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Abstract
An understanding of athlete ground reaction forces and moments (GRF/Ms) facilitates the biomechanist’s downstream
calculation of net joint forces and moments, and associated injury risk. Historically, force platforms used to collect kinetic
data are housed within laboratory settings and are not suitable for field-based installation. Given that Newton’s Second Law
clearly describes the relationship between a body’s mass, acceleration, and resultant force, is it possible that marker-based
motion capture can represent these parameters sufficiently enough to estimate GRF/Ms, and thereby minimize our reliance
on surface embedded force platforms? Specifically, can we successfully use partial least squares (PLS) regression to learn
the relationship between motion capture and GRF/Ms data? In total, we analyzed 11 PLS methods and achieved average
correlation coefficients of 0.9804 for GRFs and 0.9143 for GRMs. Our results demonstrate the feasibility of predicting
accurate GRF/Ms from raw motion capture trajectories in real-time, overcoming what has been a significant barrier to non-
invasive collection of such data. In applied biomechanics research, this outcome has the potential to revolutionize athlete
performance enhancement and injury prevention.

Keywords Action recognition · Wearable sensors · Computer simulation

1 Introduction

One of the strongest criticisms of sports biomechanics is that
measurements of GRF/Ms, necessary for the estimation of
internal and external musculoskeletal loads and associated
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injury risk, can only be collected in controlled research
laboratory environments using external force transducers.
Subsequently, the sport biomechanist is forced to trade
ecological validity of the more desirable field-based data
collection for laboratory-based methods in order to record
higher fidelity data outputs (Fig. 1) [4, 10, 19, 30].

Knee anterior cruciate ligament (ACL) injury can be a
season or career-ending event for a professional athlete and
increases the risk of later osteoarthritis pathology [13, 20].
The majority of ACL injuries (51 to 80%) occurring in
team sports such as Australian Rules Football, basketball,
and hockey are non-contact in nature, with more than 80%
suffered during a sidestep maneuver or single-leg landing
[18, 32]. In-silico, in vitro and laboratory studies have
identified an increase in knee joint moments as indicators
of ACL injury risk [15, 17, 21] and an understanding
of on-field GRF/Ms constitutes the first step towards
the development of a monitoring system that estimates
knee joint moments, thereby providing an early warning
system for ACL injury risk. The ability to monitor real-
time ACL injury risk enables the development of counter-
measure preventative strategies including new biofeedback
measures.
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Fig. 1 Laboratory motion and force plate data capture overlay. The
force plate is highlighted blue, markers used are shown artificially
enlarged and colored red/orange/green, those not used have been
reduced and grayed (real and virtual/modeled markers)

Previous studies have attempted to improve the ecolog-
ical validity of laboratory-based GRF/Ms data collections,
with Müller et al [29] investigating properties of artificial
turf using varying shoe stud configurations. Samples of turf
were mounted to the surface of a force plate and 50 m2 of
the surrounding area. Similarly, Jones et al. [22] tested the
effects of different artificial turf types on landing and knee
biomechanics by mounting samples in a tray fixed above the
force plate. Others have attempted to measure GRF/Ms in
the field through a variety of in-shoe pressure-sensitive sen-
sors or attachments [24, 26, 33, 38], however, such devices
suffer from being cumbersome to the athlete and measure
points of contact or pressure distributions (rather than center
of pressure). Importantly, the reported values differ sig-
nificantly from those derived directly from force plates,
although Sim et al. [33] did cite improvements via the use of
neural networks (NNs). Researchers have derived GRF/Ms
from kinematics using linear statistics, or again from NNs
[23, 31], with these studies conducted indoors using gait tri-
als. Jung et al. [23] tested ten participants at speeds up to 3.0
m/s while Oh et al. [31] trained a single hidden layer NN
using 48 participants (one trial per participant) each walk-
ing at a self-selected pace. Efforts to predict GRF/Ms using
non-invasive computer vision techniques show promise but
either lack validation to a gold standard or criterion refer-
ence [34, 37] or relevance to sporting tasks [9]. This paper
proposes a novel approach, where the scale of historically
collected big data is used to predict GRF/Ms using the input

variables: (1) eight marker motion capture trajectories, and
(2) participant mass, sex, and height [1].

The School of Human Sciences at The University of
Western Australia (UWA) was one of the first to establish
a Sport Science/Human Movement university degree in the
southern hemisphere and houses one of the largest sports-
related marker-based movement data repositories in the
world [6]. This study capitalizes on this data by employing
PLS [27] and its kernel variants to learn linear and nonlinear
models whereby, given a new sample of motion capture
data (marker-based data) we can estimate a participant’s
GRF/Ms in the absence of a force plate. The accuracy and
validity of this approach is confirmed by reporting the mean
correlations between GRF/Ms traditionally derived, and
those predicted by the PLS methods. We aim first to test the
hypothesis that our interpretation of mass and acceleration
(via motion capture marker data) and force (recorded from
a force plate) is complete enough that PLS can establish a
strong relationship between these variables.

2 Background

For over 30 years, Vicon (Oxford Metrics, Oxford, UK)
has been developing motion capture technology, and the
company is considered the world leading gold standard
manufacturer of passive marker-based motion analysis
systems. High-speed video cameras together with near-
infrared (IR) light strobes are used to illuminate small
spherical retro-reflective markers attached to the body [10,
25], with Carse et al. [8] citing the reconstruction error of
such optical systems at less than 0.3 mm [19].

Often captured concurrently with motion data, force
platforms/plates are used to measure the forces and
moments applied to its top surface as a participant stands,
steps (walk/run), jumps from, or lands on it. Three
orthogonal force (axes) and three moment components are
measured when a participant is in contact with the plate
including Fx and Fy representing the horizontal (shear)
forces and Fz the vertical force, and Mx , My, and Mz

the three rotation moments around the corresponding x,
y, and z force axes, respectively. Force platforms used
to record this data may utilize a wide variety of force
transducer types (e.g., piezo-resistive, piezo-electric) which
are generally located in each of the four corners of the
platform. Installation of force plates must be carried out
in such a manner as to minimize vibration, and with
regard to the frequency and absolute force of the intended
movement to be captured. For this reason, specialized
force plate mounting, directly inside a concrete pad during
laboratory construction, produces the best ongoing results
[2] but which makes the platform difficult to move or
install in sporting environments. GRF/Ms are fundamental
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to the calculation of joint kinetics, the forces that lead
to movement [38], and consequently, this information is
critical for all research that seeks to gain an understanding
of the mechanism behind performance, injury, and disease.

PLS is a class of supervised multivariate regression tech-
niques which projects data to a lower dimensional space
where the covariance between predictor and response vari-
ables is maximized [14]. This generally leads to a more
accurate regression model compared with, for example,
principle component regression (PCR) which maximizes
the variance of the predictor variables without taking into
account the response variables. PLS is generally referred
to as a multilinear regression (MLR) technique; however,
it is able to perform nonlinear regression by projecting the
data to a higher dimensional nonlinear space where the
relationship between the two variable types is linear [7].
First developed in the 1960s, the characteristic of PLS to
perform well with many predictor variables, but few exam-
ples was found to be a good fit for statistical problems in
the natural sciences [12, 27]. More recently, sparse PLS
techniques have emerged which can better deal with mul-
tivariate responses when some of the predictor variables
are noisy. Because of the economic nature of marker-based
motion capture representation (compared with video for exam-
ple), a secondary hypothesis for this study is that sparse
PLS will return the strongest predictor (motion capture plus
mass, sex, and height) to output (GRF/Ms) response.

3Methods

3.1 Design and setup

The methodological design schematic of this study is
shown in Fig. 2. Original setup and data capture was
carried out at one of the two UWA Sports Biomechanics
Laboratories (Fig. 4) over a 15-year period (2000–2015).
All participants used in the archive studies were from
a young healthy athletic population (male and female,
amateur to professional) as opposed to any medical or
clinical cohort. Dynamic movement trials included a wide
variety of generic movement patterns such as walking
and running, but also sport-specific movements such as
football kicking and baseball pitching. UWA employs a
custom, repeatable and well-published upper and lower
limb marker set comprising 67 full body retro-reflective
markers [5, 11, 15]. This includes markers placed arbitrarily
on body segments and markers positioned on anatomically
relevant landmarks used to define the joint centers and axes
required for anatomical coordinate system definition (e.g.,
pelvis anterior superior iliac spines, lateral ankle malleoli).
Given that the marker set has evolved considerably over
the 15-year period, a subset of markers was identified

that were consistently and reliably present across all static
and dynamic trials of the motion data repository. With the
goal of describing movement completely enough that PLS
can establish the motion–force relationship, and following
earlier pilot testing with larger and smaller marker subsets,
the following eight anatomically relevant markers were
selected for inclusion in the present study (Fig. 3):

C7, SACR sacrum (automatically constructed
between LPSI and RPSI – posterior superior iliac
spine left and right), LMT1 left hallux (big toe),
LCAL left calcaneus (heel), LLMAL left lateral ankle
malleolus (outer ankle), and likewise for the right foot
RMT1, RCAL, and RLMAL.

Between 12--20 Vicon near-infrared cameras across a com-
bination of model types (MCam2, MX13, and T40S) were
mounted on tripods and wall-brackets and aimed at the
desired reconstruction volume space (Fig. 4). Camera cali-
bration (static and dynamic) for all data collection sessions
was conducted in accordance with manufacturer recom-
mendations. An AMTI force plate (Advanced Mechanical
Technology Inc, Watertown, MA, USA) measuring 1,200 ×
1,200 mm, operating at 2,000 Hz and installed flush with the
floor was used to record the six GRF/Ms: Fx , Fy , Fz, Mx ,
My, and Mz. The biomechanics laboratory is a controlled
space which utilizes lights and wall paint with reduced IR
properties. The floor surface coverings have varied over the
15-year data collection period ranging from short-pile wool
carpet squares to artificial turf, both laid on the force plate
surface and the wood parquetry surrounding the platform.
The relevant proprietary motion capture software that was
distributed by the system hardware manufacturer at the time
of data collection was used to record and reconstruct the
marker trajectories. Irrespective of hardware and software
configuration at the time of data collection all reconstructed
marker data was compiled and stored in the industry stan-
dard c3d file format for motion trajectory and analog
data (‘coordinate 3D,’ Motion Lab Systems, Baton Rouge,
LA).

3.2 Datamining phase

Over the past two decades, much attention has been paid
to identifying the biomechanical precursors to ACL injury,
and consequently, the analysis of change of direction
(sidestep) maneuvers has been a strong research theme of
the biomechanics group at UWA and their collaborators.
Given this long data collection history and the subsequent
likelihood of a large number of sidestepping motion trials
within the legacy motion capture repository, this paper
focuses on establishing the motion–force relationship of
a single motion trial type: sidestep maneuvers to the left
that are performed off the right limb (i.e., right foot
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Fig. 2 Study overall design

plant, Figs. 5 and 6). Data mining of the department’s
motion/force plate capture repository was carried out under
UWA ethics exemption RA/4/1/8415. Contrary to the
traditional scientific method approach of the sport sciences,
the philosophy of this study was one of scale, with a

mandate to use data capture from as many different sessions
as possible (intra-laboratory, multiple testers), and to avoid
manual editing of source c3d files. Data mining was
conducted using MATLAB R2016b (MathWorks, Natick,
MA) in conjunction with the Biomechanical ToolKit v0.3

Fig. 3 UWA custom in-house
marker set with the eight
markers used by this study
highlighted
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Fig. 4 UWA Sports Biomechanics Laboratory, visible (top); as
reconstructed in Vicon Nexus (bottom). The force plate has been
highlighted blue

[3] both running on Ubuntu v14.04 (Canonical, London,
UK), a development environment being well-suited to the
prototype nature of the study. Hardware employed was a
desktop PC, Core i7 4GHz CPU, with 32GB RAM.

From a given top-level folder, the file-system was
scanned for motion capture standard c3d files, to which
several pre-processing steps were applied to confirm the
integrity of the marker trajectories and force plate data
before a trial was deemed acceptable and added to the
overall data-set. First, the data mining relied only on trials
with contiguous markers being labeled and present in
the trial and was agnostic to any post-processing artifact
associated with filtering or biomechanical modeling (i.e.,

Fig. 5 Sidestep left motion capture and video overlay

Fig. 6 Sidestep left shown by Nexus marker trajectories for the eight
markers used by this study. Other real and virtual/modeled markers
(gray) included to indicate whole body position

we only utilized the labeled trajectories of eight real
markers). Mass was considered a mandatory input feature,
but it was theorized that sex (female = 1, male = 0) and
height may also have an important contribution, so they
were added to the predictor (input) variable set. These
participant specific values (mass, sex, and height) were
retrieved from the c3d file or the associated mp file (mp is
a proprietary extensible markup language XML file format
used by Vicon for session and anthropometric data). At this
time, children were excluded by rejecting trials where the
participant height was less than 1,500 mm (two standard
deviations below the average Australian adult female height
1,644 ± 72 mm, age 19–25 years [36]).

The foot-strike event was automatically determined by
detecting vertical force Fz greater than a threshold (20
N) over a defined period (0.025 s) [28]. Compared with
trials where the foot-strike event was previously visually
identified by the biomechanist undertaking the original
data collection, the mean correspondence of the automatic
method was ± 0.0054 s. Analog force plate data sampled at
frequencies lower than 2,000 Hz and motion capture lower
than 250 Hz were time normalized using piecewise cubic
spline interpolation. The lead-in period before the foot-
strike was deemed to be more important for the predictor
movement, and therefore, the marker data was trimmed
around the foot-strike event from -0.20 to +0.30 s (125
frames f ), and force plate data from -0.05 to +0.30 s (700
frames f ).

A number of consistency checks were performed to
consider the overall integrity of the laboratory equipment
setup and calibration. Trials where the participant appeared
to move backward, where the vertical height of markers
was unexpected, where all marker coordinates dropped
to zero (i.e., missing data), where the start and end
vertical force value was unexpected, or the foot-strike
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Fig. 7 Data structures motion
capture predictor X, markers
K(x,y,z); force plate response y,
forces F and moments M;
marker number m, frame f and
sample (or trial) i . Variables
m, s, h stand for mass, sex, and
height, respectively

was incomplete, were rejected. Templates were used to
automatically classify the range of indoor movements found
into one of six types:

Static (still), walk, run, run and jump, sidestep left,
and sidestep right (regardless of whether the sidestep
was planned or unplanned, crossover or regular, or
foot-strike technique).

If the motion capture and force plate data passed these
checks for quality, it was reassembled into the data-
set arrays X (predictor samples × input features) and
y (response samples × output features) typical of the
format used by multiple regression [27], Fig. 7. Trials
with duplicate X data were rejected, therefore avoiding the
situation where the same motion capture input referred to
multiple pre- and post-filtered analog force plate data.

Ethics approval was based on the only personal
information collected (that of mass, sex, and height) being

de-identified and acknowledged that the new data science
techniques being employed by the current investigation are
within the scope of the original studies and would have been
included had they existed at the time. In terms of intellectual
property of the motion capture pipeline, only the first step
of labeling and gap-fill is required by this study, later
analysis including modeling, filtering, and classification by
meta-data is disregarded.

3.3 Training phase

We performed tenfold cross-validation using a number of
PLS methods to test whether our description of movement
and force was sufficient, the goal being a strong correlation
coefficient. The data-set was randomly shuffled and split
into ten training sets (353 samples = 80%, illustrated for
each of the eight markers in Fig. 8) and corresponding test-
sets (88 samples = 20%), then for each PLS method, the

Fig. 8 Sidestep left eight marker trajectories shown byMATLAB, for one training-set (353 examples = 80%). The physical location of the markers
is given in Fig. 3
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Fig. 9 R-spls SIMPLS performance against the data-set over the range
of nc from 1 to 81

predicted GRF/Ms were compared with the actual recorded
force plate analog output. The use of tenfold experiments
decreased the risk of overfitting [16]. A total of eleven PLS
methods were compared, three from PLS Toolbox v8.1.1
(EVRI Eigenvector Research, Inc., Manson, WA, USA),

four from the R-pls package [27], and four from the R-
spls Sparse PLS package [12]. PLS Toolbox runs directly
in MATLAB, while pls and spls functions were executed
using system calls from MATLAB to R [35]. Handshake
protocols were used between MATLAB and R to ensure
success/fail conditions were exchanged. Within this mix of
three proprietary and open source PLS packages, different
fit algorithms were investigated for their prediction power,
performance, and in the case of sparse implementations,
variable selection, for the given multivariate data-set where
the number of predictor variables (3003) was much greater
than the number of training samples (353). Model training
and prediction times were used to illuminate differences
between methods such as Kernel and Orthogonal Scores
PLS which produce the same results. Overall, PLS methods
were selected for relevance to (a) perceived state of the
art, (b) anticipated benefits of including nonlinear kernel
methods to match nonlinearity in the source data, and (c)
sparse methods to capitalize on the ranking importance
of predictor input markers rather than the traditional PLS
approach of simply maximizing the covariance between
predictors and response.

The primary tuning parameter for PLS is the number of
hidden internal components, nc. For every sample in the

Fig. 10 Ground truth GRF/Ms (blue ticks) and predicted (red), plot-
ted as Fx , Fy , Fz, Mx , My and Mz versus force plate frame for the
same sample using each of the strongest PLS methods by package:

EVRI-pls SIMPLS, R-pls SIMPLS and R-spls SIMPLS. The sample
was selected for having the highest r(Fmean) with R-spls SIMPLS
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Table 2 Comparison PLS to single hidden layer NN, r by GRF/Ms

Movement Samples r(Fx) r(Fy) r(Fz) r(Mx) r(My) r(Mz) r(Fmean) r(Mmean)

Oh et al. [31], maximum r Walking 48 0.9180 0.9850 0.9910 0.9870 0.8410 0.8680 0.9647 0.8987

R-spls SIMPLS, maximum r Sidestep 441 0.9985 0.9981 0.9994 0.9762 0.9956 0.9877 0.9987 0.9865

R-spls SIMPLS, Table 1 Sidestep 441 0.9669 0.9847 0.9898 0.8807 0.9405 0.9216 0.9804 0.9143

test-set, the mean correlation coefficient r was calculated
by comparing the six vectors Fx , Fy , Fz, Mx , My, and Mz

of ground truth force plate data with that predicted by the
specified PLS method. A range of nc from 1 to 81 (in steps
of 5) was used to select nc via the corresponding maximum
r by GRF/Ms for the subsequent tenfold experiments.
This range was arrived at empirically using the root mean
squared error of prediction (RMSEP) function in R-pls; use
of the mean squared prediction error (MSPE) in R-spls; and
by noting the maximum value at whichMATLAB exhausted
system memory. MSPE was also used to determine the
sparsity tuning parameter eta of 0.9. Although this granular
approach increased the risk of missing the precise optimal
value of nc, meaningful results were observed. The average
nc over all GRF/Ms for each PLS method gave a range of
training times from 00:00:10.534 (hh:mm:ss.sss) for R-pls
Wide Kernel PLS to 00:18:28.552 R-spls Orthogonal Scores
PLS (mean timing over ten iterations).

4 Results and discussion

A high-potential subset of the entire historical archive
containing 20,066 c3d files was scanned, and after quality
assurance and automatic categorization of movement type,
a total of 441 sidestep left-directed motion trials were
identified. The original data capture for these trials was
carried out between February 7, 2007 and November 12,
2013 using a range of Vicon proprietary software (from
Workstation v5.2 to Nexus v2.2).

The mean correlation coefficient r between the esti-
mated and actual GRF/Ms was calculated using the nc

derived by the earlier cost analysis, for which the prediction
times ranged from 00:00:00.064 (hh:mm:ss.sss, mean tim-
ing over ten iterations) for EVRI-pls Direct Scores PLS to
00:00:00.403 R-pls Kernel PLS. The mean ± SD between

each of the tenfolds, and prediction times, by PLS method
and by GRF/Ms are given in Table 1 (and illustrated by
animation Online Resource 1), in which the best values
of r by GRF/Ms are shown in bold, as are r(Fmean) and
r(Mmean) for the strongest package overall. The highest
correlation was seen in the vertical r(Fz), explained by the
influence of mass in this axis and the corresponding greater
variation for PLS to associate with. R-spls SIMPLS was
identified as the strongest method overall, with average
r of 0.9804 for GRFs and 0.9143 for GRMs. These high
correlation coefficients proved the hypothesis, that our
interpreted force, mass, and acceleration by the abstract
methods of marker-based motion capture were sufficient
enough to establish a strong relationship with the analog
force plate output.The combined mean ± SD results
r(Fmean) 0.9796 ± 0.0004 and r(Mmean) 0.9113 ± 0.0036
illustrate the proximity of all the PLS methods
investigated.

Figure 9 illustrates the performance of R-spls SIMPLS
for r(Fmean) and r(Mmean) over the range of nc from 1 to
81. Ahead of nc 55 selected by the cost analysis for this
PLS method, the high r(Fmean) offsets the gradual decline
in r(Mmean). At greater nc, this relationship breaks down as
r(Mmean) is increasingly affected by noise.

With R-spls SIMPLS outperforming other methods, the
second hypothesis that a sparse PLS method would prevail
was also proven. The individual sample with the highest
r(Fmean) was identified for R-spls SIMPLS, and Fig. 10
shows the predictions for this sample by the SIMPLS
implementation by each of the three packages.

The mean R-spls SIMPLS results exceed the maximum
correlation coefficients r for the six vectors as reported
by Oh et al. [31] and shown in Table 2. Using PLS,
rather than a single hidden layer NN, with a data-set an
order of magnitude greater (441 versus 48 samples), our
study demonstrated greater correlations for a more complex

Table 3 Relative influence (RI)‡ of inputs on GRF/Ms output determined by R-spls SIMPLS

Input m s h RMT1 RCAL RLMAL C7 LCAL SACR LMT1 LLMAL

RI 100% 100% 100% 65% 58% 57% 41% 39% 31% 24% 7%

‡To score 100%, all three axes of a marker (x/y/z) must be selected by the PLS method in all motion capture frames
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movement pattern (sidestep versus walking gait), and the
importance of data scale for NNs.

Sparse PLS methods by nature retain the input features
useful for prediction, and therefore, R-spls SIMPLS can
be used to illustrate the relative influence of markers and
mass/sex/height. Using fold one of the training-set/test-set
split, the movement type is confirmed as sidestep left by
virtue of the greater emphasis on the markers of the right
stance foot (RMT1, RCAL, and RLMAL) at the expense of
those on the swing limb on the left (Table 3).

5 Conclusions

To the best of our knowledge, this is the first study
which mines big data to predict GRF/Ms of a complex
movement pattern from marker-based motion capture (and
using a reduced marker set). We investigated the connection
between PLS and the relationship of marker-based motion
capture to force plate output. Using historical movement and
force data (441 sidestep samples), and 11 PLS methods, we
observed average correlation coefficients between ground
truth and predicted of 0.9804 for GRFs and 0.9143 for
GRMs thus proving our first hypothesis. This strongest
response was predicted by the R-spls SIMPLS sparse
method in support of our second hypothesis.

Our results using PLS methods against a complex
sidestep movement pattern improved on those reported
using a single hidden layer NN and a simple gait pattern
by Oh et al. [31] illustrating the relevance of big data.
We intend to extend this work through greater intra and
inter-laboratory historical data, to analyze other movement
patterns, validate in real-time with a dual data capture in
the laboratory, then ultimately test in the field of play
with outdoor cameras and less invasive methods of motion
capture. The information provided by R-spls allows for
fine-tuning of motion and force temporal input parameters,
and an investigation of the relative importance of markers
and the discrete features mass/sex/height. The success of
PLS methods suggests this data is a candidate for deep
learning. This study begins to address the significant barrier
to non-invasive collection of real-time on-field kinetic data
to inform athlete performance enhancement and injury
prevention.
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