t¼1
f i tð Þ− f i tð Þ

� �2
ð5Þ

where, fi(t) is the detected motion of the ith DOF, pi(t) is the
motion of ith DOF predicted by the SVR model, R2

i is the
determination coefficient of the ith DOF, and N is the number
of the samples in discussion.

In this paper, we attempt to evaluate the stability and re-
peatability of the SVR method on mapping the EMG signals
to wrist motion. The training data of the model is gradually
increased and the diversification of the results is analyzed. We
try to find whether and what wrist motions are repeatable, in
terms of regression accuracy, by giving enough training data.
The 10-fold cross-validation was utilized for evaluating the
performance. All the samples were divided into ten groups
randomly. The SVR models were trained by only one group
data at first and then validated using the remaining groups.
The number of the training groups was gradually increased
(from 10 to 90%) in the following performance evaluations.

3 Results

As mentioned before, the wrist motions conducted in the ex-
periments included both regular movements (the first ten) and
free movements (the last ten). In general, the regular move-
ments had higher repeatability and better classification perfor-
mance than the free movements. Thus, in this paper, two types
of models were trained, as one learned of regular movements
(denoted as the regular model) and the other learned from all
movements (denoted as the free model, hereafter), respective-
ly. For the last model, the wrist movements were much more
voluntary and the working space for these free movements
was larger than the one for regular movements. The results
on the regression accuracy and the ratio of support vectors of
different models are shown in Figs. 8 and 9, respectively. The
regression target, either regular movements or free move-
ments, and their regression results are shown in Fig. 10.

From Fig. 8, it shows that, as the percentage of the training
data increases (10–90%), the regression accuracy (R2) in-
creases and the standard deviation decreases. For the regular
model, the best regression results (R2, the percentage of the
training data all needs to reach 90%) can arrive at 0.884 ±
0.052, 0.891 ± 0.040, and 0.883 ± 0.028, on wrist flexion/ex-
tension, abduction/adduction, and supination/pronation, re-
spectively. When including the other ten free movements,
the corresponding results obtained by the free model can reach
0.871 ± 0.030, 0.867 ± 0.027, and 0.859 ± 0.034, respectively.
Only the regression result on wrist supination/pronation is
slightly different when comparing these two models
(p < 0.01). Compared with the other studies [10, 12, 15, 16],
our results show that, there is no significant difference
(p > 0.1) on the regression accuracy even when increase the
control DOFs from two to three. In the Fig. 10, the measured
motion could rapidly follow the transformation of the detec-
tion. The errors mostly exist in the passive DOFs, and the
measured motion of the passive DOF could be influenced by
the movements of other DOFs.

a) Performance on wrist
flexion/extension  

b) Performance on wrist
abduction/adduction  

c) Performance on wrist
supination/pronation  

Fig. 8 The regression result R2 on the two different models (regular and free). Note that the diameters of the bubble indicate the size of the standard
deviations of the R2
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In SVR, the support vectors represent the similarity of
dataset and describe the inner structure of the model in high-
dimension space. To inspect the complexity of the SVR mod-
el, we examined the ratio of the support vectors over its total
training samples (RSV). From Fig. 9, the number of the sup-
port vectors increases, but the RSV (both average and stan-
dard deviation) decreases, along with the percentage of the
training data. It clearly indicates that, by adopting more train-
ing sessions, the repeatability of these wrist motions can be
improved. The decreasing speed of the RSV tends to become
moderate at the last several growths of the training data, indi-
cating that there may exists an optimized training dataset on
comprehensively considering the training’s completeness, the
subject’s learning curve of the system’s usability. On the other
hand, the RSVs obtained by the regular model are 27.5% ±
2.0%, 29.3% ± 1.6%, and 21.8% ± 4.0% for wrist flexion/ex-
tension, abduction/adduction, and supination/pronation, re-
spectively, which are fewer than the ones obtained by the free
model, as 37.8% ± 2.9% (p < 0.001), 38.9% ± 2.9%
(p < 0.001), and 33.5% ± 6.4% (p < 0.005). This result

indicates that the complexity of the free model may increase
sharply with complex wrist movements, possibly the 3-DOF
ones. There would be some intrinsic features existing in the 3-
DOF wrist movements that cannot be learned from simple 2-
DOF motions that a specialized device needs to be developed
to fully exhibit the strength of the simultaneous control.

4 Discussions

The platform proposed in this paper bridges the multi-channel
EMG signals and multi-DOF wrist movements, which can be
used to leverage the study on simultaneous EMG control. The
wrist force-movement mapping device keeps a stable relation-
ship between the 3-DOF wrist force and movement. The laser
installed on the device gives an intuitive visual feedback to the
subjects while collecting the wrist motion. After implementing
an algorithm, like SVR, for predicting these motions in real-
time, online control experiments can be tested in this platform.
The performance on predicting various wrist motions,

a) The ratio of support vectors on
wrist flexion/extension  

b) The ratio of support vectors
on the wrist abduction/adduction  

c) The ratio of support vectors on
the wrist supination/pronation  

Fig. 9 The ratio of the support vectors of two different models (regular and free)

a) Exemplary regression results on regular
movements (70% training data)   

b)  Exemplary regression results on free movements
(70% training data)   

Fig. 10 The measured and detected wrist motions of a representative subject. The subjects were required to move their wrist in a comfortable range. Due
to the simultaneous movement of 3-DOF is difficult to plan, we required subjects to activate all three DOFs freely instead
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including the 3-DOF ones, could reach the similar level as in
other studies. On the screen, the projector can display the cur-
sor (wrist movement) that detected by the machine vision, as
well as, the one predicted by the EMG signals synchronously.
The subjects can control the detected cursor (or the predicted
cursor, two different protocols) through adjusting their wrist
movements (or EMG signals) to track a given target or trajec-
tory and then evaluate the control performances online. On
comparing different approaches implemented on the platform,
a stable model for predicting the wrist motions could be
established by giving the superior performance. Once this
mode had been well built, it could be work in a more natural,
free wrist condition, that is, no external forces are applied any-
more. To output similar EMG signals, whether different wrist
conditions (hemi-constraint and non-constraint) do matter in
the simultaneous EMG control will be fully examined in our
future study.

According to the feedback from the subjects, the wrist
supination/pronation needs more strength to achieve com-
pared with the other two movements. This phenomenon is
caused by the difference on force arms. For the wrist
flexion/extension and abduction/adduction, the force arm is
the length between the handle and the rotational center; while
for wrist supination/pronation, the force arm is nearly the half
width of the palm that is shorter than the other two. Thus, to
rotate the inner frame with the same angle, the wrist
supination/pronation needs more force. In other words, the
same force output by wrist supination/pronation only give a
smaller motion range comparing to the other two. However,
the information relating to the wrist supination/pronation is
the rotational degree of cursor. The unit of this DOF is differ-
ent with the other two and does not need to plan a specific
range of the movement. Besides, the detection resolution (<
0.02°) is good enough for catching any small changes of the
movement. On this DOF, it was not necessary for subjects to
reach the same amplitude like the other two DOFs during the
experiment. The subjects were only requested to try different
combinations of various wrist DOFs without fatigue.

Because the springs of large stiffness were used, the max-
imum rotating angle of the inner frame under a reasonable
wrist force is relatively small (15–20°). This value could be
enlarged by replacing the springs with a smaller stiffness.
However, the inner frame will interfere with the forearm if a
large rotating angle is given. Besides, the distance between the
laser and the screen should be shortened; otherwise, the cursor
of the laser would exceed the screen. The short distance will
decrease the detection resolution of the movements especially
the wrist supination/pronation. We will consider redesigning
the structure of the inner frame to enlarge the rotational angle
for providing more free moving space for the wrist.

From the results, we can also conclude that the perfor-
mance of the predictingmodel generally improves as the train-
ing data increases. Meanwhile, the standard deviation of the

coefficients and the ratio of support vectors are reduced.When
the percentage of the training data is low, the training data for
establishing the model cannot fully cover the feature space.
Those data cannot well describe the wrist motions and the
prediction performance is largely affected by the subjects’
experiences. When increasing the training data gradually,
more detailed information about the wrist motions could be
learned thus the prediction performance improves. Besides,
the decreasing standard deviation indicates that the divergence
of performance caused by individual experiences reduces at
the same time. When the percentage of training data reaches
70%, the performance improvement will become unclear
(lower than 0.02, p > 0.1). This trivial promotion may also
be influenced by the decreasing of the testing data. The regres-
sion accuracy may seem low comparing with the accuracy of
gesture recognition, but the measured motion in the Fig. 10
could describe the major information of the detected motion.
Increasing the percentage of training data will decrease the
ratio of support vectors clearly, while increase the number of
support vectors slightly. This phenomenon indicates that the
wrist motions can be well described by the model learned
from sufficient training samples, and the relationship between
the EMG signals and wrist motions established by the
WFMMD is stable.

When the training data is insufficient (< 50%), the pre-
dictive model trained with regular movements performs bet-
ter than the one trained with free movements (p < 0.05). The
regular movements are easily repeated and the feature space
is easier to be covered, as shown by the lower ratio of the
support vectors. Besides, the ratio of support vectors of the
wrist supination/pronation is lower than the ones of the oth-
er two DOFs. As shown in Fig. 10, the wrist supination/
pronation is less complex than other motions. It is because
these movements are related to the posture of the cursor, and
it is difficult for subjects to plan these motions together with
the position of cursor. Meanwhile, the wrist supination/
pronation needs relatively more force to perform that the
subjects often attempted to avoid changing this activity.
However, the gap of the performance achieved by different
models (regular and free) is decreasing while increasing the
percentage of the training data.With sufficient training data,
free wrist movements of all its three DOFs could also obtain
equivalent regression accuracy like the regular movements
do. The motion component of each DOF can be well
decoupled from the free movements and keep a similar re-
lationship with the EMG signals like the regular movements
do. On this platform, the established relationship between
EMG signals and wrist movements is repeatable and seldom
influenced by the motion types. Ultimately, the platform
proposed in this paper presents an available device for es-
tablishing the map between wrist’s 3D force and movement,
as well as, interfacing the multi-channel EMG signals to-
gether with the multi-DOF wrist movements.
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To be frank, there is still a long way from the offline results
to its online practice of the simultaneous control. If the train-
ing samples are arranged according to their chronological se-
quence in the experiment, the regression performance of the
model will be worse. The feature employed in this paper is the
RMS with a 200 ms moving window. The information
contained in the feature may not be rich enough for detailing
the motion characteristics. Our future research will concen-
trate on other features, like the wavelet coefficient in the
time-frequency domain, for abstracting the information within
the EMG signals for multi-DOF wrist motion decomposition.

5 Conclusions

In this paper, a novel platform is proposed to provide multi-
channel EMG samples with explicit labels, that is, the multi-
DOF wrist force target is intuitively expressed as the position
and posture of a visible cursor. The subjects can plan multi-
DOFs wrist movements according to the position and posture
of the cursor, and the controlling experience is more intuitive.
To achieve this, the wrist is on a hemi-constraint condition that
is more similar to its nature situation compared with the tradi-
tional non-constraint or fully constraint ones. The data collect-
ed by using this platform has been tested by a cross-validation
experiment on the SVR model. The model learned from the
training data collected by the platform can well predict the
arbitrary combinations of 3-DOF wrist movements, and the
result shows stable and repeatable.

In the future work, we will put our study forward the online
control scenario, including new features, predictive models,
and training protocols in the simultaneous EMG control.
Metrics for evaluating the online control performance should
be also established.
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