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Abstract
Gait is a firsthand reflection of health condition. This belief has inspired recent research efforts to automate the analysis of
pathological gait, in order to assist physicians in decision-making. However, most of these efforts rely on gait descriptions
which are difficult to understand by humans, or on sensing technologies hardly available in ambulatory services. This
paper proposes a number of semantic and normalized gait features computed from a single video acquired by a low-cost
sensor. Far from being conventional spatio-temporal descriptors, features are aimed at quantifying gait impairment, such
as gait asymmetry from several perspectives or falling risk. They were designed to be invariant to frame rate and image
size, allowing cross-platform comparisons. Experiments were formulated in terms of two databases. A well-known general-
purpose gait dataset is used to establish normal references for features, while a new database, introduced in this work,
provides samples under eight different walking styles: one normal and seven impaired patterns. A number of statistical
studies were carried out to prove the sensitivity of features at measuring the expected pathologies, providing enough evidence
about their accuracy.

Keywords Gait impairment · Video-based gait analysis · Gait database · Computer-aided diagnosis

1 Introduction

Gait is essentially determined by the coordinated action of
musculoskeletal and nervous systems. This makes gait a
reliable indicator to detect symptoms of worsening health
caused by aging [34], physical malfunction [9], or neu-
rodegenerative disorders. Some examples of these last ail-
ments are Parkinson’s disease [23, 25, 33], multiple sclero-
sis [16], and strokes [30]. In this regard, neurologists handle
a number of diagnostic tests for assessing and manually
scoring gait disorders, such as the Unified Parkinson’s Dis-
ease Rating Scale (UPDRS) [5] or the Rating Scale for Gait
Evaluation (RSGE) [17].
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The potential of gait as a multifaceted source of knowl-
edge has encouraged a number of applied research fields
based on the automation of gait analysis. The vast major-
ity of efforts have been focused on biometric recogni-
tion or video-surveillance systems [31]. However, the last
decade has witnessed a growing interest in clinical applica-
tions of gait assessment such as rehabilitation [18], medical
diagnosis [23], and detection of medical emergencies in
hospital environments [22]. These results are supported by
different sensors for extracting gait data, being wearable
gadgets and vision-based devices those most popular. Sen-
sors in the first group (e.g., gyroscopes, accelerometers,
markers) [11, 13] acquire precise information, although they
can be deemed intrusive since they are usually attached
to rigid segments of the human body, thus possibly caus-
ing discomfort to patients. Regarding the vision-based
group, there are professional solutions from specialized
companies (BTS, Vicon, NDI, etc.) also aimed at pro-
viding highly accurate motion data without requiring any
contact with a sensor [1]. However, they are generally
costly and demand certain setting and calibration processes;
hence, their use tends to be restricted to more specialized
environments. On the contrary, less sophisticated vision
devices such as Microsoft Kinect or plain RGB cameras
[22, 23, 25, 34] are also capable of capturing motion at a
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distance, being usually cheaper, easier to use and virtually
ubiquitous.

It is well known that precision of gait descriptions
acquired by vision systems can be severely affected by a
number of factors that influence either the motion pattern
or the gait perception. Motion may be altered by footwear,
surface, mood, age, body weight, physical injuries, neuro-
logical disorders, or even by people’s own volition. Regard-
ing the last, it has been noticed that some patients affected
by a neurological disease tend to conceal motion impair-
ments when they know that they are being recorded. On
the other hand, factors that affect gait perception can be
classified into three groups according to their sources:
subject appearance, recording conditions and video qual-
ity. Appearance can be affected by changes in clothing,
load carrying, and camera viewpoint. Recording conditions
depend on factors like background, illumination, and occlu-
sions. Finally, video quality refers to limitations of optical
sensors.

Fortunately, vision-based analysis of gait disorders is
a type of task in which both physicians and patients
are equally interested in acquiring high-quality data.
Therefore, it can be assumed a cooperative setting, where
the majority of factors that can affect gait are avoided.
For example, we can expect simple and clean scenarios,
possibly indoor, pleasant environmental conditions, fixed
background, steady illumination during recording, patients
under controlled emotional states, tight clothes, flat shoes,
no accessories, smooth floor, etc. Also patients’ efforts to
conceal gait disorders can be mitigated by simply adding
an acoustic or visual distracting element, such as music
or a TV [14]. Under such general conditions, extraction
of silhouettes (source of information of the most popular
gait models) can be performed accurately from plain
videos acquired with any low-cost device (RGB cameras,
smartphones, Microsoft Kinect, etc.).

1.1 Related works

Low-cost 2D/3D vision-based analysis of gait has become
a fast-growing area of applied research. Within this field,
related works can be categorized as regards the analysis of
either unaffected or impaired gait.

Concerning the first group, a number of works which
measure spatio-temporal and kinematic parameters of gait
from healthy people have been recently published. In [10],
a wearable 2D system based on a smartphone fixed in
a belt is proposed. The phone includes a camera which
tracks two markers placed on the feet to compute step
length, width and time, gait speed, and double support
time. In another work [24], a simple RGB webcam is used
together with markers to get kinematic gait parameters
from people walking in a treadmill. Concurrently, 3D

low-cost approaches have gained in popularity since
Microsoft Kinect was released. For instance, in [3] and [4]
a Kinect-based marker-less solution was validated against a
more sophisticated system consisting of eight IR cameras,
when quantifying lower limb motion. In a different
approach [27], several machine learning models were
fed with Kinect data to perform self-esteem recognition
based on people’s gait pattern. A comparison between a
Kinect-based method and a wearable sensor-based solution
is presented in [6]. Accuracies of both frameworks at
estimating temporal gait parameters were assessed over
people belonging to two age ranges, using GAITRite as gold
standard.

On the other side, manifold vision methods which
delve into the analysis of impaired gait have been
proposed. The work in [34] addresses the problem
of discriminating two categories of pathological gait
commonly seen in senior people, which are caused by leg
and visual impairments respectively. Gait was represented
by a PCA+LDA transformation of GEI features elicited
from body patches. Experiments were performed on gait
sequences of normal people wearing knee pads that
restrict knee bending, and glasses that blur the sight
and narrow the view field, both tools from an age
simulation kit. In the case of [32], it focuses on recognizing
walking styles, including both abnormal and normal gait,
based on PCA features obtained from frame-to-frame
optical flow data. Pathological styles were recreated by a
single trained professional actor. The last two proposals
prioritized recognition based on information far from
human awareness, over a comprehensible characterization
of gait abnormality.

Focusing on typical ailments that affect motion, many
works address gait impairment associated to Parkinson’s
disease (PD). In [23], authors evaluate the discriminant
power of several gait parameters extracted from Kinect data,
for distinguishing between PD patients treated with deep
brain stimulation and control subjects. In [25], a Kinect-
based approach for analyzing the movements of PD patients
during rehabilitation treatment is presented, as a preliminary
step towards a system suitable for home usage. Gait analysis
consists simply in the estimation of gait speed and hand
rigidity while subjects are walking from 3.5 to 1.5 m
away from the Kinect. The work in [28] also delves into
the use of Kinect for describing walking parameters and
recognizing gait disorders in PD patients. After filtering
and smoothing the signal, two gait features were estimated:
step length normalized to leg length, and walking speed.
Then, they were involved in a 1-NN classification process.
In [12], a portable solution for assessing Parkinsonian gait
in common environments is proposed, based on monocular
image sequences of patients wearing markers attached to
knee and ankle joints. A number of basic gait parameters,
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such as gait cycle time, stride length, walking velocity, and
cadence, were measured from videos and their reliability
validated against the GAITRite system. Results showed
the relevance of stride length and walking velocity at
distinguishing PD before and after drug administration.

1.2 Open issues

After literature review, some issues are worthy of further
consideration. On the one hand, some works address
automatic classification of gait impairment based on
unreadable or basic gait features. However, since gait
disorders are generally evident to the naked eye, making
an obvious decision between patients or healthy people
seems to have no practical sense. At most, the usefulness
of classification tasks would be limited to assess the
discriminant capacity of features (as it is made clear in [1]).
Thus, the design of features that provide human-friendly
quantification of a visible gait disorder is supposed to be
of much more interest for physicians than a superfluous
classification process.

On the other hand, there are virtually no published
benchmarking efforts. There exist almost as many datasets,
preprocessing techniques, gait feature sets, and experimen-
tal methodologies as research works. In addition, most
datasets are not publicly available. This scenario makes it
hard to establish the real merits of current approaches.

1.3 Scope and goals

This paper introduces a semantic, vision-based character-
ization of gait impairment to directly assist physicians in
diagnostic decisions. Instead of measuring typical spatio-
temporal parameters, a number of normalized and invari-
ant gait features quantify impaired gait patterns, such as
multiple views of gait asymmetry and risk of falling. Nor-
malization makes these features an easy-to-interpret source
of information, while the invariance to recording param-
eters, such as frame rate and image resolution, provides
consistency in cross-platform comparisons. In contrast to
most previous efforts, which rely on cryptic or plain gait
descriptors, or on less pervasive technologies, the feature
set proposed in this paper could be embedded in a low-
cost vision system (e.g., a mobile phone or a Kinect-based
solution) to directly assist clinicians in quantifying gait
disorders.

This paper also presents a new dataset, the INIT Gait
Database, which consists of video recordings of a num-
ber of volunteers simulating different patterns of patho-
logical gait, along with their natural walking style. It is
intended to validate the effectiveness of the features at
characterizing known gait disorders. This dataset is made
publicly available to the research community, with the

aim of encouraging future studies involving other tasks
or features.

Experiments involve the new dataset and a general-
purpose gait database. The latter comprises independent
regular gait samples, which were used to establish reliable
neutrality baselines for all features, and to statistically
verify whether the INIT samples recorded under the natural
walking style fit this expectation. Afterward, the capacity of
features to precisely characterize irregular gait patterns was
statistically studied.

The rest of the paper is structured as follows. Section 2
establishes the fundamentals of human gait and presents the
main contributions of this work: the devised video-based
features and the new INIT Gait Database. Experiments
are presented and discussed in Sections 3 and 4. Finally,
Section 5 provides the conclusions and some future work
highlights.

2 Theory andmethods

2.1 Human gait

Normal gait can be defined as a cyclic movement pattern
under two main assumptions [26, 29]: (i) cycles are
identical, and (ii) left and right limbs perform in a similar
way (i.e., both halves of each cycle are symmetrical). These
assumptions are normally not fully met in practice; however,
they can be considered consistent expectations for most
people.

A gait cycle is composed of two principal phases: stance,
where a particular foot is on the ground, and swing, where
this same foot is no longer in contact with the ground and
it is moving forward. Start and end of these phases are
determined by two main gait events: a heel strike (HS) of
a foot represents its first contact with the ground, initiating
the stance phase, while the transition between stance and
swing is produced by a toe off (TO) event, when the
foot leaves the ground starting a new step. Concurrently,
the other foot follows a similar dynamic pattern half a
cycle after (or before). In normal gait, stance and swing
phases are expected to take 62 and 38% of a regular cycle,
respectively [29]. Figure 1 illustrates this distribution, from
the right limb perspective, along a full gait cycle.

These theoretical assumptions are considered necessary
conditions for normal gait, but not sufficient. That is, a
pathological gait can potentially yield identical symmetrical
cycles that meet the 62:38 distribution of stance and
swing phases. However, gait abnormality is generally
characterized by asymmetrical patterns or by stance/swing
imbalance. As a way of example, gait asymmetry has
been observed in patients affected by PD [21] and by
cerebrovascular accidents [30]. This paper takes advantage
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Fig. 1 Gait cycle from the right
limb perspective through its
phases stance and swing. Events
heel strike (HS) and toe off (TO)
determine the start and end of
these phases. The
complementary stance/swing
distribution for the opposite
limb is also included in the
lower part. This image is
inspired in one from [29]

Stance phase (62%) Swing phase (38%)
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TO

of such evidence to formulate a comprehensible description
of gait (a)symmetry.

2.2 Data processing

A number of video-based features have been devised to be
computed from binary frames, where foreground (a silhou-
ette) appears in white over a black background. Henceforth,
the term feature is used interchangeably with measure.

Given a frame from a gait video, it is binarized by simple
background subtraction techniques. Then, the silhouette is
extracted as a new cropped picture keeping the absolute
position of its bounding box in the original frame for further
calculations. Finally, all silhouette images are scaled under a
common height, but variable widths to keep their particular
aspect ratios.

Furthermore, some of the proposed measures are com-
puted on a silhouette-based gait representation named Gait
Energy Image (GEI) [8], instead of directly using raw
silhouettes. GEI can be considered the most popular model-
free method for condensing subject’s dynamic and appear-
ance. It is the mean image of a sequence of normalized
binary silhouettes, as illustrated in Fig. 2. To construct it,
the height-scaled silhouettes are horizontally aligned by the
x-coordinate of their upper-half centroids and, if needed,
neutral background columns are added to both sides so
as to obtain equal-sized images. Then, they are pixel-wise
averaged. Since GEI collects information of many silhou-
ettes, it is widely known by its robustness to silhouette
defects [20]. Moreover, its way of computation guaran-
tees the independence of feature values from recording
parameters.

With the aim of obtaining gait asymmetry measurements,
all features (except one related to posture) are computed
separately for each lower limb. To this end, given a full
sequence of silhouettes, it is split up into segments delimited

by midstance/midswing poses, i.e., each segment comprises
half a cycle. Two groups of segments are built taking them
by turns, in such a way one group contains odd segments
and the other, even ones. A representative step length is
elicited from each group, such that the group with the
shortest (longest) step is labeled as A (B). Since the ultimate
goal is to assess gait asymmetry, the final correspondence
between left/right limb and A/B group is irrelevant.

The representative step length of a group is hereby given
the median of measurements from all segments belonging
to it. Median was chosen due to its greater robustness to
outliers as compared to the mean. This same strategy is
extended to obtain the limb-dependent representative values
of proposed features, except for those based on GEI. In these
cases, two GEI representations are built from all silhouettes
(of every segment) belonging to either A or B groups,
respectively. Since GEI is a mean image, this approach is
expected to be more reliable than choosing the median of a
series of rough GEIs comprising single half-cycle data.

2.3 Gait and posture features

Figure 3 shows a diagram with the taxonomy of the pro-
posed features, which have been split up into two categories:
gait-based (Section 2.3.1) and postural (Section 2.3.2).
Regarding the gait-based category, two branches can be
identified. All features listed on the left side of each one are
considered primary features, since they are directly inferred
from gait data. Conversely, features on the right side repre-
sent asymmetry measurements derived from corresponding
primary features.

2.3.1 Gait-based features

Let f denote a generic primary feature. Let fA and fB be
the representative values of f computed on A and B groups,

Fig. 2 Gait sequence through a
series of key silhouettes, and the
resulting Gait Energy Image
(GEI)
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Fig. 3 Taxonomy of the
proposed gait and posture
features
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respectively. From them, an f -based gait asymmetry mea-
sure Af can be defined as follows:

Af = |fA − fB |
max (fA, fB)

(1)

As observed, image of Af is [0, 1], with 0 corresponding
to a perfect symmetrical gait pattern and 1 to the maximum
gait asymmetry. Equation 1 can be considered a normalized
relationship between two paired measurements (fA, fB )
from a same subject, what makes it suitable for cross-dataset
experiments. The devised primary gait features f , from
which this asymmetry measure is elicited, are introduced
below.

As aforementioned, gait-based features are further
divided into two subgroups as regards the type of input
data, which can be either the raw binary silhouettes or GEI
representations. Within the first subgroup, three primary
features are proposed:

– Stance phase (StP ). It estimates the relative length
of the stance phase in a gait cycle. It is formulated as
StP = stance

stance+swing
, where stance and swing are the

amounts of frames belonging to these two phases.
– Swing phase (SwP ). It estimates the relative length

of the swing phase in a gait cycle. It is formulated as
SwP = swing

stance+swing
, where stance and swing are the

amounts of frames belonging to these two phases.
– Step length (Sl). It represents the distance (in pixels)

covered by one foot in a step.

Given a particular limb, StP and SwP compute the
distribution over time of stance and swing phases, contrary
to their common definition in literature as exclusively
temporal measures. In other words, StP and SwP are
reformulated as the portions ∈ [0, 1] of gait cycles taken
up by stance and swing phases, respectively. Note that both
measures do not depend on frame rate.

Conventionally, detection of start and end of these phases
is carried out by identifying the HS and TO events within
gait cycles [7, 19]. Nevertheless, pathological gait styles
could entail major difficulties to obtain these events. To
properly deal with expected gait disorders, in this work,
stance phase is assumed to start at the moment (video frame)
when distance between feet is maximum, i.e., the bounding

box of the lower half of the silhouettes within a segment
does not grow anymore. For its part, swing phase is deemed
to start when the rear leg is starting to move forward,
i.e., bounding boxes begin to decrease. This method was
statistically validated against a standard procedure [7]
by the results over high-quality neutral sequences, and no
significant differences were found.

In the case of Sl, it is generally obtained by measuring
the distance between two consecutive heel strikes what,
again, could be extremely inaccurate in severely affected
gait patterns. Therefore, it has been inferred here by
measuring the width (in pixels) of bounding box enclosing
the lower part of the silhouette in the frame when stance
phase starts. The use of pixel as unit of measurement in
silhouettes with standardized sizes also facilitates cross-
dataset comparisons.

The second subgroup comprises two other primary
features based on GEI representations which, to our
knowledge, are introduced for first time in this work. The
proposed features are:

– Intensity (I ). It is defined to show the amount of
movement within a GEI area:

I =
∑

p∈F Ip

|F | ,

where Ip = 1 − |gp−127.5|
127.5 measures the motion at a

foreground pixel p, with gp and F being the gray level
of p and the set of foreground pixels, respectively. The
closer to 127.5 gp is, the higher the estimated motion
(up to 1). That is, 127.5 would correspond to a pixel p

that has been background (0) in half of the frames, and
foreground (255) in the other half. This scenario can be
considered of maximum movement, leading to Ip = 1.

– Amplitude (Am). It is defined to show the limb
movement’s broadness:

Am = |F |
|F | + |B| ,

where F and B are the sets of foreground and
background pixels, respectively, with |F | and |B|
denoting the cardinality of both sets.
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Since these two features are intended to focus on lower
limb activity, GEI area was limited to the bottom 33%,
which encloses approximately knees and feet. To build
F and B, GEI pixels with gray values greater than or
equal to 10 were considered foreground, while those lower
than 10 were classified as background. As commented in
Section 2.2, unlike in the previous three features based on
raw silhouettes, fA and fB values of each GEI-based f are
computed from two limb-dependent global GEIs.

2.3.2 Postural feature

In addition to gait-based features which characterize gait
dynamics and asymmetry, a way of measuring the falling
risk (Fr) is formulated by relating patient’s support area
and body tilt. Both parameters are computed from those
frames in which feet reach the largest distance between
them. Support area is measured from the toe of front foot
to the heel of rear foot, while body tilt is determined by the
head position on x-axis. Formally, falling risk is defined as
follows:

Fr = min

(

1,

∣
∣xh − xf

∣
∣

wf /2

)

where xh is the x-centroid of the head, xf is the middle
point between feet in the x-plane, and wf is the width of
the support area. As far as we know, this proposal is also a
novelty of this paper.

The minimum falling risk, Fr = 0, is reached when xh =
xf , that is, when head is vertically aligned with the center of
the support area. On the contrary, the maximum probability
of falling, Fr = 1, occurs when the x-centroid of the head
coincides with, or is located beyond, the front limit of the
support area. As in the silhouette-based measures defined
in Section 2.3.1, this feature is computed once per segment.
However, in this case, there is no further distinction in A and
B groups. The final Fr value is the median of measurements
from all segments together.

2.4 The INIT gait database

The proposed INIT Gait Database1 consists of sequences
of high-quality binary silhouettes extracted from RGB
videos recorded in the specialized studio LABCOM, which
belongs to the audiovisual facilities of University Jaume I.
Ten healthy volunteers, nine males and one female, were
required to walk across a green chroma simulating several
abnormal gait styles. The use of such uniform background

1Dataset is public for research purposes. Instructions to download are
available in http://www.vision.uji.es/gaitDB.

facilitated the binarization of frames and extraction of
high-quality silhouettes, thus reducing the uncertainty when
evaluating the accuracy of features.

Seven impaired gait styles were simulated, in which
movement of limbs and posture of the entire body were
altered to some extent. They are inspired by pathological
gait patterns that are characteristic of certain neurological
diseases such as Parkinson. An eighth style of natural and
unaffected motion has also been included. Each person was
recorded twice under each gait pattern, and all sequences
were acquired from a lateral view, from which limb motion
and body posture can be better described. Gait styles of the
INIT Gait Database are summarized below, named as in the
database file structure:

nm It represents the normal gait pattern of a healthy
person, which is also referred to as neutral or regular
appearance in the database.

l-r0.5 It recreates a gait pattern in which right leg takes
steps roughly one half shorter than left leg.

l-l0.5 It recreates a gait pattern in which left leg takes
steps roughly one half shorter than right leg.

fb It recreates a severely affected gait pattern in which
the full body presents a number of abnormal gait
symptoms: subjects walk slowly, bending the knees,
and taking very short steps barely rising feet from
ground (shuffling gait). Posture is also considerably
modified with respect to a healthy gait style, losing the
vertical position and excessively bending head and chest
forwards. These symptoms are common in advanced
stages of the Parkinson’s disease.

a-r0.5 It recreates a gait pattern in which right arm
swings approximately one half less than left arm.

a-l0.5 It recreates a gait pattern in which left arm swings
approximately one half less than right arm.

a-r0 It recreates a gait pattern in which right arm does
not swing at all.

a-l0 It recreates a gait pattern in which left arm does not
swing at all.

Figure 4 shows a sample of a same subject walking under
a nm, b l-l0.5, c fb, d a-l0.5, and e a-l0 gait styles. The
remaining three have not been included in the figure, since
they are realizations of b, d, and e styles but from the
contrary limb perspective.

3 Results

Two experimental studies have been conducted to evaluate
the sensitivity of the proposed features at characterizing
both normal and impaired gait styles. First, the expected
normality of the nm style was assessed by comparing feature
values from the nm sequences against two references,

http://www.vision.uji.es/gaitDB
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Fig. 4 Samples of the different
gait styles in the INIT Gait
Database

one theoretical and the other empirical. The relevance of
proving normality of nm sequences lies in the confidence
it provides to subsequent comparisons between normal
and pathological styles. This preliminary analysis was also
useful to establish early evidence in favor of the consistency
of features. In a second study, features were computed on
several styles of the INIT Gait Database, to statistically
verify whether features are able to reflect the anomalies
recreated in the different gait patterns.

In the new INIT Gait Database (two sequences per sub-
ject and style), each feature value used in the experiments
results from averaging the two measurements obtained from
both corresponding sequences of a person under analysis.
Furthermore, when a primary feature f is directly involved
in any test, its limb-based measurements fA and fB are
equally considered without any distinction.

3.1 First study: normality assessment of nm
sequences

In this section, the expected regularity of nm sequences from
the INIT Gait Database is verified from both a theoretical
perspective and an empirical one.

3.1.1 Theoretical validation

The cycle distribution between stance and swing estimated
by StP and SwP on nm sequences was compared to their
theoretical values (62:38) introduced in Section 2.1. A one-
sample t-test was applied to each feature to find out whether
the observed StP and SwP values could have been generated
by a process with the mean on paper. This would allow a
validation of the normality of nm sequences assuming that
StP and SwP perform satisfactorily and, on the other hand,
the assessment of StP and SwP provided that nm sequences
fit a normal pattern.

Table 1 summarizes the results of both parametric tests.
As can be observed, p values overtake the significance level
α, which means that the null hypothesis is not rejected
and, therefore, that no relevant differences between the
theoretical mean and our samples have been found. This
supports the assumption of normality of nm sequences.

3.1.2 Empirical validation

Four gait features were used to validate the normality
of the nm sequences from the INIT Gait Database with
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Table 1 One-sample t tests given a known population mean for stance
phase (StP ) and swing phase (SwP ) features over the nm sequences
from INIT Gait Database

StP SwP

◦ ◦
p value 0,7711 0,7711

Symbols “◦” highlight p values above the significance level α =
0.05, indicating irrelevant differences between the sample and the
population theoretical mean

respect to a collection of neutral gait sequences from the
OU-ISIR Treadmill Dataset B [15]. The latter is a general-
purpose gait database composed of indoor recordings of
68 healthy subjects from their side view, wearing up to
32 clothing combinations. Due to their neutral appearance,
only sequences that combine regular pants and full shirt
were considered, which correspond to type 9 sequences
according to the dataset nomenclature. Given a specific
feature, the two population samples (OU-ISIR, INIT) were
compared by an unpaired two-sample t test, assuming
equal variance. Under the reasonable assumption of a
normal pattern in the selected gait sequences from OU-ISIR
database, this test is expected to provide further evidence on
the normality of nm sequences.

The gait features included in this experiment were
ASl , AI , AAm and Fr . They were chosen because of
two reasons: (1) they can be computed from sequences
of normalized silhouettes, as provided by the OU-ISIR
database; and (2) they were designed to be robust to cross-
dataset studies. Results are shown in Table 2. As in the
theoretical validation, in none of the tests has the null
hypothesis been rejected. It statistically supports that both
samples may belong to the same population, strengthening
the assumption of normality of nm sequences.

Regarding the remaining features, some evidence was
found which made them unsuitable to compare treadmill
walking samples of Japanese people (OU-ISIR) against
overground gait sequences of European subjects (INIT).

Table 2 Unpaired two-sample t tests assuming equal variances
between neutral sequences from INIT Gait Database and OU-ISIR
Database

ASl AI AAm Fr

◦ ◦ ◦ ◦
p value 0,2957 0,3415 0,9124 0,1634

Features involved are the asymmetries in step length (ASl), intensity
(AI ) and amplitude (AAm), and the fall risk factor (Fr). Symbols “◦”
highlight p values above the significance level α = 0.05, indicating
irrelevant differences between both samples

For instance, [2] stressed a lower normalized step length in
Asian people than in European people. Another work [26]
showed significant differences in step length and stance-
swing distribution between overground and treadmill loco-
motion, which directly affect the intensity and amplitude of
leg motion. Exploratory tests with Sl, I and Am confirmed
these expected differences. In addition, StP and SwP (and
their corresponding asymmetries) could not be accurately
computed from the out-of-context silhouettes provided by
OU-ISIR, due to the fact that neither their original position
in the scene nor source recordings are available.

3.2 Second study: ability of features to characterize
gait anomalies

In this study, features introduced in Section 2.3 were
computed on gait sequences corresponding to four styles out
of the eight comprised in the INIT Gait Database. Styles
involved were nm, l-r0.5, l-l0.5, and fb. Only those that
mimic arm disorders were excluded, motivated by the belief
that features formulated are not as suitable for describing
arm motion as for characterizing movement in leg region.
Unlike the latter, arm dynamic is largely occluded by
torso; thus, appropriate features should probably weight
the perceived motion by some measure of the size of the
trunk.

Since every subject appears walking in all styles, a
number of parametric pairwise tests were applied in order to
find out whether there exist statistical differences between
feature values computed on normal gait patterns and those
computed on each pathological style. This study has been
broken down into two subsections, focusing on nm vs. fb
and nm vs. l-r0.5/l-l0.5 comparisons, respectively.

3.2.1 Normal style (nm) versus full-body disorder style (fb )

A first analysis involved the six features that do not entail
asymmetries: stance phase (StP), swing phase (SwP), step
length (Sl), intensity (I), amplitude (Am), and falling risk
(Fr). A second analysis covered the five asymmetry-driven
measures inferred from previous features: AStP , ASwP , ASl ,
AI and AAm.

The upper half of Table 3 shows the results of paired two-
sample t tests on the first group of features. As expected,
significant differences were found in the behavior of StP,
SwP, Sl, I, Am, and Fr. These results prove the sensitivity of
features at reflecting the severe gait impairment recreated in
fb samples. The second analysis comprehends the lower part
of Table 3, which includes the results over the five asym-
metry features. No statistical differences were found when
computing two of them (AStP , ASwP ), while significant
changes were observed in ASl , AStP , and ASwP . Further
details about these findings are given in Section 4.
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Table 3 Paired two-sample t
tests performed on the INIT
Gait Database between neutral
(nm) sequences and full body
affected (fb) sequences

StP SwP Sl I Am Fr

• • • • • •
p value 5,56E-07 5,56E-07 6,33E-23 1,88E-13 1,31E-20 2,97E-07

AStP ASwP ASl AI AAm

◦ ◦ • • •
p value 0,0570 0,8859 0,0136 0,0011 0,0054

Symbols “◦” (“•”) highlight p values above (below) the significance level α = 0.05, indicating irrelevant
(substantial) differences between samples

3.2.2 Normal style (nm) versus one-leg disorder styles
(l-r0.5, l-l0.5 )

The comparison between the nm style and the two one-
leg disorder styles (l-r0.5, l-l0.5) was based on the five
asymmetry features (AStP , ASwP , ASl , AI , AAm) and
the falling risk (Fr). The limb-dependent primary features
(StP, SwP, Sl, I, Am) were discarded because a single
general value f representing both limbs makes no sense in
asymmetrical patterns of leg motion as those simulated in
l-r0.5 and l-l0.5 styles.

The t test results corresponding to the six involved
features are shown in Table 4. By way of summary, in three
of them (ASl , AI , AAm), significant differences were found
between the nm and l-r0.5/l-l0.5 styles, while the remaining
three features (AStP , ASwP , Fr) showed a statistically
similar behavior when operating in both scenarios. Next
section gives a deeper interpretation of these results.

Additionally, by way of supplementary information,
Appendix includes two tables with the feature values
measured on the INIT Gait Database styles considered
in the experiments. Table 5 shows the limb-dependent
values of primary features and falling risk for each style,
while Table 6 reflects the values of asymmetry measures.
For the sake of clearness, presented feature values are
averages, together with standard deviations, over all subject
measurements. Note that these values do not match with
those used in the experiments, where values per person were
required to perform the t tests. As it can be seen, broad
margins can be identified between domains of values from

the normal style and those corresponding from pathological
styles. This would allow physicians to establish reliable
thresholds for assessing the existence and severity of a gait
disorder.

4 Discussion

Results have been remarkably consistent with expectations.
This can be explained by two factors that, in our opinion,
have been extensively verified: (1) the well-defined gait
styles included in the INIT Gait Database, and (2) the
effectiveness of features at characterizing the normal and
pathological gait patterns.

These two premises were first tested in the study of
normality of nm sequences (Section 3.1), which established
the consonance of the empirical relative lengths of
stance/swing and their ideal values. It supports both the
neutrality of the nm sequences and the validity of StP

and SwP . This study also entailed a successful cross-
database comparison that proved the robustness of features
to different video settings. As commented, it makes possible
to directly compute gait features from videos acquired by
heterogeneous devices.

As regards the second study (Section 3.2), Table 3 shows
consistent behaviors of the primary features when coping
with two quite dissimilar symmetrical styles such as nm
and fb. This is a relevant finding since the fb style is a
heavily affected gait pattern that involves extra complexity
to be analyzed. In particular, the greatest differences were

Table 4 Paired two-sample t
tests performed on the INIT
Gait Database between neutral
(nm) sequences and right leg
half motion (l-r0.5) or left leg
half motion (l-l0.5) sequences

AStP ASwP ASl AI AAm Fr

nm vs. l-r0.5 ◦ ◦ • • • ◦
p value 0,5269 0,6510 1,87E-06 0,0024 5,81E-06 0,1611

nm vs. l-l0.5 ◦ ◦ • • • ◦
p value 0,7398 0,7942 1,29E-05 0,0026 7,94E-06 0,7514

Symbols “◦” (“•”) highlight p values above (below) the significance level α = 0.05, indicating irrelevant
(substantial) differences between samples



1562 Med Biol Eng Comput (2018) 56:1553–1564

obtained in step length (Sl), amplitude (Am), and intensity
(I ) of leg motion (their null hypotheses of equal means were
rejected by larger margins). As regards Fr , it was clearly
affected by the hunched posture reflected by fb style, as well
as by its shorter steps which produce a narrow support area.

Concerning the asymmetry measures from the lower
part of Table 3, no statistical differences were found when
computing AStP , ASwP . This illustrates that any underlying
alteration in stance/swing portions within the gait cycles
takes place equally in both limbs, what effectively occurs
in fb style as compared to normal gait (nm), leading to
similar asymmetry values. It can be easily corroborated
checking Table 5. Conversely, statistical differences were
found on ASl , AI , and AAm. However, a closer look at their
corresponding mean results in Table 6 (columns 3–5; rows 1
and 4) reveals very low asymmetry values in both nm and fb
styles: ≤ 0.1 in the range [0, 1]. This behavior is explained
by the greater impact of differences between Sl, I , and A

measurements on both limbs (columns A, B from Table 5)
in the computation of fb asymmetries. That is, the relative
nature of Eq. 1 stresses the influence of a given discrepancy
when it comes from smaller magnitudes. The fact that such
slight differences in these nm and fb asymmetry features
were deemed significant by the statistical tests, proves them
as a rigorous and reliable validation method.

Concurrently, asymmetry features were also very precise
at measuring the one half shorter step reproduced by
one of the legs ( Table 4), a disorder that substantially
affects the symmetry of step length (ASl), as well as of
intensity (AI ) and amplitude (AAm). As shown in the table,
the null hypotheses (of equal means) associated to their
corresponding paired two-sample t tests were rejected by
very large margins. Nevertheless, contrary to what might
seem logical at first, a shorter step had no impact on
stance/swing asymmetry measures (AStP , ASwP ). That is, a
shorter step does not alter the portions of a gait cycle taken
up by stance and swing stages in comparison to normal gait,
as reflected by Table 5. Finally, no significant difference
was found in Fr computation. This is also in agreement
with expectations, since one-leg disorder is not supposed to
influence subject’s posture nor the support area (which is
determined by the leg with normal motion).

It is worth recalling that all measures (except Sl) range
from 0 to 1, what can be directly understood by physicians.
This fact makes them semantic, easy-to-interpret features.

5 Conclusions

This work proposes a readable and robust characterization
of common gait and posture disorders, which consists in
a number of video-based gait features. They are intended
to provide normalized and invariant information when gait

is being used to diagnose health condition, for instance,
in primary health care for elderly people or in Parkinson’s
disease. Moreover, a new gait database including normal
and impaired gait videos is introduced in this paper, with
the object of proving the suitability of features. This
dataset, named INIT Gait Database, has been made publicly
available to the research community, aiming at fostering
future studies about gait measurement.

A first study was conducted to test both consistency
of features and neutrality of those gait samples from the
new database recorded under the normal pattern. On the
one hand, estimations of the relative lengths of stance and
swing phases in normal gait samples were compared against
their expected ideal values. On the other hand, behavior
of features was analyzed when performing on normal gait
samples from both the new database and a well-known
general-purpose gait dataset. In a second study, sensitivity
of features to reflect the impaired gait styles recreated in the
new database was also assessed.

Experimental results, all of them supported by statistical
tests, proved the reliability of the proposed features. In the
first study, their values were in statistical agreement with
their theoretical expectations and with each other when
they were computed on the two independent collections of
normal gait samples. This also provided strong evidence in
favor of the validity of the new database. The second study
showed the accuracy of features at measuring and describing
different walking styles.

By way of conclusion, some promising directions for
future research are suggested next. First, this paper has not
delved into effective ways of characterizing arm motion.
As aforementioned, arm dynamic is heavily overlapped by
torso, mainly in binary silhouette images. Any satisfactory
solution to this problem should consider the extent of
overlapping. To tackle this open matter, the INIT Gait
Database includes sequences where upper limb motion
is affected at different degrees. Second, from an applied
point of view, the proposed features should be evaluated in
truly impaired gait samples, for example, from patients of
Parkinson’s disease. Our immediate goal is to work in this
direction. Finally, we believe that semantic and invariant
gait features like those proposed in this paper, along with
the ease of gathering gait videos from ubiquitous simple
devices, open the door to the development of low-cost
vision systems that can potentially be used in ambulatory
services.
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Appendix : Feature values from the INIT gait
database
Table 5 Means and standard deviations of primary features, computed over all subjects for each gait style in the INIT Gait Database

StP SwP Sl I Am Fr

A B A B A B A B A B

nm 0.62± 0.61± 0.38± 0.39± 106.13± 108.45± 0.65± 0.66± 0.55± 0.56± 0.07±
0.03 0.03 0.03 0.03 6.75 6.42 0.01 0.02 0.04 0.04 0.04

l-r0.5 0.61± 0.61± 0.39± 0.39± 72.50± 104.30± 0.54± 0.66± 0.40± 0.54± 0.10±
0.03 0.04 0.03 0.04 12.81 11.29 0.09 0.02 0.06 0.06 0.06

l-l0.5 0.63± 0.62± 0.37± 0.38± 70.80± 103.25± 0.51± 0.67± 0.37± 0.55± 0.08±
0.04 0.05 0.04 0.05 14.37 7.04 0.11 0.02 0.06 0.03 0.04

fb 0.71± 0.70± 0.29± 0.30± 60.38± 65.03± 0.36± 0.40± 0.32± 0.34± 0.85±
0.06 0.06 0.06 0.06 5.31 7.09 0.06 0.08 0.03 0.04 0.16

Values are sorted in such a way that A columns always correspond to the leg with a lower Sl in each style

Table 6 Means and standard deviations of asymmetry features,
computed over all subjects for each gait style in the INIT Gait Database

AStP ASwP ASl AI AAm

nm 0.03± 0.05± 0.02± 0.03± 0.04±
0.01 0.02 0.01 0.01 0.03

l-r0.5 0.04± 0.06± 0.30± 0.18± 0.27±
0.02 0.02 0.09 0.12 0.08

l-l0.5 0.04± 0.06± 0.32± 0.24± 0.32±
0.03 0.04 0.11 0.16 0.09

fb 0.02± 0.05± 0.07± 0.10± 0.08±
0.02 0.04 0.04 0.06 0.03
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