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Abstract
Impedance cardiography is a low-cost noninvasive technique, based on monitoring of the thoracic impedance, for estimation of
stroke volume (SV). Impedance cardiogram (ICG) is the negative of the first derivative of the impedance signal. A technique for
beat-to-beat SV estimation using impedance cardiography and artificial neural network (ANN) is proposed. A three-layer feed-
forward ANN with error back-propagation algorithm is optimized by examining the effects of number of neurons in the hidden
layer, activation function, training algorithm, and set of input parameters. The input parameters are obtained by automatic
detection of the ICG characteristic points, and the target values are obtained by beat-to-beat SV measurements from time-
aligned Doppler echocardiogram. The technique is evaluated using an ICG-echocardiography database with recordings from
subjects with normal health in the under-rest and post-exercise conditions and from subjects with cardiovascular disorders in the
under-rest condition. The proposed technique performed much better than the earlier established equation-based estimations, and
it resulted in correlation coefficient of 0.93 for recordings from subjects with cardiovascular disorders. It may be helpful in
improving the acceptability of impedance cardiography in clinical practice.
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1 Introduction

The time interval between two successive contractions of
the heart is known as the cardiac cycle. Stroke volume
(SV) is the amount of blood pumped out by the heart in
one cardiac cycle. Cardiac output (CO) is the amount of
blood pumped in 1 min and it is obtained as the product of
SV and the heart rate [14]. SV and CO are important pa-
rameters for assessing the functioning of the cardiovascular
system [20, 24, 29, 33, 43]. The established techniques for
CO estimation are Fick’s method, dye dilution, and
thermodilution. These techniques are invasive and expen-
sive and they are not usable for continuous SV monitoring
[9, 40, 47]. The commonly used noninvasive technique is
transthoracic echocardiography [4, 28, 38]. It requires ex-
pensive equipment and skilled manpower. Several studies
have investigated SV variability and its relationship with

respiration [10, 16, 17, 30]. Automatic beat-to-beat SV mon-
itoring over an extended period using impedance cardiogra-
phy can facilitate use of SV variability, like that of heart rate
variability, for diagnosis of cardiovascular disorders.

Impedance cardiography is a low-cost noninvasive tech-
nique, based on monitoring of the thoracic impedance, for
SV estimation [22, 25, 37, 39, 49]. It involves applying a
low-level current (< 5 mA) of high frequency (20–100 kHz)
through a pair of electrodes placed on the thorax and measur-
ing the resulting amplitude-modulated voltage developed
across another pair of electrodes placed inside the region
bounded by the current injecting electrodes. The voltage is
demodulated to get the signal proportional to the time-
varying thoracic impedance, known as the impedance signal
Z(t). It comprises basal impedance Z0 along with small time-
varying component contributed by the variation in the blood
volume in the thorax during the cardiac cycle and artifacts.
Impedance cardiogram (ICG) is the negative of the first deriv-
ative of the impedance signal, i.e., −dZ/dt. Its landmarks as-
sociated with significant events in the cardiac cycle are known
as the characteristic points [18, 26, 37, 45, 46]. These points
are labeled as A, B, C, X, and O, as shown in an example of
ICG along with simultaneously recorded electrocardiogram
(ECG) in Fig. 1. Out of these points, the B, C, and X points
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are used in most of the SVestimation methods. The C point is
the peak in the ICG waveform during the systole and it is
associated with the peak in the aortic blood velocity. The B
point occurs, after the QRS complex in ECG, as a notch in the
ICG waveform just before the rapid upstroke ascending to-
wards the C point, and it is associated with the aortic valve
opening. The lowest point after the C point is known as the X
point and it is associated with the aortic valve closure. The C
point is generally prominent and its detection is not signifi-
cantly affected by respiratory and motion artifacts. The B
point is often difficult to detect. It may be indistinct or may
disappear in recordings with increased heart rate and its detec-
tion may get severely affected by artifacts [11, 36, 42].

Several equations for SV estimation, based on models of
the thoracic impedance and the aortic blood flow profile, have
been proposed [6, 25, 37, 41, 44, 49]. These equations use
parameters obtained from impedance cardiography along with
body-related parameters or empirically established scaling
factors. The most commonly used parameters are the ICG
peak, left ventricular ejection time measured as the B-X inter-
val, basal impedance, distance between the voltage-measuring
electrodes, blood resistivity, and the body-related physical pa-
rameters (height, weight, etc.). Several studies have compared
the measurements using impedance cardiography with those
using reference techniques like thermodilution and echocardi-
ography [1, 2, 6, 8, 9, 12, 13, 19, 21, 23, 27, 28, 35, 45,
47–51]. Most of these studies involved subjects with normal
health and some involved subjects with cardiovascular disor-
ders. The results generally do not show a good agreement in
the case of subjects with cardiovascular disorders. Assuming
the estimation from the reference technique to be error-free,
the disagreements could be due to errors in ICG parameters
and inadequacies of the equations. Errors in estimation of the
ICG parameters are caused by errors in detection of the

characteristic points, presence of artifacts, and smearing of
event latencies in ICG during ensemble averaging used for
artifact suppression. The ICG parameter set and the model
used for obtaining the equation may not be appropriate for
SV estimation during cardiovascular disorders. Use of con-
stants and parameters obtained from body-related measure-
ments, as established through empirical studies on subjects
with normal health, may introduce errors in the case of differ-
ent disorders.

Considering the limitations of the methods based on
models of the thoracic impedance and aortic blood flow pro-
file, some researchers have proposed the use of artificial neu-
ral network (ANN) for SVestimation, assuming that the non-
linear relationship between SVand the ICG-related and other
input parameters can be captured during the training of the
network. Mulavara et al. [31] reported an ANN-based method
for SV estimation with echocardiography as the reference
technique. The study was conducted on recordings from 20
subjects with normal health, acquired in three supine body
positions during six 5-s breath-hold durations separated by
15-s normal breathing. The cycles in each breath-hold dura-
tion were ensemble averaged and used to get the values of
ICG peak, left ventricular ejection time, and heart rate.
These values along with the inter-electrode distance, basal
impedance, and volume of electrically participating thoracic
tissues (calculated from height and weight) formed the set of
inputs, and the SV values measured using echocardiography
served as the target values. Half of the total 360 datasets (20
subjects, 3 positions, and 6 recordings) were used for training
and the others for testing. They used a three-layer feed-for-
ward network with hyperbolic tangent activation function in
the hidden layer and error back propagation for training. Eight
networks with different combination of inputs as used in the
Kubicek and Sramek equations [25, 44] were evaluated.
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Fig. 1 An example of the ICG
and ECG waveforms
(recorded from a subject in the
under-rest condition) with the
corresponding characteristic
points
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Network with the superset of the inputs as used in the two
equations and with five neurons in the hidden layer provided
the best performance. Coefficients of determination for esti-
mations using the Kubicek equation, the Sramek equation,
and the ANN were 8.2, 9.9, and 77.4%, respectively, indicat-
ing the ANN-based estimation to bemuch better than the other
two. Baura [5] described an ANN-based technique for nonin-
vasive cardiac output monitoring using ICG parameters with
thermodilution as the reference technique. It uses a three-layer
feed-forward network, with three neurons in the hidden-layer
and hyperbolic tangent activation function, trained using error
back propagation. The inputs to the network comprise the
heart rate, basal impedance, ICG peak, left ventricular ejection
time, inter-electrode distance, and CO value as calculated by
the Kubicek equation. Training of the network in this tech-
nique requires CO measurement on a large number of patients
using thermodilution.

The earlier investigations on SV estimation used input pa-
rameters obtained from ensemble-averaged ICG and across-
the-subjects training and testing. We propose an ANN-based
method for SV estimation, with the ICG parameters from a
large number of cycles without ensemble averaging as the
inputs and the corresponding beat-to-beat SV valuesmeasured
using echocardiography as the reference technique. For effec-
tiveness of the ANN-based estimation, the datasets used for
the training should be representative of the input-output rela-
tions as occurring in the datasets used for testing. Our ap-
proach assumes that the input-output relationships in the
datasets from subjects with normal health with recordings un-
der the conditions of the normal and increased heart rates can
also be representative of the input-output relationships in the
datasets from subjects with cardiovascular disorders.
Echocardiography is used as the reference technique. It is
noninvasive and it can be used for beat-to-beat SVestimation
simultaneously along with impedance cardiography. The in-
vestigations are carried out using an ICG-echocardiography
database with recordings from subjects with normal health in
the under-rest condition and in the post-exercise condition
with increased heart rate and from subjects with cardiovascu-
lar disorders in the under-rest condition.

2 Method

2.1 Signal recording and subjects

The ANNmodel is trained using the beat-to-beat values of SV
estimated from Doppler echocardiography as the target
values. Detection of ICG characteristic points for estimation
of ICG parameters is carried out using R and T peaks of
simultaneously recorded ECG. For this purpose, the ICG,
ECG, and Doppler echocardiogram signals were

simultaneously recorded in a clinical setting from a number
of subjects in under-rest and post-exercise conditions.

The signals were recorded at Hardas Heart Care (Pune,
Maharashtra, India), after approval of the protocol by the
Ethics Committee of the hospital. The subjects were recruited,
without gender and age balancing, from among the persons
visiting the hospital for post-operative treatment, diagnosis, or
health checkup. They were informed about the objectives of
the study and the signal-recording procedure, and those will-
ing to participate signed the consent. Participation did not
involve any monetary benefit or cost for the subjects.

The subjects with normal health had no known history of
cardiovascular disorders and were screened by a cardiologist on
the basis of physical examination and ECG report. The subjects
with cardiovascular disorders were the patients undergoing
post-operative treatment or had a history of cardiovascular dis-
orders. They were screened for suitability to participate in the
study by the concerned cardiologist. The gender, age, height,
and weight of the subjects were noted. The recordings were
carried out over a period of 13 months. The group of subjects
with normal health comprised 17 males and 1 female with age
of 26–65 years (mean = 46.3 years, S.D. = 10.7 years), height of
1.54–1.80 m (mean = 1.69 m, S.D. = 0.06 m), and weight of
61–100 kg (mean = 76.2 kg, S.D. = 10.0 kg). The group of
subjects with cardiovascular disorders had 19 males and 3 fe-
males with age of 24–78 years (mean = 51.5 years, S.D. =
15.8 years), height of 1.43–1.76 m (mean = 1.66 m, S.D. =
0.08 m), and weight of 52–97 kg (mean = 71.6 kg, S.D. =
11.7 kg).

The ICG signals were recorded using BHIC-2000
Impedance Cardiograph^ from Bio-Impedance Technology
(Chapel Hill, NC, USA). The impedance sensing was carried
out using four-electrode configuration with Ag-AgCl dispos-
able ECG spot electrodes. The outer two electrodes were used
for injecting the excitation current and the resulting voltage
was picked up across the inner two electrodes. The electrode
placement is shown in Fig. 2. The upper current electrode was
placed above the suprasternal notch on the front of the neck,
with the lower one placed below the xiphoid process on the
left lateral side of the thorax. The upper voltage electrode was
placed at the base of the neck below the upper current elec-
trode and the lower voltage electrode was placed at the level of
xiphoid process on the left lateral side of the thorax above the
lower current electrode. The distance between the voltage-
sensing electrodes was noted. The instrument used 1 mA ex-
citation current of 100 kHz and provided analog output signals
corresponding to basal impedance (Z0), deviation from basal
impedance (−z(t)), and ICG (−dZ/dt)with the sensitivities of
40 mV/Ω, 0.5 V/Ω, and 400 mV/(Ω ⋅ s−1), respectively. It also
provided analog ECG signal as sensed using the voltage elec-
trodes. The output signals from the ICG instrument were ac-
quired using the eight-channel, 12-bit signal acquisition mod-
ule BKUSB-3102^ from Keithley Instruments (Cleveland,
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Ohio, USA) and connected through USB to a battery-powered
notebook PC. The sampling frequency was set at 500 Hz.

The echocardiography recordings were carried out using
BiE33 echocardiography system^ from Philips Ultrasound
(Bothell, WA, USA) with a 5-MHz phased-array probe placed
on the chest after applying an ultrasound gel for good contact
with the skin. The aortic blood velocity profile was recorded
using apical five-chamber view of the ascending aorta. The
aortic diameter was measured using parasternal long-axis
view at the level of aortic annulus during mid-systole. The
velocity-time integral (VTI) was estimated as the area between
the envelope of the Doppler spectrum and its baseline with the
help of the built-in software of the echocardiography machine
by tracing the spectral envelope with its track ball. The ECG
was recorded using the three-electrode ECG recorder of the
echocardiography machine and displayed along with the
Doppler echocardiogram. The ECG electrode positions are
shown in Fig. 2 along with the ICG electrodes. As the record-
ings of ICG and Doppler echocardiogram waveforms
employed independent time bases, the cardiac cycles of the
two recordings were synchronized by alignment of the corre-
sponding ECG-R peaks. An example of ICG and time-aligned
Doppler echocardiogram is shown in Fig. 3.

For a subject with normal health, two recordings were car-
ried out. The first recording was carried out with the subject
relaxed, rested, and lying in the left-lateral position with a
slight folding of the right leg. For the second recording, the
subject underwent an exercise to increase the heart rate. The

exercise was carried out, following the first four stages of the
Bruce exercise protocol [7], for about 10 min on the BGE
T-2100^ treadmill from GE Healthcare (Wauwatosa, WI,
USA) attached with BSmart Biphasic^ defibrillator from
Philips Healthcare (Andover, MA, USA). The signals were
recorded soon after cessation of the exercise and with the
subject lying the same way as for the first recording. The first
and second sets of recordings are referred to as Bunder-rest^
and Bpost-exercise^ recordings. For a subject with cardiovas-
cular disorder, only the under-rest recording was carried out.
For all recordings, the subjects were advised to avoid any
movements in order to minimize the motion artifacts, but no
restrictions were placed on breathing. The recordings have
been organized as a database and will be available for ICG-
related research. The under-rest (UR) and post-exercise (PE)
recordings from the 18 subjects with normal health (SNH)
have 630 and 625 cardiac cycles, respectively, and these are
referred to as the SNH-UR and SNH-PE recordings. These
cycles pooled together resulted in 1255 cardiac cycles and
are referred to as SNH-UR+PE. The under-rest recordings
from the 22 subjects with cardiovascular disorders (SCD)
have 842 cardiac cycles and these are referred to as the
SCD-UR recordings.

2.2 ICG parameter extraction

The values of the basal impedance Z0, the ICG peak (−dZ/
dt)max, and the left ventricular ejection time Tlvet were obtained
from impedance cardiography. Extraction of (−dZ/dt)max and
Tlvet requires detection of the B, C, and X points in the ICG
waveform. The automatic beat-to-beat detection of these
points was carried out using the technique reported by Naidu
et al. [32]. In this technique, a wavelet-based denoising is
employed for suppression of respiratory artifacts and beat-to-
beat detection is carried out using multiple time-domain fea-
tures of ICG, located with reference to R and T peaks of ECG,
to reduce errors due to morphological variations. In each cy-
cle, the ICG segment starting at the point corresponding to the
R peak and duration equal to 35% of the R-R interval is
scanned and the highest point is marked as the C point. The
ICG segment preceding the C point and of duration equal to
one fifth of the C-C interval is scanned, and the point with the
lowest value is marked as the valley point. The difference
between the values at the C point and the valley point is cal-
culated as the peak-to-valley heightHpv. The first difference of
the ICG is scanned backwards starting from the point corre-
sponding to 0.3Hpv below the C point to the point correspond-
ing to the valley point, and the point with change of sign is
marked as the B point. If there is no sign change, the point
0.3Hpv above the valley point is marked as the B point. The
ICG segment starting at the point corresponding to the T peak
in ECG and duration equal to one third of the C-C interval is
scanned, and the lowest point is marked as the X point. The
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Fig. 2 Placement of electrodes on the chest: four ICG electrodes (current
electrodes ICG-I1 and ICG-I2, voltage electrodes ICG-V1 and ICG-V2)
and three ECG electrodes (ECG-RA, ECG-LA, and ECG-LL electrodes
of ECG recorder of the echocardiography machine)
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technique was evaluated using the ICG-echocardiography da-
tabase [3]. The mean and standard deviation of the B-X inter-
vals as measured by Doppler echocardiography (the intervals
from the left ventricular valve opening to its closure) for all the
cardiac cycles pooled together were 284 and 30 ms, respec-
tively. The mean differences between the R-B, R-C, R-X, and
B-X intervals as obtained from ICG and the corresponding
intervals obtained by echocardiography were 2, 4, 26, and
24 ms, respectively. The corresponding standard deviations
of differences were 22, 10, 48, and 54 ms.

The time interval from the B point to the X point in a
cardiac cycle was taken as Tlvet. The height of the C point
from the B point was taken as (−dZ/dt)max. Measuring the
height of the C point from the B point and not from the base-
line (dZ/dt = 0 line) helps in reducing error due to residual

respiratory artifact. These values along with subject data were
used as the inputs for SVestimation. The reference SV values
were calculated as the product of VTI obtained from time-
aligned Doppler echocardiogram and the cross-sectional area
calculated from the measurement of aortic diameter at the
annulus assuming circular cross-section, as described earlier
as part of signal recording.

2.3 ANN model implementation, optimization,
and testing

Designing the ANN model for an estimation application in-
volves a careful selection of the network structure, training
algorithm, the number of hidden layers and the number of
neurons in each layer, the set of input parameters, pre-

Fig. 3 An example of simultaneously recorded ICG and ECG with time-
aligned Doppler echocardiogram (upper trace: blood velocity profile at
aortic annulus with ECG as recorded by the echocardiography machine;

middle trace: unprocessed ICG and simultaneously acquired ECG by the
impedance cardiograph; lower trace: denoised ICG marked with the de-
tected B, C, and X points and ECG marked with with R-peaks)
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processing of the input data, and criterion to stop training. It
has been reported that a multi-layer feed-forward neural net-
work with Levenberg-Marquardt or gradient-descent class of
learning algorithm can track a nonlinear input-output relation-
ship [34]. Normally, the number of neurons in the input layer
is equal to the number of inputs in the parameter set and the
hidden layer consists of an empirically determined optimal
number of neurons with a nonlinear transfer function [15].
We have used a three-layer feed-forward ANN, with training
using error back-propagation algorithm and nonlinear activa-
tion function in the hidden layer, for SV estimation. The net-
work is shown in Fig. 4 for four inputs. The implementation
was carried using MATLAB and Neural Network Toolbox
Release 2013a (MathWorks, Inc.). The input parameters and
the target values were transformed to have zero mean and
unity variance to equalize their contributions in generalization
of the model.

The training and testing of the network were carried out
using two disjoint datasets, known as the training set and the
testing set, respectively. The training set was partitioned into
two disjoint subsets, with the datasets corresponding to two
third of the randomly selected cardiac cycles assigned to the
estimation set and the remaining ones assigned to the valida-
tion set. The weights of the network were initially set to ran-
dom values. The estimation set was applied repeatedly for
training of the network, and weight adjustment was carried
out in batch mode on an epoch-by-epoch basis for improving
the accuracy of the estimated output values with reference to
the corresponding target values. The maximum number of
epochs during training was set as 10,000. After each epoch,
the validation set was used for checking the overfitting of the
network. Increase in accuracy over the estimation set with the
accuracy over the validation set remaining the same or de-
creasing was considered to be an indicator of overfitting and
validation failure. The training was stopped in the case of 100

successive validation failures. Subsequently, the estimation
capability of the trained network was assessed on the testing
set.

The approximation error and the number of epochs for con-
vergence depend on the training algorithm used for updating
the weights [15, 34]. Out of the several training algorithms
available in the Neural Network Toolbox (MathWorks), nine
commonly used ones were used for implementing the net-
works: Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton, Polak-Ribiére conjugate gradient, scaled conjugate
gradient, one-step secant, resilient back propagation, conjugate
gradient with Powell-Beale restarts, variable learning rate back
propagation, Fletcher-Powell conjugate gradient, and
Levenberg-Marquardt.

The commonly used ICG parameters in the different
equation-based methods for SV estimation are inter-electrode
distance L, basal impedance Z0, ICG peak (−dZ/dt)max, and left
ventricular ejection time Tlvet, or transformations and combi-
nations of these parameters. We have used these parameters
along with the R-R interval as the inputs. In addition to them,
the subject’s age, height, and weight were also used as the
inputs. Several variations of the network, differing in terms
of the number of neurons in the hidden layer, activation func-
tion in the hidden layer, and training algorithm for updating the
weights were used to find a near-optimal network.
Subsequently, four investigations were carried out for optimiz-
ing the network by examining the effect of varying one aspect
of the network at a time while keeping the other aspects fixed:
(i) number of neurons in the hidden layer, (ii) activation func-
tion, (iii) training algorithm, and (iv) set of input parameters.

The investigations for optimizing the network were carried
out using the datasets corresponding to the SNH-UR and SNH-
PE recordings from subjects with normal health pooled togeth-
er, referred to as SNH-UR+PE. These datasets were partitioned
into two disjoint sets, with the datasets corresponding to 60%
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Fig. 4 A three-layer feed-forward
ANN, with training using error
back-propagation algorithm and
nonlinear activation function in
the hidden layer, for SV
estimation
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of the randomly selected cardiac cycles assigned to the training
set and the remaining 40% assigned to the testing set.

The optimal network as selected on the basis of the results
of the earlier four investigations was used for examining the
effect of different datasets for training. The training was carried
out using training sets obtained from the SNH-UR, SNH-PE,
and SNH-UR+PE datasets, resulting in three trained networks.
Each of these networks was tested on the testing sets obtained
from SNH-UR, SNH-PE, and SNH-UR+PE datasets. In each
case, the training set comprised randomly selected 60% of the
cardiac cycles with the remaining 40% used as the testing set.
The three networks were subsequently tested on SCD-URwith
100% of the cardiac cycles used as the testing set.

Performances of the three networks were compared with
estimations using the Kubicek, Sramek, and Bernstein equa-
tions [6, 25, 44] as the following:

SVKubicek ¼ ρ
L2

Z2
0

−
dZ
dt

� �
max

Tlvet ð1Þ

SVSram ek ¼ 0:17Hð Þ3
4:25

−dZ=dtð Þmax

Z0
Tlvet ð2Þ

SVBernstein ¼ 16W1:02

ζ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−dZ=dtð Þmax=Z0

q
Tlvet ð3Þ

In the Kubicek equation, ρ is the blood resistivity and its
value was taken as 150Ω ‐m. In the Sramek equation,His the
subject height. In the Bernstein equation, SV in milliliters is
calculated using Z0 in Ω, (−dZ/dt)max in Ω ⋅ s‐1, Tlvet in s, and
body weightW in kg, and index of transthoracic conduction ζ
calculated as:

ζ ¼ Z2
C−ZCZ0

� �
= 2Z2

C þ Z2
0−3ZCZ0

� �
; Z0 < ZC

1; Z0 < ZC

�

with the critical impedance ZC (taken empirically as 20 Ω).

3 Results

3.1 Selection of the optimal network

For selection of the optimal network, the under-rest and post-
exercise recordings from subjects with normal health were
pooled together, resulting in 1255 cardiac cycles with the
mean and standard deviation of the SV values as 86.3 and
18.8 mL, respectively. As described earlier, the training set
comprised 60% of randomly selected cycles, i.e., there were
753 cycles in the training set and remaining 502 cycles in the
testing set. The training set was further partitioned into esti-
mation set with 502 cycles (2/3 of the training set) and vali-
dation set with remaining 251 cycles. The network was

implemented with eight input parameters: L, Z0, (−dZ/dt)max,
Tlvet, RR (R-R interval from ECG), age, Ht (height), and Wt
(weight). Investigations were carried out for examining the
effects of (i) number of neurons in the hidden layer, (ii) acti-
vation function, (iii) training algorithm for updating the
weights, and (iv) set of input parameters.

Performance comparison was carried out by tabulating the
number of epochs for convergence during training and mean
error ε, standard deviation of errors σε, and correlation coef-
ficient r with reference to the target values for the testing sets.
In selecting the optimal network, the number of epochs for
convergence is given lower precedence than the error-related
performance indices.

For examining the effect of the number of neurons in the
hidden layer, the hyperbolic-tangent function was selected as
the activation function and the Levenberg-Marquardt algo-
rithm was selected for updating the weights. The performance
indices for the number of hidden-layer neurons that varied
from 3 to 20 are given in Table 1. The network with three-
neuron hidden layer needed the largest number of epochs for
training. The ε values were small (< 1 mL) in all cases. On the
basis of values of σε and r, the networks with eight or more
neurons may be considered to have better performance than
those with three or five neurons and the network with 10
neurons may be considered to be optimal.

The effect of different activation functions was examined
for the network with the 10-neuron hidden layer and the
Levenberg-Marquardt algorithm for updating the weights.
The networks were implemented with three activation func-
tions: radial basis, logistic, and hyperbolic tangent. The results
are given in Table 2. The number of epochs was smallest for
the radial basis function. The ε values were small (< 1 mL) in
all cases. The hyperbolic-tangent function had smallest σε
values and hence it may be considered to be the optimal
choice although it had a somewhat larger number of epochs
than the other two functions.

Table 1 Effect of different number of neurons in the ANN hidden layer
(activation function: hyperbolic tangent, training algorithm: Levenberg-
Marquardt). Number of cardiac cycles in the testing set = 502. Nepoch

number of epochs for training, ε mean error, σε standard deviation of
errors, r correlation coefficient

No. of neurons Nepoch ε (mL)
σe (mL) r

3 177 0.29 9.16 0.880

5 18 − 1.14 7.64 0.924

8 31 − 0.14 6.38 0.944

10 66 0.42 6.06 0.947

13 29 − 0.45 7.06 0.934

15 39 0.55 6.90 0.937

20 10 − 0.47 7.26 0.931

p < 0.000l for all r values
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Effect of different training algorithms was examined on the
network with 10 neurons in the hidden layer and the hyper-
bolic tangent as the activation function. The results are given
in Table 3. All algorithms resulted in small ε values (< 1.5 mL)
and the variation in performance of different algorithms in
terms of σε and r was small. There was a large variation in
the number of epochs for different algorithms. It was smallest
for Levenberg-Marquardt algorithm and much lower than that
for other algorithms. This algorithm also resulted in nearly the
smallest σε and highest r, and hence it may be considered as
the optimal choice for our application.

The investigations for examining the effect of number of
neurons in the hidden layer, activation function, and training
algorithm showed the network with 10-neuron hidden layer,
hyperbolic tangent activation function, and Levenberg-
Marquardt training algorithm to be the optimal choice. This

network was used for investigating the contribution of differ-
ent non-ICG parameters by excluding them in different com-
binations. The results of training and testing of the networks
are given in Table 4. The exclusion of different input param-
eters had a large effect on the number of epochs, with range of
14–417. The ε values were small (< 1.5 mL) in all cases, the
σε values ranged 6.1–11.8 mL, and the r values ranged 0.819–
0.950. Small number of epochs was associated with large σε
values in most cases and hence cannot be used by itself as an
indicator for comparing the importance of the parameters.
Cases with small σε values were generally associated with
high r values.

Network with exclusion of none of the input parameter had
66 epochs and smallest σε. Among single-parameter exclu-
sions, RR exclusion resulted in largest σε indicating its impor-
tance. Among two-parameter exclusions, [RR, age] exclusion
had largest σε. Among three-parameter exclusions, largest σε
was observed for [age, Ht, Wt] exclusion indicating that these
parameters were collectively important although not individ-
ually. Exclusion of all the non-ICG parameters together had
largest number of epochs and largest σε, thus indicating col-
lective importance of these parameters for improving the
speed of convergence and decreasing the error in SV estima-
tion. Therefore, it may be inferred that the four non-ICG pa-
rameters are needed for the optimal network and the R-R
interval is the most important one out of these parameters.

Table 2 Effect of different activation functions used in the ANN hidden
layer (number of hidden-layer neurons: 10, training algorithm:
Levenberg-Marquardt). Number of cardiac cycles in the testing set =
502. Nepoch number of epochs for training, ε mean error, σε standard
deviation of errors, r correlation coefficient

Activation function Nepoch ε (mL)
σe (mL) r

Radial basis 19 − 0.16 6.33 0.942

Logistic 30 − 0.56 6.22 0.952

Hyperbolic tangent 66 0.42 6.06 0.947

Table 3 Effect of different ANN training algorithms (number of
hidden-layer neurons: 10, activation function: hyperbolic tangent).
Number of cardiac cycles in the testing set = 502. Algorithms: BFGS
(BFGS quasi-Newton), PRCG (Polak-Ribiére conjugate gradient), SCG
(scaled conjugate gradient), OSS (one step secant), RBP (resilient back-
propagation), CGPB (conjugate gradient with Powell-Beale restarts),
VLRB (variable learning rate back-propagation), FPCG (Fletcher-
Powell conjugate gradient), LM (Levenberg-Marquardt). Nepoch number
of epochs for training, ε mean error, σε standard deviation of errors, r
correlation coefficient

Algorithm Nepoch ε (mL)
σe (mL) r

BFGS 9999 − 0.64 6.55 0.947

PRCG 2621 − 0.85 6.35 0.951

SCG 2030 0.34 6.90 0.929

OSS 892 0.79 7.97 0.914

RBP 668 − 0.81 7.24 0.922

CGPB 2383 − 0.86 7.47 0.927

VLRB 9925 − 1.46 7.20 0.924

FPCG 1623 0.09 6.24 0.946

LM 66 0.42 6.06 0.947

p < 0.0001 for all r values

Table 4 Effect of exclusion of different non-ICG parameters (number
of hidden-layer neurons: 10, activation function: hyperbolic tangent,
training algorithm: Levenberg-Marquardt). Number of cardiac cycles in
the testing set = 502. Nepoch number of epochs for training, ε mean error,
σε standard deviation of errors, r correlation coefficient

Excluded parameter(s) Nepoch ε (mL)
σe (mL) r

None 66 0.42 6.06 0.947

Ht 51 − 0.10 6.74 0.939

Wt 62 − 0.43 6.78 0.950

Age 205 0.45 6.79 0.938

RR 27 1.08 7.10 0.919

Ht, Wt 37 0.63 6.96 0.932

Ht, age 148 0.07 6.62 0.942

Ht, RR 147 0.24 7.49 0.906

Wt, age 213 − 0.07 7.31 0.941

Wt, RR 14 1.00 7.86 0.905

Age, RR 162 0.56 7.91 0.915

Ht, Wt, age 36 1.27 9.15 0.878

Ht, Wt, RR 92 − 0.09 8.33 0.895

Ht, age, RR 77 − 0.11 8.12 0.908

Wt, age, RR 30 0.86 8.23 0.909

Ht, Wt, age, RR 417 0.41 11.81 0.819

p < 0.000l for all r values
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3.2 Comparison of ANN and equation-based methods

Based on the results of the investigations presented in the pre-
vious subsection, ANN with eight inputs (L, Z0, (−dZ/dt)max,
Tlvet, RR, age, Ht, Wt), 10 neurons in the hidden layer, hyper-
bolic tangent activation function, and Levenberg-Marquardt
training algorithm was selected as the optimal network for
beat-to-beat SV estimation. Further investigation was carried
out to examine the performance of this network for different
combinations of the training and testing sets and for comparing
its performance with equation-based estimations. In the subse-
quent description, the networks trained on training sets with the
SNH-UR, SNH-PE, and SNH-UR+PE datasets are referred to
as ANN1, ANN2, and ANN3, respectively. The Kubicek,
Sramek, and Bernstein equations are referred to as EQKB,
EQSR, and EQBR, respectively. The performance compari-
sons of the ANN-based and the equation-based estimations
were carried out for the testing sets corresponding to the
SNH-UR, SNH-PE, SNH-UR+PE, and SCD-UR datasets.

The results are summarized in Table 5. Results for the
three trained networks ANN1, ANN2, and ANN3 show that
the performance of each trained network was best when the
training and testing sets corresponded to the same datasets,
with almost similar pattern for the three performance indi-
ces. The network ANN3 resulted in ε = 0.1 mL, σε =
6.6 mL, and r = 0.95 for SNH-UR+PE. The performance
of ANN1 on SNH-UR and that of ANN2 on SNH-PE were
almost similar. However, the performance of ANN1 on
SNH-PE and SNH-UR+PE and that of ANN2 on SNH-UR
and SNH-UR+PE were significantly poor. The performance
of ANN3 on SNH-UR and SNH-PE was almost similar to
that on SNH-UR+PE. These results indicate that training of

the network on the pooled data significantly improved its
performance and that ANN3 can be used for SV estimation
on all three SNH datasets. Testing of ANN3 on SCD-UR
resulted in ε = − 0.1 mL, σε = 7.2 mL, and r = 0.93, showing
only a slight performance degradation compared to its test-
ing on SNH-UR+PE. Testing of ANN1 and ANN2 on SCD-
UR gave relatively poor results. These results show that
training of the optimal network on the training set obtained
by pooling of the under-rest and post-exercise recordings
from the subjects with normal health enabled the network
for SV estimation on recordings from subjects with cardio-
vascular disorders.

As seen in Table 5, the three equation-based SVestimations
resulted in relatively large ε, large σε, and low r values for all
the four testing sets. The performance of the Bernstein equa-
tion (EQBR) was generally better than that of the other two
equations. This equation resulted inε = − 38.0 mL, σε =
48.7 mL, and r = 0.36 for testing on SNH-UR+PE and in ε
= − 44.8 mL, σε = 40.9 mL, and r = 0.33 for testing on SCD-
UR. Thus, the ANN-based method, particularly with the train-
ing set obtained by pooling of the under-rest and post-exercise
recordings from subjects with normal health, may be consid-
ered to be much more effective than the equation-based
methods for beat-to-beat SV estimation from subjects with
normal health as well as those with cardiovascular disorders.

Figure 5 gives plots of difference of estimations versus
mean of estimations (Bland-Altman plots) for beat-to-beat
SV estimations using impedance cardiography with ANN3
and Doppler echocardiography for the SNH-UR+PE and
SCD-UR datasets, showing the distribution of differences
along with 95% confidence interval (ε� 1:96σε ). The plots
show that the distribution of differences between the two

Table 5 Comparison of the
ANN-based and equation-based
beat-to-beat SVestimations: mean
error (ε ), standard deviation of
errors (σe), and correlation coef-
ficient (r) with reference to the SV
values obtained using Doppler
echocardiography

Testing set (N =No.
of cardiac cycles)

Perform. index Estimation method

ANN1 ANN2 ANN3 EQKB EQSR EQBR

SNH-UR (N = 252)
ε (mL)

0.37 − 5.62 − 0.39 − 52.70 − 52.31 − 42.03

σe (mL) 5.99 31.19 5.95 30.29 30.97 32.14

r 0.950 0.716 0.951 0.154 0.198 0.265

SNH-PE (N = 250)
ε (mL)

5.79 − 0.16 0.90 − 42.13 − 49.33 − 33.68

σe (mL) 15.23 7.43 7.17 56.84 34.07 40.02

r 0.752 0.930 0.936 0.210 0.228 0.291

SNH-UR+PE (N = 502)
ε (mL)

3.04 − 2.15 0.07 − 47.09 − 50.77 − 37.98

σe (mL) 12.65 14.30 6.59 46.23 32.61 48.73

r 0.773 0.725 0.946 0.363 0.295 0.364

SCD-UR (N = 842)
ε (mL)

1.36 − 2.21 − 0.10 − 42.08 − 38.21 − 44.84

σe (mL) 9.30 9.71 7.20 37.67 35.65 40.88

r 0.829 0.812 0.933 0.292 0.163 0.329

p < 0.000l for all r values
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measurement techniques are similar for both the datasets, in-
dicating that the performance of ANN3 for recordings from
the subjects with cardiovascular disorders is similar to that for
recordings from the subjects with normal health. There is an
increase in the error at the higher SV values, which may be
due to sparsity of training data at this end.

Earlier studies [2, 8, 12, 31, 35, 48] on evaluation of im-
pedance cardiography with reference to Doppler echocardiog-
raphy for SV estimation have used estimation over a set of
cycles for each subject. In the study by Mulavara et al. [31]
using ANN-based SV estimation on subjects with normal
health, the correlation coefficients for estimations using the
Kubicek equation, the Sramek equation, and the ANN-based
method were 0.29, 0.32, and 0.88, respectively. For compari-
son with such studies, the beat-to-beat SV estimations in our
study were evaluated for average of SV values across the
cardiac cycles for each of the 22 subjects with cardiovascular
disorders. All three equation-based estimations resulted in
large ε and σε values, and low r values, with ε = − 43.1 mL,
σε = 43.5 mL, and r = 0.20 for EQBR. The ANN-based esti-
mations resulted in much lower ε and σεvalues, and larger r
values, with ε = 0.4 mL, σε = 5.7 mL, and r = 0.96 for ANN3.
Thus, the ANN-based estimation outperformed the equation-
based estimation for beat-to-beat variation as well as for aver-
age SVestimation.

4 Discussion

An ANN-based technique for beat-to-beat SV estimation has
been proposed and inves t iga ted us ing an ICG-
echocardiography database. The ICG parameters are obtained
using a technique for automatic detection of the B, C, and X

points. Our approach assumes that the input-output relation-
ships in the datasets from subjects with normal health, with the
recordings in the under-rest condition and in the post-exercise
condition after the heart rate has been increased by participa-
tion of the subject in the Bruce exercise protocol, can also be
representative of the input-output relationships in the datasets
from subjects with cardiovascular disorders. A three-layer
feed-forward network with error back-propagation algorithm
was selected for SVestimation. The network was implement-
ed for eight input parameters: inter-electrode distance, basal
impedance, ICG peak, left ventricular ejection time, R-R in-
terval, age, height, and weight. Three of these parameters
(ICG peak, left ventricular ejection time, and R-R interval)
are estimated on beat-to-beat basis and the other five parame-
ters are subject-dependent. The input parameters and the target
values were transformed to equalize their contributions in gen-
eralization of the model. The investigations were carried out in
two stages. The first stage involved optimization of the net-
work by examining the effects of number of neurons in the
hidden layer, activation function, and training algorithm for
updating the weights, and set of input parameters. The second
stage involved testing of the network by examining the effect
of different combinations of training and testing sets and com-
parison with equation-based estimations.

The investigations for optimizing the network were carried
out using the datasets from the subjects with normal health
with the under-rest and post-exercise recordings pooled to-
gether. These investigations showed that the best performance
was obtained with the network with 10-neuron hidden layer,
hyperbolic tangent activation function, and Levenberg-
Marquardt training algorithm. Exclusion of the four non-
ICG parameters (R-R interval, age, height, and weight) in
different combinations showed that R-R interval was

Fig. 5 Bland-Altman plots of
beat-to-beat SV estimation (mL)
using ANN3 on the SNH-UR+PE
and SCD-UR recordings with the
SV values measured from
Doppler echocardiogram as refer-
ence (solid line: ε, dotted lines: ε
± 1.96σε)
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important in decreasing the error and the combination of
height, weight, and age together helped in significantly de-
creasing the number of epochs needed for convergence during
training and also the errors. Therefore, it may be inferred that
the four non-ICG parameters have an important role in ANN-
based SV estimation. These parameters were retained as part
of the inputs for the second stage of the investigation.

The second stage of investigation involved examining the
effect of different combinations of training and testing sets on
performance of the optimal network and comparing its perfor-
mance with equation-based estimations. Three network
models were developed by using three types of training sets
from the recordings from the subjects with normal health: (i)
under rest, (ii) post exercise, and (iii) under rest and post
exercise pooled together. All the three trained networks were
tested using the three testing sets. Results showed that the
performance of each trained network was best when the train-
ing and testing sets corresponded to the same datasets.
Performance of the first two networks degraded when tested
on different datasets. Performance of the third network did not
degrade for testing on the other two types of datasets.
Therefore, this network may be considered as better than the
other two.

Performances of the trained networks were compared with
three established equation-based methods, for the recordings
from the subjects with normal health and for recordings from
the subjects with cardiovascular disorders. In comparison with
the ANN-based estimations, the equation-based estimations
had poor performance on all indicators. The Bernstein equa-
tion generally performed better than the other two equations. It
provided correlation coefficients of 0.36 and 0.33 for the re-
cordings from the subjects with normal health and for subjects
with cardiovascular disorders, respectively. The correspond-
ing values for the best ANN-based estimation were 0.95 and
0.93. The Bland-Altman plots showed the distribution of er-
rors in the ANN-based SVestimation for recordings from the
subjects with cardiovascular disorders to be similar to that for
recordings from the subjects with normal health.

For a comparison of the results with earlier studies [2, 8, 12,
31, 35, 48], the beat-to-beat SVestimationswere averaged over
the cardiac cycles for each subject. The correlation coefficients
for the equation-based estimations were low and similar to
those reported in earlier studies. The correlation coefficient
for ANN-based estimation was 0.96 and higher than the earlier
reported values.

Thus, the results show that the ANN-based estimation with
training using the pooled datasets from the subjects with nor-
mal health can be used for different datasets and pooling is
needed for training to extend the use of the trained network for
SV estimation for the subjects with cardiovascular disorders.
The results further show that the proposed method is usable
for measuring SVaveraged over a set of cardiac cycles and for
beat-to-beat SV monitoring.

Investigations need to be carried out with a larger database.
Training data from a larger number of subjects and particularly
with higher levels of exercise can help in reducing sparsity of
datasets at the ends of the SV range and in improving the
effectiveness of ANN-based estimation. The testing needs to
be carried out with a larger number of subjects with cardio-
vascular disorders. Use of other types of networks and tech-
niques for detection of ICG characteristic points with smaller
errors should be investigated. Use of the C-C interval in place
of the R-R interval in the input parameter set may be helpful in
further improving the performance. Effects of inclusion of
additional ICG parameters, such as B-C interval, C-X interval,
and ICG value at the X point, need to be investigated.

5 Conclusion

It may be concluded that the proposed ANN-based technique
using the optimized network and the ICG parameters obtained
by automatic beat-to-beat detection of the B, C, and X points
and the beat-to-beat R-R interval can be used for SVestimation
for subjects with normal health and cardiovascular disorders.
Its performance is better than the equation-based estimations
and it provides estimation with low bias and high precision.
Investigations using other types of networks, larger database,
technique for detection of ICG characteristic points with small-
er errors, and use of additional ICG parameters may be helpful
in further improving its performance. The technique may be
helpful in improving the acceptability of impedance cardiog-
raphy for use in clinical practice.
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