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Abstract
Coronary artery disease (CAD) is the leading cause of death around the world. One of the most common imaging
methods for diagnosing CAD is the X-ray angiography (XRA). Diagnosing using XRA images is usually challenging
due to some reasons such as, non-uniform illumination, low contrast, presence of other body tissues, and presence of
catheter. These challenges make the diagnosis task hard and more prone to misdiagnosis. In this paper, we propose a
new method for coronary artery segmentation, catheter detection, and centerline extraction in X-ray angiography
images. For the segmentation, initially, three different superpixel scales are exploited, and a measure for vesselness
probability of each superpixel is determined. A voting mechanism is used for obtaining an initial segmentation map
from the three superpixel scales. The initial segmentation is refined by finding the orthogonal line on each ridge
pixel of vessel region. The catheter is detected in the first frame of the angiography sequence and is tracked in other
frames by fitting a second order polynomial on it. Also, we use the image ridges for extracting the coronary artery
centerlines. We evaluated and compared our method with one of the previous well-known coronary artery segmen-
tation methods on two challenging datasets. The results show that our method can segment the vessels and also
detect and track the catheter in the XRA sequences. In general, the results assessed by a cardiologist show that 83%
of the images processed by our proposed segmentation method were labeled as good or excellent, while this score
for the compared method is 48%. Also, the evaluation results show that our method performs 67% faster than the
compared method.
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1 Introduction

Coronary artery disease (CAD) is one of the major causes of
death in the world. In this disease, the coronary artery get
narrowed by a substance called plaque. The narrowness pre-
vents blood to reach the heart properly. This narrowness grad-
ually gets more severe and without treatment, if enough blood
does not reach to the heart, heart attack may occur. Another
severe problem that may happen in this situation is that the
rupture of the plaque made in the arteries can block other vital
smaller blood vessels, mainly in the brain, where it provokes a
stroke. Cardiologists use different imaging modalities.
However, XRA is taken as a gold standard for assessment of
CAD [1]. In this imaging method, the patient lies down on the
bed, and a thin hallow tube called catheter is inserted through
the patient’s arteries from groin, neck, or arm. When the cath-
eter reaches the intended artery, the contrast agent is injected,
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and usually two to four sequences of heart performance are
captured. Cardiologists can find the places of the stenosis and
determine their severity by watching these videos. Although
XRA images are being extensively used by cardiologists
around the world, they are usually very challenging images.
Non-uniform illumination, low contrast, low signal to noise
ratios, presence of other body tissues, and catheter are some of
the most common challenges. In some cases, the mentioned
challenges may cause misdiagnosis.

Many image processing methods have been proposed for
XRA images. These methods can be categorized into two
parts as XRA image enhancement and coronary artery seg-
mentation methods. The aim of the enhancement methods is
to improve visual quality of the input XRA image which may
help easier segmentation of arteries. In [2], by constructing the
Hessian matrix of the input image and analyzing its eigen-
values, a vesselness measure is obtained. Because of some
drawbacks of [2], such as noise sensitivity and junction sup-
pression, in [3], a method for vesselness measurement is pro-
posed which is based on decimation-free directional filter
bank. In [4], a method for detecting and enhancing the region
of interest (ROI) in XRA images was proposed. In this meth-
od, the vesselness measure of Hessian filter is enhanced using
guided filter. Since the diaphragm border is present in some
XRA images and may mislead the artery segmentation meth-
od, in [5], a diaphragm border detection and removal method
is proposed. In [6] the authors proposed a method that is able
to separate an XRA into three separate layers which are
breathing layer, a quasi-static layer, and a vessel layer. These
layers were extracted by using morphological closing operator
and an online Principle Component Analysis (PCA)
algorithm.

Another method for increasing XRA image quality is
through using digital subtraction angiography (DSA). In
DSA method, a frame at the beginning of an XRA sequence,
in which the contrast agent is not injected, is considered as a
mask frame. Also, a frame, in which the contrast agent is fully
injected, is considered as the contrast frame. Then, the mask
frame is subtracted from the contrast frame. In an ideal se-
quence, in which there is no camera and other body organs
like lung and heart movements, the background is omitted in
the resulted image. But due to the camera and body organ
movements, some artifacts will be generated.

In order reduce the artifacts caused by misalignment in
DSA, several methods have been proposed for registration
of DSA images. In [7], a three-steps DSAmethod is proposed.
In [8], a multi-resolution algorithm for non-rigid image regis-
tration was proposed, in which the input images are
decomposed into coarse and fine sub-image blocks iteratively.

Segmentation of the coronary artery in XRA images is
usually done after a preprocessing step for enhancement.
The aim of the segmentation in XRA images is to detect the
whole artery structure automatically without missing any

major part. A good segmentation method results in less effort
for a specialist to look for the artery tree. Some researches in
the recent years have been devoted to coronary artery segmen-
tation methods. In [9], several vessel segmentation methods
are reviewed and categorized as pattern recognition, model-
based, tracking-based, artificial intelligence-based, neural net-
work-based, and miscellaneous tube-like object detection ap-
proaches. In [1], another review is done on coronary artery
segmentation methods and their capabilities are compared. In
[10], the vesselness measure obtained by Hessian filter was
combined with flux flow measurements and the vessels were
segmented by analyzing the connected components. In [11], a
graph-cut based segmentation method was proposed for cor-
onary artery.

In this paper, we propose a new automatic framework for
coronary artery segmentation, centerline extraction, and cath-
eter detection. In the preprocessing stage, due to the low con-
trast nature of the XRA input images, the contrast is enhanced.
For better detecting the artery region, a vesselness detection
method is used which is based on Hessian matrix analysis.
Also for detecting the image ridges for further processing in
the next stages, a proper smoothing method is used which uses
the contrast-enhanced image and the vesselness map. In the
artery segmentation stage, an efficient superpixel algorithm is
exploited for coronary artery segmentation. Also, in this meth-
od, in order to find the catheter and reduce the false detection
caused by detecting the catheter as an artery, we use our pre-
vious catheter detection and tracking method [12].

In summary, the contributions of the proposed method are
the following:

& Segmentation of coronary artery by exploiting a
superpixel algorithm in a multi-scale fashion in order to
detect arteries with different sizes.

& Exploiting a catheter detection and tracking method, for
reducing the false detection caused by detecting the cath-
eter as an artery.

& Extracting the coronary artery centerlines by using the
calculated segmentation mask and the ridges of the input
frame of the XRA sequence.

2 Methods

2.1 Background materials

2.1.1 Superpixel

Superpixel algorithms are segmentation methods used for
grouping pixels into perceptually meaningful regions which
can be used to replace the rigid structure of the pixel grid [13].
In this method, first of all, a desired superpixel number k is
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determined on the image withN pixels. Then a superpixel grid

is produced with SP ¼ ffiffiffiffiffiffiffiffiffiffi
N=K

p
intervals. Each pixel i in the

image is assigned to the nearest cluster center whose search
region overlaps it. This is done by computing a distance mea-
sure shown in (1):

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2c þ

ds
SP

� �2

m2

s
ð1Þ

In Eq. (1), D is the distance between a pixel i and a cluster
center, m shows the relative importance between color simi-
larity and spatial proximity, dc and ds are color distance and
spatial distance which are shown in Eqs. (2) and (3) respec-
tively:

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l j−li
� �2q

ð2Þ

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x j−xi
� �2 þ y j−yi

� �2
r

ð3Þ

In Eqs. (2) and (3), li, xi, and yi represent the intensity value,
row, and column numbers of pixel i respectively. After
assigning each pixel to a cluster center, an update step changes
the cluster centers to the mean [l, x, y]T vector of all pixels
belonging to the cluster. This assignment and updating steps
are repeated iteratively until the error, which is computed
using L2 norm, converges. By using SLIC superpixel method
on XRA images, the superpixels are accurately fit on the ar-
teries borders.

2.1.2 Vesselness map

Vesselness measure is calculated for every pixel, showing the
probability of that pixel being a vessel pixel. Vesselness mea-
sure could be obtained by using Hessian filter [2]. In this filter,
at the beginning, the Hessian matrix of the input XRA image I
is constructed as follows:

H ¼ Ixx Ixy
Ixy Iyy

	 

ð4Þ

Where, Ix and Iy are computed by convolving the first order
derivatives of Gaussian function in horizontal and vertical
directions on the original image I as shown in Eqs. (5) and (6):

I x ¼ σlGx;σ*I ð5Þ
Iy ¼ σlGy;σ*I ð6Þ

In Eqs.(5) and (6), ∗ is the sign for the mathematical con-
volution operator, and l is the Lindberg factor used for nor-
malizing the images derivative in different scales, which is 1
in this method. Also, Gx, σ and Gy, σ are the first-order deriv-
atives in x and y directions of the Gaussian function with

standard deviation of σ respectively. The second order
derivatives Ixx, Iyy indicated in Eq. (4) are obtained by con-
volving the second-order derivatives of Gaussian function in
horizontal and vertical directions on I. By considering two
eigenvalues of the Hessian matrix as λ1 and λ2 that λ1 < λ2,
the vesselness measure for scale s is computed using Eq. (7):

Vo sð Þ ¼
0 if λ2 < 0

e−
RB

2

2β2 1−e−
S2

2c2

� �
if λ2≥0

(
ð7Þ

where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2
1 þ λ2

2

q
is the structural similarity measure and

RB = λ1/λ2 is the non-similarity measure. Also β and c are two
thresholds that control the non-similarity and the structural
similarity measures respectively. The Hessian final vesselness
measure is obtained by using all scales as follows:

V ¼ max
smin ≤ s≤ smax

Vo sð Þ ð8Þ

In Eq. (8), V is the final vesselness measure and smin and
smax are minimum and maximum scales used for vessels.

Because of noise sensitivity and junction suppression of
Hessian filter, in [3], decimation-free directional filter bank
(DDFB) is used. In this method, in order to prevent image
degradation due to alignment of vessels with x-axis, the coor-
dinates are rotated. Hence, the Hessian matrix is changed as
follows:

H
0 ¼ I x0 x0 Ix0 y0

I x0 y0 Iy0 y0

	 

ð9Þ

where

Ix0 x0 ¼ Ixxcos2θi þ Ixysin 2θið Þ þ Iyysin2θi ð10Þ
Iy0 y0 ¼ Ixxsin2θi þ Ixysin 2θið Þ þ Iyycos2θi ð11Þ

Ix0 y0 ¼ −
1

2
Ixxsin 2θið Þ þ Ixycos 2θið Þ þ 1

2
Iyysin 2θið Þ ð12Þ

In Eqs.(10), (11), and (12), θi is the orientation of a direc-
tional image with minimum and maximum orientations of θi,
min and θi, max which is computed as follows:

θi ¼ θi;min þ θi;max

2
ð13Þ

2.2 Proposed method

In this subsection, the proposed framework is explained with
details. The block diagram of the proposed framework is
shown in Fig. 1. Our method consists of three major stages:
preprocessing, catheter detection, and coronary artery seg-
mentation. The results of the preprocessing stage are passed
to the catheter detection and coronary artery segmentation
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stages. After segmenting the coronary artery, and detecting the
catheter and extracting the centerlines, three masks are gener-
ated for arteries and catheter. Then, they are overlaid on the
contrast-enhanced image. The details of each stage are
discussed in the following:

2.2.1 Preprocessing

Contrast enhancement One of the challenging problems in
processing XRA images is their low contrast intensity that
makes it hard to differentiate vessels from the background.
In order to increase the contrast of these images, by

considering makes it hard to differentiate vessels from the
background. In order to increase the contrast of these images,
by considering the scales of arteries, we use multi-scale top-
hat transform [14]. In Fig. 2b, the result of applying this trans-
form on anXRA image is shown. By comparing Fig. 2a, b, we
can see that the contrast of Fig. 2a has increased properly, and
the artery structure is completely visible after contrast
enhancement.

Vesselness measurement In order to obtain an appropriate
vesselness map, we use the method of [4], which has low
noise sensitivity and high robustness in junction areas as com-
pared to Hessian filter. We use this vesselness measure in two
distinct steps. The first one is for obtaining a vesselness map
from the original input image in order to exploit it for

(a) (b)

(c) (d)

(e)
Fig. 2 Result of the preprocessing stage. a Original image. b Contrast-
enhanced image. c Vesselness measurement using directional Hessian-
based method. d Smoothed image. e Ridge map
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smoothing the input image. The second step is for obtaining a
vesselness map from the contrast-enhanced image that is used
in the segmentation stage for determining the vesselness of
each superpixel. In Fig. 2c, the result of applying this
vesselness measurement method on an XRA image is shown.
By comparing the original image with its vesselness map, we
can see that the artery has higher vesselness values as com-
pared to the background.

Guided smoothing In addition to the presence of artery and
catheter structures in the original image and in the contrast-
enhanced image, other body organs and tissues might exist in
these images. As we want to extract image ridges in the next
step, here, we need to smooth the input image. This is done to
remove other body tissues and organs that may add some
unwanted and extra ridges. Simple smoothing functions such
as Gaussian filter can smooth an image properly that may also
suppress important image edges. Therefore, we use Guided
filter [15] which is an edge-preserving smoothing filter.
Here, we used the vesselness map as the guidance image
and contrast-enhanced image as the filtering input image.
Hence, we can smooth the contrast-enhanced image by pre-
serving its important valleys. In Fig. 2d, the result of applying
this edge-preserving smoothing filter on an XRA image is
shown. It can be seen that the artery and catheter valleys are
preserved appropriately and other regions are smoothed.

Ridge detection Image ridges have important role in our pro-
posed segmentation and catheter detection. As arteries and
catheters are exposed as valleys, finding the valleys and their
ridges are essential for their detection. Here, we have
exploited a ridge detectionmethod based on [16]. In this ridge,
detection method using Eq. (14), valleys that are more than a
threshold are obtained and their ridges are determined.

Valley ¼ jjS j > μv

� � ð14Þ

In Eq. (14), Valley represents the set of all detected
valleys in the smoothed image, Sj is the valley response
at pixel j, and μv is the threshold for valley detection.
Instead of using one threshold, we use three different
thresholds. The higher threshold TH, which generates
less ridge lines, is used in the segmentation refinement
stage. The medium threshold TM, which results in more
ridge lines, is used in the catheter detection and tracking
stage. The lower threshold TL, which produces more
ridges than medium threshold, is used in the initial seg-
mentation and in the centerline extraction stage. In Fig.
2e, the result of applying this ridge detection method,
on the smoothed image with lower threshold TL equal to
0.2, is shown. It can be seen that the image ridges
including artery ridges and catheter ridge are properly
detected.

2.2.2 Catheter detection and tracking

The purpose of this stage is to detect the catheter ridge in the
first frame of the input XRA sequence. The catheter ridges
detected in the first XRA frame, and then we can track the
catheter ridge throughout the sequence. After detection, a
mask for catheter is produced that is used for distinguishing
the catheter from the artery.

Catheter detection In the first few frames of an XRA se-
quence, only catheter and some artifacts exist. But when the
contrast agent is injected, artery ridges appear as well.
Therefore, we detect the catheter ridge in the first frame of
the input sequence and then track it throughout the sequence.

In order to detect the catheter ridge, we proposed an algo-
rithm based on Hough transform [2]. In this algorithm, we
apply Hough transform on the first ridge frame of the XRA
sequence and find the top ten longest line segments that are fit
on the ridges. In the ridge map, the catheter ridge appears as
the longest curve, and more lines are fit on it than other curves
in the ridge image. Therefore, the ridge segment with the
maximum lines on it is selected as the catheter ridge. Also,
if two ridges exist with the same number of line segments on
them, we select the ridge with the longest line. In Fig. 3 , the
result of the catheter detection algorithm is shown. Figure 3a is
first XRA frame; Fig. 3b is the first ridge frame. Figure 3c

(a) (b)

(c) (d)
Fig. 3. Result of Proposed catheter detection algorithm. a Original XRA
first frame. b First frame ridge map. cResult of finding lines using Hough
transform. d Detected catheter ridge
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shows the lines fitted on the first frame ridges. Figure 3d is the
catheter ridge that is selected by our proposed algorithm. By
comparing Fig. 3b, d, our proposed algorithm could success-
fully find the catheter ridge in the first frame of the input
sequence.

Catheter tracking Due to the camera and heart motions, the
catheter ridge appears to have a movement in different frames.
Therefore, the position of catheter ridge in the second frame
differs from its position in the first frame of the input se-
quence. Hence, we can fit a second-order polynomial on the
catheter ridge in the first frame and use its parameters in order
to find the catheter ridge in the second frame. A second-order
polynomial is as follows:

y ¼ ax2 þ bxþ c ð15Þ

By fitting the polynomial in Eq. (15) on the detected catheter
ridge in the first frame of the input sequence, we obtain three
values for parameters a, b, and c. We pass these parameters to
the second frame and use them as initial values for searching
the catheter ridge in limited search area. The second order
polynomial, having the most ridge pixels, is detected using
Eq. (16). This process is done for all frames sequentially.

BestCurvei ¼ argmax
ai;bi;ci

N ai; bi; cið Þf g ð16Þ

In Eq. (16), BestCurvei is the set of coefficients a, b, and c
that best fit on the catheter ridge in frame i. Also,N(ai, bi, ci) is
the number of ridge pixels that lie on the specified polynomial.
The output results of this catheter detection and trackingmeth-
od will be further discussed in the next section.

2.2.3 Coronary artery segmentation

Here, we propose our coronary artery segmentation method.
In this method, initially a naive segmentation is done using
superpixel and ridge map. Then, the result of the initial seg-
mentation is refined by finding the orthogonal lines on the
arteries and removing extra parts including the background.

Initial segmentation In this paper, we exploit SLIC superpixel
algorithm [13] for artery segmentation. In Fig. 4, the result of
applying SLIC superpixel algorithm on a contrast-enhanced
XRA image is shown. By applying SLIC superpixel algorithm
on XRA images, superpixels are completely fit on artery spe-
cially the main vessels. Considering Fig. 4b, in order to seg-
ment the artery using superpixel algorithm, there should be an
automatic mechanism for making decision on each superpixel,
whether that superpixel is on the vessel or not. This is chal-
lenging because it directly affects the accuracy of the segmen-
tation task. We use both the contrast-enhanced image and the
vesselness map, which were obtained from the preprocessing

stage. At first, the SLIC superpixel algorithm is applied on the
contrast-enhanced image, as illustrated in Fig. 4. Each
contrast-enhanced image has a corresponding vesselness
map. Therefore, the superpixel grid obtained on the contrast-
enhanced image (e.g., shown in Fig. 4b) is laid on the corre-
sponding vesselness map. This task is shown in Fig. 4c, d. For
each superpixel in the contrast-enhanced image in Fig. 4c, we
have a corresponding superpixel in its vesselness map in Fig.
4d. Let Ice and Iv be the contrast-enhanced image and the
vesselness map respectively. Then, the average intensities of
every two corresponding superpixels in Ice and Iv are comput-
ed as follows:

nce;si ¼
∑ jsi jð Þjsi∈I ce

n o

Nsi
ð17Þ

nv;si ¼
∑ jsi jð Þjsi∈I v

n o

Nsi
ð18Þ

where nce;si and nv;si are the average intensities of the ith
superpixels in the contrast-enhanced image and vesselness
map respectively. Also, j and Nsi are the jth pixel and the
number of pixels in the ith superpixel respectively.

As shown in Fig. 4c, artery pixels are darker than the back-
ground pixels in the contrast-enhanced image. This situation is
opposite in the vesselness map where artery pixels are brighter
than the background pixels. Therefore, the value of nce;si

(a) (b)

(c) (d)
Fig. 4 Result of applying SLIC superpixel on an XRA image. aContrast-
enhanced XRA images. b SLIC result on a. c Superpixel grid on
Contrast-enhanced XRA image. d Superpixel grid on vesselness map
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should be low in artery superpixels, and it should be high in
background superpixels. On other hand, the value of nv;si
should be high in artery superpixels and low in background
superpixels.

In order to distinguish artery superpixel from background
superpixels, we compute a vesselness probability for each
superpixel as follows:

ρsi ¼ nv;si−nce;si ð19Þ

where ρsi is the vesselness probability for the ith superpixel.

The value of ρsi in Eq. (19) is normalized between 0 and 1.

After normalization in the artery superpixels, due to the large
values of nv;si and small values of nce;si , the ρsi values should
be high (near 1). In the background superpixels, due to the
small values of nv;si and large values of nce;si , the ρsi values
should be low (near 0). Therefore, a vesselness probability is
obtained for each superpixel. In order to find artery
superpixels, we determine a threshold for ρsi values as illus-
trated in Eq. (20):

si∈∫Vessel if ρsi ≥T
si∈∫Background if ρsi < T

(
ð20Þ

where si is the ith superpixel and T is the threshold. Therefore,
the superpixels, with ρsi values higher than T, are determined

as vessels. Also, superpixels with ρsi lower than T are consid-
ered as background. It is worth mentioning that a very low T
value will cause a large part of the background to be selected
as arteries and a high T value will dismiss major artery parts.
Therefore, a tradeoff should be considered.

In order to make the initial segmentation better, we use the
low threshold (TL) ridge map obtained in the preprocessing
stage.We find ridges that have overlapped with the segmented
regions using superpixels. Any superpixel, which lies on these
overlapping ridges, is added to the segmentation result.

In XRA images, arteries with different scales are present.
Hence, working with just one scale of superpixels is problem-
atic, and wemay losemajor parts of arteries. Hence, the whole
procedure is performed for three different superpixel scales.
Then the three initial segmentation maps obtained from the
three scales, are used for generating a unique initial segmen-
tation result. In order to do this, we used a voting mechanism
between each corresponding pixel in these three maps. Here,
for each pixel, if more than onemap votes to its vesselness, the
pixel is considered as vessel and otherwise it will be treated as
background. In Fig. 5, the results of the initial segmentation
stage on two different XRA images are shown. By comparing
the segmentation results with the original XRA images, it can
be seen that the initial results have completely segmented the
arteries. In the initial segmentation results, in addition to the
arteries, some background superpixels are also selected as
arteries due to having high ρsi values (as some background

parts resemble the arteries). Therefore, in order to remove the
extra parts, we need to do some refinements on the initial
segmentation obtained in this step. Therefore, in order to re-
move the extra parts, we need to do some refinements on the
initial segmentation obtained in this step.

Segmentation refinement In order to remove the background
parts from the initial segmentation result, we process the initial
result using orthogonal lines on arteries. For this purpose, the
ridge map obtained in the ridge detection stage using a high
threshold (TH) is filtered using initial segmentation result.
Therefore, the extra ridges are removed.

For finding the orthogonal lines on arteries, as illustrated in
Fig. 6, we traverse the ridges and on each ridge pixelO a circle
C with the diameter of d is considered that is centered on O.
For this circle, all the diameters, with different direction from
1 to 180°, are determined. Then, the average intensities of
these diameters are computed. In Fig. 6, the line R is the ridge
line and the diameter L is the orthogonal line. As the arteries
are darker than the background and the orthogonal diameter
has the least number of pixels in the artery, the diameter with
the highest average intensity is determined as the orthogonal
diameter. In Fig. 7, the result of applying the proposed algo-
rithm for finding orthogonal line is shown. The diameters are
the white lines. For example, the diameter with 1, 45, 90, and
180°,, and are shown and the diameter with 165° is detected
successfully as the orthogonal line.

(a) (b)

(c) (d)
Fig. 5 Results of initial segmentation. a, b Original XRA images. c, d
Final results of the initial segmentations stage
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Because of the presence of noise in the contrast-enhanced
image, the intensities of orthogonal line pixels are smoothed
using an averaging filter. We need to further remove the extra
ridge pixels that are still present. Hence, we filter these ridge
pixels by considering pixel intensities that exist on the lines
orthogonal to these pixels. As the orthogonal lines pass across
the arteries at each ridge pixel, their intensities shouldmake an
inverse Gaussian profile. Such Gaussian profile has a mini-
mum in the middle and two maximums, one in each side as
illustrated in Fig. 8. This means that the differences between
the minimum and the two maximums should be higher than a
value. Otherwise, the profile does not belong to an artery.
Therefore L1 and L2 shown in Fig. 8 should be higher than a
minimum distance threshold Td as there may be some

exceptions in some XRA images; in which the contrast of
the vessels are generally low, we consider another criterion
that may keep some ridge pixels that are on vessels and re-
moved using Td threshold. For this aim, firstly, the intensity of
contrast-enhanced image pixels corresponding to ridge pixels
is sorted in ascending order. Then the average of the fourth
quarter of these intensities is computed and named as ar. For
each ridge pixel, we find its corresponding pixel value in the
contrast-enhanced image. If the grayscale value of that pixel is
higher than average value ar, that ridge pixel is kept as an
artery ridge. This adaptive threshold will be more robust to
varying XRA image quality.

After removing the extra ridge pixels, on the remaining
pixels, the Gaussian profiles of the orthogonal lines are proc-
essed in order to find the two boundaries of the arteries on
each ridge pixel. This process is illustrated in Fig. 9. Here, we
begin the search from each side of the profile and compute the
difference between the current pixel and the next pixel. If the
difference is larger than or equal to a pre-defined threshold, the

(a) (b) (c)

(d) (e) (f)

Fig. 7 Result of finding
orthogonal line. a Original XRA
image. b 1° diameter. c 45°

diameter. d 90° diameter. e 180°

diameter. f The orthogonal
diameter with165°

Fig. 6 Segmentation refinement procedure. The aim here is to detect the
green line (L) which is orthogonal to the artery in point (O)

Max1 Max2

Min

L1,L2 > Td

L1 L2

Fig. 8 A sample Gaussian profile that is created by the intensities of an
orthogonal line to a vessel region
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current pixel is considered as the boundary pixel, otherwise
the threshold value is reduced and a new search is performed.
As shown in Fig. 9, Ti and Tj are two different thresholds
satisfied by d1 and d2 respectively.

After finding the boundary pixels on two sides of a ridge
pixel, the minimum of distances between the ridge pixel and
the two boundary pixels is computed as rd. Then, a circle
centered on the ridge pixel with the radius of rd is drawn. By
doing this, a mask for arteries is obtained. By multiplying the
obtained mask by the previous mask obtained in the last step
using superpixels and ridges (initial segmentation mask), the
final arteries mask is formed.

In Fig. 10, the result of this refinement process is shown.
By comparing Fig. 10a, b with the initial segmentation results

in Fig. 5c, d, it can be seen that the proposed refinement
procedure has removed the extra background parts that were
counted as arteries segment.

Centerline extraction In order to find the artery centerlines, we
use the segmentation mask obtained in the former step. By
multiplying this mask by the low threshold (TL) ridge map,
the extra ridges are removed, and the ridges corresponding to
the artery are remained which are the centerlines of the ves-
sels. In Fig. 10c, the final result of centerline extraction is
shown. By considering the segmented arteries, it can be ob-
served that the centerlines of the segmented vessels are ex-
tracted properly.

3 Results

In this section, we present the evaluation results of our
proposed catheter detection and tracking and coronary
artery segmentation methods. In multi-scale Top-Hat
transform, the structuring elements were disk shape with
varying sizes from 3 to 19. In the vesselness map mea-

surement, four different scales were considered as 3
ffiffiffi
2

p
,

4
ffiffiffi
2

p
; 5

ffiffiffi
2

p
, and 6

ffiffiffi
2

p
. Therefore, the scale parameters

smin and smax in the vesselness map section were initial-

ized as 3
ffiffiffi
2

p
and 6

ffiffiffi
2

p
. Also the two thresholds β and c

were set to 0.5 and 450 respectively. The parameters in
the Guided filter were window radius r and regulariza-
tion parameters ϵ that were set to 8 and 0.2 respective-
ly. The low, medium, and high thresholds for ridge de-
tection method were taken as 0.2, 0.25, and 0.4 respec-
tively. In the SLIC superpixel algorithm, the parameter
in hand for changing the scales of the superpixels is k,
which denotes the number of desired superpixels in the
input image. Therefore, in order to obtain three different
superpixel scales, we used three different values for k as
2000, 3000, and 4000. The T threshold for differentiat-
ing between vessels and background superpixels was set
as 0.5. The Td threshold in the refinement step was set
to 0.2, and the d diameter was set to 25 pixels. In
Figs. 11 and 12, we present the qualitative and quanti-
tative evaluation results of our proposed catheter detec-
tion and tracking method. In Figs. 13 and 14 as well as
Tables 1 and 2, we compare our coronary artery seg-
mentation method qualitatively and quantitatively with
one of the state-of-the-art methods [11], which is based
on a Graph-cut algorithm. We also present the compar-
ison of the time complexity of our proposed method
and [11] in subsection 3.E. For the comparison, two
challenging datasets, DS1 and DS2 containing 164 and
298 XRA images respectively, were collected including
8-bit images with 512 × 512 pixels. In all of the tested

(a) (b)

(c) (d)
Fig. 10 Final results of segmentation and centerline extraction. a, b Final
segmentations results. c, d Final centerline extraction results

O2O1
d1 d2

d1≥ Ti Tj≤ d2

Fig. 9 Processing a sample Gaussian profile of an orthogonal line to a
vessel region in order to find the two boundaries of the arteries on each
ridge pixel
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XRA images, different kinds of artifacts such as non-
uniform illumination, low contrast, other body organs,
and low SNR exist. These angiography images were
collected from different hospitals, and some of them
have brighter scene while the others are darker. Also,
in all of the tested images for segmentation, the artery
tree is completely visible. The DS1 includes XRA im-
ages in which just the arteries are present or if the
catheter is present, it has no overlap with the arteries,
while the DS2 includes XRA images in which in addi-
tion to the existence of the arteries, the catheters are
also present and have overlaps with the arteries.

3.1 Qualitative evaluation of the catheter detection

The results of applying the proposed catheter detection and
tracking method are shown on four different XRA sequences
in Fig. 11. In Fig. 11, each sequence is shown in a row. Their
first frame is shown in the first column. The other four col-
umns consist of four different phases including before injec-
tion, beginning of injection, fully injection, and end of injec-
tion. In all of these frames, the detected catheters are shown in
red. It can be seen that the proposed method successfully
tracks the catheter. Even the presence of arteries and their
overlapping with the catheter do not affect the performance
of our method. Also, in sequences shown in Fig. 11, the cath-
eter displaces, and these displacements have not blundered our
method. The qualitative results of the detection and tracking of
catheter in the challenging sequences shown in Fig. 11 prove
the high effectiveness and accuracy of our method.

3.2 Quantitative evaluation of the catheter detection

In order to quantitatively evaluate our proposed catheter de-
tection method, we compute the precision on 25 challenging
XRA sequences containing catheter. For computing the preci-
sion in each frame, we count the pixels of the second-order

(a) (b) (c) (d) (e)
Fig. 11 The qualitative evaluation of the proposed catheter detection and tracking method. a Original first frame. b Before injection. c Beginning of
injection. d Full injection. e End of injection

Fig. 12 Catheter tracking precision computing procedure
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polynomial that do not lie on the catheter. An example of the
counting procedure is illustrated in Fig. 12. Green pixels are
those that are correctly counted (true positive) and the red
pixels are incorrectly considered (false positive). The preci-
sion of our method on these sequences turned out to be
0.9597. This high value of precision demonstrates the effec-
tiveness of our method in XRA sequences. Detection and
tracking of catheter in such sequences are very challenging.

3.3 Qualitative evaluation of the proposed
segmentation method

In Fig. 13 and Fig. 14, the qualitative results of the proposed
segmentation method and method of [11] are compared.
Images in Fig. 13 were selected from DS1. In the first row
of Fig. 13, the original XRA images are shown. In the second
row, the segmentation results of the compared method are
shown in green, and in the third row, the results of proposed
segmentation method are shown in red. The extracted center-
lines are shown in green in our results. By comparing the
proposed segmentation results with method [11], in Fig. 13,
it can be seen that the proposed method has properly segment-
ed the major parts of the arteries but the comparedmethod, has
some failure in detection. For example, in Fig. 13, in column
(d), they cannot find the arteries. Also, in column (e), (f), (g),

and (h), the compared method could not segment the main
arteries completely. On the other hand, the proposed method
has completely segmented the major arteries which are vital
for stenosis detection. For instance, in column (h), our seg-
mentation method has segmented the arteries even in the non-
uniform illumination, but this situation has prevented the com-
pared method, from segmenting the whole structure of the
arteries.

Also in Fig. 14, the comparisons between our method and
[11], on XRA images from DS2 are presented. In the first row
of Fig. 14, original images are shown; segmentation results of
the compared method shown in the second row, are shown in
green; and in the third row, the results of our proposed artery,
segmentation are shown in red. Also the results of the catheter
detection method and the extracted centerlines are shown in
blue and green respectively. In all of these images, the com-
pared method, like other coronary artery segmentation
methods, detects the catheter as an artery which causes in-
crease in the false detection. Furthermore, in Fig. 14 in all
columns from (d) to (h), the graph-cut based method [11],
detected the catheter as the artery. Also as shown in column
(e) and (f), the compared method just segmented the catheter
and was not even able to detect the artery. But our proposed
segmentation method consists of a catheter detection method
which can reduce the false detection of our segmentation

(a
)

(b
)

(c
)

(d) (e) (f) (g)
Fig. 13 Qualitative comparison of proposed method and [11], on several DS1 XRA images. aOriginal XRA images. b Segmentation results using [11].
c Segmentation results using the proposed method
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method in cases that the catheter exists in XRA frames.
Figure 14 shows the necessity of a catheter detection method
appropriately which improves the segmentation results.

3.4 Quantitative evaluation of the proposed
segmentation method

In order to compare our method with [11], the results of both
methods were assessed by a cardiologist on DS1 and DS2
datasets. The cardiologist labeled each processed image by
one of the following labels:

Label 0: Insufficient—major vessels are missing (not just
branches) or major areas without vessels are inappropriately
identified as vessels.

Label 1: Limited—major vessels are identified but the re-
sults do not include substantial branches or they inappropri-
ately include substantial areas without vessels.

Label 2: Good—major vessels and substantial branches are
included; onlyminor branches that are unlikely to be clinically
significant are missing.

Label 3: Excellent—the entire vasculature from major ves-
sels to major and minor branches are included.

The evaluation results for DS1 and DS2 are presented in
the Tables 1 and 2 respectively. By comparing the result
shown in Table 1, we notice that our method outperforms
method of [11] as none of the results of our method were
labeled as 0. Also, our proposed method was labeled as 2 or
3 more than the compared method. These results demonstrate
that our method is more reliable. The results in Table 2 show
the effectiveness of a catheter detection method in the perfor-
mance of an artery segmentation method. As shown in
Table 2, 37% of the results of the graph-cut based method
on DS2 dataset were labeled as 0. This is in contrast to our
method which only has 1% of such labels. On the other hand,
none of the results of the compared method were detected as

(a
)

(b
)

(c
)

(d) (e) (f) (g)
Fig. 14 Qualitative comparison of proposed method and [11], on several DS2 XRA images. aOriginal XRA images. b Segmentation results using [11].
c Segmentation results using the proposed method

Table 1 Quantitative evaluation
on DS1 dataset Insufficient (0) Limited (1) Good (2) Excellent (3)

Proposed method 0% 16% 56% 28%

Method [11] 24% 26% 46% 4%
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excellent as it segmented the catheter as an artery. Generally,
83% of the images processed by our proposed segmentation
method were labeled as good or excellent, while this score for
the compared method is 48%.

3.5 Time complexity comparison

In order to compare the time complexity of the proposed
method with [11], we executed both methods in MATLAB
on the same system with Core i7 2.6 GHz and 8GB RAM.
The proposed method required 67% less time than the com-
pared method. It should be noted that some parts of the graph-
cut source code in the compared method, is written in C lan-
guage which is much faster than a correspondent MATLAB
code.

4 Discussions

The coronary artery segmentation method proposed in this
paper is based on the superpixel technique. To the best of
our knowledge, none of the previous coronary artery segmen-
tation methods have ever used superpixels for segmentation.
The reason for proposing a superpixel based method for seg-
mentation is that superpixels are a group of pixels that make
the segmentation procedure much easier as they fit on borders
of major arteries. Therefore, the only work that is remained is
to select the superpixels inside the vessels. As shown in the
previous sections, by increasing the contrast of the input XRA
images, the superpixels are better able to group the input im-
age pixels into correct clusters (arteries and background).
Also, as the superpixel algorithm cannot handle the varying
scales of the vessels in each frame, we used multiple
superpixel scales. By combining the results of the multiple
superpixel scales, handling the problem of different vessels
scales was solved. Another reason for proposing a
superpixel-based segmentation method is the speed of the
superpixel segmentation method. This high speed besides of
the high pixels clustering accuracy helped our proposed seg-
mentation algorithm to segment coronary artery in a few sec-
onds even in the presence of artifacts.

Due to the similar shape of the catheter and the arteries,
segmentation methods fail in not to segmenting the catheter as
the artery. Usually, the segmentation methods do not segment
the catheter as arteries when the catheter and the artery tree do
not have any overlap. Because the biggest connected

component that would result is the coronary artery, therefore,
by choosing the biggest connected component, the catheter
would not be selected. When they have overlap, the segmen-
tation methods segment them as arteries which will cause an
increase in the false detection of those methods. In this paper,
our previous catheter detection and tracking algorithm was
used in a unified framework with our segmentation method
in order to reduce the false detection caused by detection of
the catheter as artery.

Another important work that can be done on XRA images
is to extract the centerlines of the vessels. The extracted cen-
terline can assist the specialists to find the possible stenosis
easier. In the proposed method, we extracted the artery center-
lines using the calculated artery segmentation mask. By mul-
tiplying this mask with the image ridges, artery centerlines
were extracted.

There are still some works in this area that can be done. In
the proposed method, whenever we wanted to use the catheter
detection method, we assumed that we know in which se-
quences the catheter exists. A possible future work can be an
automatic method for deciding whether the catheter exists in a
frame or not. If it exists, then the catheter detection method
exploited in this paper can be used; otherwise, the catheter
detection method is bypassed. Another future work is to au-
tomatically exploit the extracted centerlines of the coronary
artery for finding the possible stenosis regions in the artery
with their severity percentage using a learning algorithm.

5 Conclusions

A new automatic method for coronary artery segmentation,
catheter detection, and centerline extraction was proposed.
The proposed artery segmentation method was based on
superpixel processing. Also, we exploited our previous auto-
matic catheter detection method for reducing the false detec-
tion caused by detecting catheter as artery. We evaluated our
catheter detection and artery segmentation method and com-
pared it with one of the state-of-the-art methods. The compar-
ison results showed the superiority of the proposed algorithm
to the compared method.
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us the source codes of vessel segmentation [11].

Table 2 Quantitative evaluation
on DS2 dataset Insufficient (0) Limited (1) Good (2) Excellent (3)

Proposed method 1% 15% 58% 26%

Method [11] 37% 16% 47% 0%
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