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Abstract Analysis of cardiac images is a fundamental task
to diagnose heart problems. Left ventricle (LV) is one of the
most important heart structures used for cardiac evaluation.
In this work, we propose a novel 3D hierarchical multiscale
segmentation method based on a local active contour (AC)
model and the Hermite transform (HT) for LV analysis in
cardiac magnetic resonance (MR) and computed tomogra-
phy (CT) volumes in short axis view. Features such as direc-
tional edges, texture, and intensities are analyzed using the
multiscale HT space. A local AC model is configured using
the HT coefficients and geometrical constraints. The endo-
cardial and epicardial boundaries are used for evaluation.
Segmentation of the endocardium is controlled using ellip-
tical shape constraints. The final endocardial shape is used
to define the geometrical constraints for segmentation of the
epicardium. We follow the assumption that epicardial and
endocardial shapes are similar in volumes with short axis
view. An initialization scheme based on a fuzzy C-means
algorithm and mathematical morphology was designed. The
algorithm performance was evaluated using cardiac MR and
CT volumes in short axis view demonstrating the feasibility
of the proposed method.
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1 Introduction

Heart failures have become some of the major causes of
death in developed and developing countries [11]. Detec-
tion of cardiac diseases during early stages of illness can
be fundamental to preserve the life of patients. In this
sense, cardiac imaging techniques such as MR and CT
have become essentials for heart evaluation. Both technolo-
gies consist of noninvasive tests which provide a set of
image slices of the heart. Several cardiac affections and
conditions can be diagnosed with heart imaging techniques,
including coronary artery diseases, affections provoked by
heart attacks, heart muscle diseases, congenital defects, left
ventricle (LV) dysfunction, heart valve diseases, ischemia,
myocardial mechanical problems and others [4].

LV, within the cardiac structures, is of great concern for
heart function evaluation [15, 32]. LV size at both end-
diastolic (ED) and end-systolic (ES) phase is commonly
used to identify cardiac failures [21]. Moreover, LV mass
can be used as a predictor of morbidity and mortality in
some patients [30]. Segmentation of the LV is required to
quantify these variables. The need for automatic or semiau-
tomatic algorithms is justified by the fact that manual delin-
eation is tedious, time consuming and observer-dependent.
More objective measurements can be achieved by using
robust computer-aided segmentation methods.

LV segmentation using cardiac images is a problem that
researches have tried to solve for many years. Although
many algorithms have been proposed, this problem still
remains as an open issue [32].
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Active contours (ACs) are some of the most accepted
methods for medical image segmentation. They consist of
evolving interfaces guided by internal and external forces
which depend on geometrical and image features [14]. In
these methods, the segmentation process is generally mod-
eled as energy functionals whose terms are designed to stop
the interface evolution at the object boundaries.

External forces in ACs need for efficient methods to
extract image features which are used to guide the evolu-
tion of the interfaces. Although many methods have been
proposed for this purpose (boundary-based techniques [9],
region-based approaches [10], methods based on probabilis-
tic interpretation [31] and others), all of them attempt to
analyze image features using the original space. Multiscale
and multiresolution analysis have demonstrated being very
powerful strategies to extract features in medical image
applications [1]. In this work, we use the 3D Hermite trans-
form for data characterization. It consists of a powerful
mathematical tool that projects a function onto the space
composed by the Hermite polynomials [28]. Local and
directional analysis [18], as well as multiscale and multires-
olution analysis [43] can be competently performed with
the HT.

In this work, a novel 3D AC model embedded into the
HT space is proposed . Features such as intensities, bound-
ary information, and geometrical constraints are combined
using a hierarchical multiscale scheme. Intensity and bound-
ary information are directly computed from coefficients of
the HT while shape-based constraints are based on the AC
properties. We exploit some advantages of the HT to provide
local directional and multiscale analysis. We use elliptical
shapes for geometrical constraint. An initialization stage
using a fuzzy C-means algorithm, combined with morpho-
logical operations, is also employed. The proposed method
is experimentally evaluated using MR and CT studies. We
demonstrate that combining different energy models into a
multiscale strategy based on the HT, cardiac volumes can be
efficiently processed.

1.1 Related works

There have been numerous contributions about segmenta-
tion methods applied to LV in cardiac MR/CT images [15,
32, 47]. Implicit [5, 22, 26, 33, 34, 49, 52] and paramet-
ric [24, 37, 44, 50] ACs, probabilistic algorithms [13, 42],
statistical shape models [2, 3, 8, 20], and atlas-based algo-
rithms [6, 7] are the most typical methods used for LV
segmentation.

Statistical shape models such as ASMs (active shape
models) and AAMs (active appearance models) use a set of
sample shapes to train a statistical model which is subse-
quently used for segmenting new data. Hans van Assen et
al. [3] combined a 3D ASM with a C-means algorithm to

segment the LV in MR volumes. Data with lack of informa-
tion can be segmented with this method. Ecabert et al. [17]
developed an approach to extract four cavities of the heart
as well as the myocardium and great vessels using CT vol-
umes. The method uses an ASM-based parametric model
with prior information. Although these methods are efficient
for segmentation of cardiac data, their performances depend
on the number of training samples.

Parametric ACs have been mainly employed for segmen-
tation of cardiac images. They consist of parametric curves
which move with a velocity field depending on image fea-
tures and geometrical information. Wu et al. [50] used a
classical snake model for LV segmentation in MR images.
Here, edges are detected using an external force called
gradient vector convolution. Circular shape constraints are
used. The problem with methods based entirely on edge
detectors is the sensitivity to noise. Sliman et al. [44] pro-
posed a method for 2D segmentation of the myocardium
using a parametric AC which combines two terms: a first-
order combination of discrete Gaussians and a second-order
Markov-Gibbs random field. A distance measure was also
incorporated to maintain a minimal separation between both
contours.

ACs based on level sets acquired much relevance for
segmentation of medical images. Unlike parametric ACs,
curves and interfaces are represented implicitly using level
sets. Easy implementation, extension to higher dimensions,
and possibility to combine different types of energies in a
transparent way are the most typical advantages of level set
methods. Changes of configuration are also assumed nat-
urally. In [22], the LV endocardium was segmented using
a Local Binary Fitting (LBF) energy functional [27] and
a convex hull algorithm while a dynamic programming
method was used for the epicardium. However, the method
does not use shape energies. A variational method is pre-
sented in [5] in which two curves are evolved to extract
the endocardium and epicardium. A prior term is used to
model the overlapping intensities in all regions of the LV.
Shape-based energies are not used which may hinder the
segmentation of papillary muscles. In contrast, Pluempiti-
wiriyawej et al. [34] proposed a level set functional which
includes a region term, a boundary term, a regularization
term and a shape term. In the latter, they assume the LV
can be modeled using an elliptical shape. However, inho-
mogeneity problems of cardiac images are not considered.
Attempting to model similarity between the LV cavity and
epicarial boundary, Woo et al. [49] designed a multiphase
level set approach to segment the endocardium and epi-
cardium. The method includes a shape prior based on the
discrepancy between both regions, which is assumed to
follow a Gaussian distribution. Zhu et al. [51] presented
a combination of thresholding, mathematical morphology,
geometrical operations and classical AC methods [9] to
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segment the endocardium and epicardium in 3D cardiac
CT studies. The poor contrast between the myocardium
and surrounding tissues in cardiac CT studies affects the
performance of classical AC models.

Other researches have recently opted for dynamic pro-
gramming models [23, 35, 41], registration-based methods
[48], random walk [19], and sparse modeling [36]. In spite
of all the described methods attempt to settle the segmen-
tation problem of the LV, they use image features obtained
from the original space of the input data. Nonetheless, most
of them do not use shape prior, they need of a huge dataset
to train a model and image inhomogeneities are not con-
sidered. Even more, segmentation of cardiac images has
been mainly focused on analyzing either MR or CT images
without generalization to both types of modalities.

1.2 Challenges in LV segmentation

Although many works have been proposed, the segmen-
tation of the LV remains as an active field of research.
Different types of problems are found when segmenting the
LV in cardiac MR/CT data. Variations of contrast, irreg-
ular shapes of the endocardial and epicardial boundaries,
diffuse edges, inhomogeneities, lack of information at apex
and base of the heart and noise are the most common dif-
ficulties to be handled by segmentation algorithms in these
types of images [47]. There is also a main consensus about
the assumption that papillary muscles are considered part of
the LV cavity for measurement purposes, which additionally
imposes a great challenge for segmentation approaches [15].

Other common trouble we can find is this type of appli-
cation is the difficulty to address extensive and objective
comparisons among many algorithms. Some collaborative
works and workshops have significantly contributed to the
field of LV segmentation using MR studies because they
have provided public datasets and evaluation protocols
for use of the researcher community. The MICCAI 2009

challenge [46], designed to perform valuable competitions
of LV segmentation algorithms, is perhaps the most known
workshop organized for this purpose. Nonetheless, a more
recent initiative called the cardiac atlas project [45] was cre-
ated to provide a huge database of annotated cases with
the objective that researchers prove their algorithms. These
collaborative works are also useful because they allow the
researchers to evaluate the performance of several method-
ologies for this specific application. Despite the effort made,
the LV segmentation using MR data remains as an open
issue. In many cases, authors have decided to use their own
set of data, and they also used different metrics for eval-
uation. Regarding cardiac CT studies, there are not public
datasets which imposes a bigger challenge for evaluating
segmentation algorithms.

2 Method

The developed method consists of a 3D local AC model
embedded into a hierarchical multiscale scheme provided by
the HT applied to LV segmentation in cardiac MR/CT vol-
umes. Coefficients of the HT guide the AC evolution. The
LV cavity is modeled using elliptical functions which are
incorporated into the shape energy. An endocardial-based
shape energy is employed for segmentation of the epi-
cardium based on the assumption that epicardial and endo-
cardial shapes are similar. The process follows a coarse-
to-fine segmentation. The endocardium is segmented first
followed by the epicardium. An initialization method is
proposed using a fuzzy C-means algorithm combined with
mathematical morphology operations. The general diagram
of the designed method is depicted in Fig. 1. The 3D HT is
calculated for the input volume using several scales. Coef-
ficients are posteriorly steered. The initialization algorithm
is then runned in order to obtain the initial surface at the
largest scale. Here, the AC model is used iteratively. Once

Fig. 1 Scheme of the proposed
segmentation method
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Table 1 List of coefficients, 3D HT until order n = 2

Order n m l Coefficient

n = 0 m = 0 l = 0 L0,0,0

n = 1 m = 0 l = 0 L1,0,0

m = 1 l = 0 L0,1,0

l = 1 L0,0,1

n = 2 m = 0 l = 0 L2,0,0

m = 1 l = 0 L1,1,0

l = 1 L1,0,1

m = 2 l = 0 L0,2,0

l = 1 L0,1,1

l = 2 L0,0,2

the AC has converged, its result is interpolated and used
as initialization for the next scale. These steps are repeated
until reaching the finest scale. Each stage of the proposed
framework will be described in this section.

2.1 The 3D Hermite transform (HT)

The goal of the 3D HT is to project the input volume onto
the space of Hermite polynomials in order to extract relevant
information [28]. Let f (x, y, z) be a 3D input function, its
3D HT is computed as follows:

Ln−m,m−l,l(p, q, r)=
∫ ∞

−∞
f (x, y, z)V 2(x−p,y−q, z−r)

· Gn−m,m−l,l(x−p,y−q, z−r)dxdydz

(1)

where Ln−m,m−l,l(p, q, r) are the 3D cartesian Her-
mite coefficients, V (x, y, z) is an isotropic 3D Gaussian
window with standard deviation σ and Gn−m,m−l,l =
WHn−m( x

σ
)Hm−l(

y
σ
)Hl(

z
σ
) correspond to the normalized

(a) (b)

Fig. 2 Coefficients of the 3D HT applied to a cardiac MR volume. Slices show the middle of the heart. a Cartesian coefficients. b Steered
coefficients

3D Hermite polynomials which are orthogonal with respect
to V 2(x, y, z), and W = 1√

2n(n−m)!(m−l)!l! . Coefficients are

calculated for subscripts n = 0, 1, . . . , N ; m = 0, 1, . . . , n

and l = 0, 1, . . . , m where n is the order of the transform.
Implementation of the 3D HT can be performed by convolv-
ing the input function with the set of Hermite filters defined
as:

Dn−m,m−l,l(x, y, z)=V 2(x, y, z)Gn−m,m−l,l(x, y, z)

=W
dn−m

d
(

x
σ

)n−m

dm−l

d
(y
σ

)m−l

dl

d
(

z
σ

)l
V 2(x, y, z)

(2)

and subsequently subsampling at positions (p, q, r). For
simplicity, we will use T = p = q = r as the subsam-
pling variable. The list of coefficients obtained for the 3D
HT until order n = 2 are depicted in Table 1.

The subsampling T and the standard deviation σ are the
free parameters to be configured. The latter determines the
scale of the transformation. In this work, we use a hierarchi-
cal multiscale framework in which the 3D HT is computed
using several values of σ and T . Here, a specific value of T

is used for each value of σ . Then, the multiscale scheme is
defined by the couple (σj , Tj ), with j = 1, 2, . . . , p where
p is the maximum number of scales. The first coefficient
L0,0,0 consists of a smoothed version of the input volume
while coefficients corresponding to order n = 1 are edge
maps. Coefficients of higher order, n > 1, are very suitable
to analyze texture of the input data. Figure 2a illustrates an
example of the 3D HT until order n = 1 applied to a car-
diac MR volume using two scales (σ1 = 1, T1 = 1; σ2 =
1.5, T2 = 2). Slices show the middle of the LV.

In general, one of the main advantages of the HT is its
ability to perform local directional analysis [18, 43]. Carte-
sian coefficients of order n ≥ 1 obtained using Eq. 1 can
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be steered using a linear combination of them. Patterns such
as edges and textures of the input data are better described
by performing directional analysis. Two angles, θ and φ, are
needed in order to perform the steering process. The first
angle defines the rotation w.r.t. xy − plane and the second
angle w.r.t. z − axis. Therefore, coefficients are steered as
follows:

LRn−m,m−l,l(θ, φ)=
n∑

k=0

k∑
s=0

C
(n)
m,l,k,s(θ, φ)Ln−k,k−s,s (3)

where C
(n)
m,l,k,s(θ, φ) represents a set of coefficient values

used for the steering process, Ln−k,k−s,s are the cartesian
Hermite coefficients and LRn−m,m−l,l(θ, φ) are the steered
Hermite coefficients. Figure 2b illustrates the steered Her-
mite coefficients obtained from the cartesian coefficients
shown in Fig. 2a. It can be seen that most of the energy
is concentrated in coefficient LR1,0,0. It is a frequent
practice to use only the steered coefficients LR1,0,0(θ, φ),
LR2,0,0(θ, φ), . . . , LRn,0,0(θ, φ) meanwhile the rest of
them are discarded, which means that a denoising process is
indirectly being applied.

2.2 Proposed initialization

The initial shape must be carefully selected when using
local AC models [25]. For this purpose, we have designed a
novel semi-automatic initialization scheme which combines
a fuzzy C-means method [12] with morphological operators.
Figure 3 graphically outlines this scheme. Firstly, we manu-
ally define limits for base and apex of the LV. The histogram
of the image corresponding to middle of the LV is pro-
cessed to obtain initial average values for the LV cavity and
myocardium. A fuzzy C-means algorithm is then applied
to segment the volume in three classes: (1) background,
(2) myocardium and similar tissues, and (3) LV cavity and
similar tissues. Figure 3 briefly describes the initial process.

Once the input volume is processed using the fuzzy
C-means algorithm, we need to compute the initial sur-
faces for the endocardium and epicardium. This proccess is
performed using two separate algorithms.

Endocardium initialization The schematic diagram of
this algorithm is illustrated in Fig. 4a. For each slice of the
pre-segmented volume with fuzzy C-means, we proceed as
follows:

• Each object corresponding to third class is labeled.
• Circularity Cr , area A and center of mass Cm measure-

ments are used to determine the object corresponding to
the LV cavity which is selected according to three con-
ditions: Cr > T c, A > T a and Cm being the most
central object satisfying the other two conditions. T c

and T a are two thresholds.
• When all volume slices have been processed, the initial

endocardial surface is constructed.

Epicardium initialization Segmentation results of the
endocardium are also incorporated as input information to
initialize the epicardium. Figure 4b describes the general
scheme. Similarly, for each slice of the volume resulted
from the fuzzy C-means stage, we proceed as follows:

• Take the second class as the region of interest. The rest
of the image is assumed to be background.

• Small objects (smaller than the LV cavity) of the back-
ground are removed. This operation helps to remove,
from the myocardial region, small artifacts resulted
from the fuzzy C-means stage.

• An edge detector algorithm is used. The objective is to
detect edge points of the epicardium.

• Using the center of mass of the LV cavity previously
segmented, we divide the complete slice in four regions.

Fig. 3 First stage of the
initialization based on a fuzzy
C-means algorithm
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(a) (b)

Fig. 4 a Endocardial initialization scheme, b Epicardial initialization scheme

• The contour points closest to the center of mass for each
region are selected. Then, the initial shape is built at
a distance d from the endocardial boundary using as
reference the four contour points.

• Finally, the initial surface of the epicardium is built
when all slices have been processed.

2.3 Proposed active contour model

We have designed an AC model with five energy functions:
two region terms (one local and one global), an edge-based
term and two geometrical terms. The first three energies
incorporate coefficients of the HT which guides the AC evo-
lution. The designed energy functional is used to segment
the endocardial and epicardial boundaries. The AC has been
represented using level sets [29]. Let C = C(X), X ∈ R3

be a moving interface which fragments the volume space
� into two regions. It can be represented as the zero level
set of a higher dimensional function, C = {X|ϕ(X) = 0}.
The following convention has been adopted for the level set
function: ϕ(X) > 0 for X outside C, ϕ(X) < 0 for X inside
C, and ϕ(X) = 0 for X ∈ C. The general proposed energy
functional is written as follows:

E = λ1EL + λ2EG + λ3EB + λ4ES + λ5ER (4)

where EL and EG are the local and global energy functions,
EB is the boundary-based energy, ES is the shape con-
straint and ER is the regularization term. Weight parameters
λm, m = 1, . . . , 5 control the contribution of each energy
term. All energy terms will be described in this section.

2.3.1 Local region energy

In general, inhomogeneities are frequent issues found in
MR/CT images. Classical region-based AC models [10,
31] fail to segment objects with intensity inhomogeneities

because they are based on global features. Several previ-
ous works based on local level sets have attempted to solve
the problem of image inhomogeneity [25, 27]. In this work,
we used a local energy term EL to characterize each point
p of the input volume using information of its neighbor-
hood. Taking a squared window W centered on each voxel,
two regions are selected: inside (�in) and outside (�out )

the current interface. We then compute the averages μ1

and μ2 for both regions respectively. Figure 5 outlines this
modeling process. For visualization purposes the scheme is
presented in 2D, however it is similar in 3D. The Hermite
coefficient of order n = 0 is used as input volume.

The energy term is defined as:

EL(μ1,μ2, ϕ) =
∫

�

(L0,0,0(X)−μ1(X))2H(ϕ(X))dX

+
∫

�

(L0,0,0(X)−μ2(X))2(1−H(ϕ(X)))dX

(5)

where μ1 and μ2 are calculated as follows:

μ1(X) =
∫
W

I (X)H (ϕ(X)) dX∫
W

H (ϕ(X)) dX

μ2(X) =
∫
W

I (X) (1 − H (ϕ(X))) dX∫
W (1 − H (ϕ(X))) dX

Fig. 5 Data modeling in the local region energy
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where I (X) = {
L0,0,0(X)|X ∈ W

}
. The level set is regu-

larized using Heaviside Hε(z) = 1
2

(
1 + 2

π
tan−1( z

ε
)
)

and

Delta Dirac δ(z) = d
dz

(H(z)) functions for minimization
purposes [10]. The terms H (ϕ(X)) represents the region
inside the interface, and (1 − H (ϕ(X))) is the outer region.
Because the zero-order Hermite coefficient is used as input
data, a noise reduction process is indirectly introduced in
this energy term.

2.3.2 Global region energy

A global energy term is incorporated to strengthen the AC
evolution, particularly in homogeneous regions. We adopted
the classical energy functional based on probabilistic mod-
els [14, 31]. Assuming the input volume V is the result of a
stochastic process, the partition P(�) of V can be obtained
by optimizing the a posteriori probability p(P (�)/V ) [31].
Considering the binary case of two independent regions, �1

and �2 (object and background), the global region energy is
defined as follows:

EG(ϕ) = −
∫

�

log(p(L0,0,0(X)/�1))H(ϕ(X))dX

+
∫

�

log(p(L0,0,0(X)/�2))(1−H(ϕ(X)))dX

(6)

where p(L0,0,0(X)/�i) with i = 1, 2 is the probability
function assumed for each partition. Similarly, the zero-
order Hermite coefficient is used as input volume.

2.3.3 Boundary-based energy

The boundary-based energy aims at stopping the moving
interface when edges are reached. Due to its simplicity and
efficiency, we used the following functional:

EB(ϕ) =
∫

�

gH (ϕ(X)) dX (7)

where g = 1
(1+LR1,0,0)

. The steered coefficient LR1,0,0 is
used as input data in this energy term. Since it consists of a

local directional boundary detector, the edge map of the ana-
lyzed volume is captured efficiently for all orientations. This
energy term takes advantage of the directional properties of
the HT.

2.3.4 Shape constraint

Generally speaking, it is a common practice to employ geo-
metrical shapes to model structures in medical images. LV
segmentation in cardiac volumes becomes challenging due
to presence of the papillary muscles which are considered to
be part of the LV cavity. Moreover, subtle edges, low con-
trast as well as lack of information in some regions of the
endocardium and epicardium impose more challenges for
segmentation algorithms. Some authors have adopted ellip-
tical [34] or circular [50] shapes to model the LV in cardiac
MR/CT data with short axis view. In this work, we also con-
sider that the LV cavity can be represented using elliptical
shapes in all volume slices from base to apex. Our goal is to
maintain a regular shape of the interface by controlling its
deformation. This process is performed for each slice. The
current 3D zero level set is then mapped to 2D zero level
sets, see Fig. 6. Afterwards, an ellipse for each plane is esti-
mated using each contour slice. Finally, we build a stack
of signed distance functions from contours of the estimated
ellipses.

The ellipses estimation process is performed using the
simple but effective method described in [39]. The stack
of ellipses-based signed distance functions ϕs is compared
with the original level set which allows penalizing the AC
deformation when it differs from the elliptical shapes. For
this purpose, we used the following energy functional [40]:

ES(ϕs, ϕ) =
∫

�

(ϕ(X) − ϕs(X))2 H (ϕ(X)) dX (8)

The shape constraint consists of a geometrical function
that only depends on the interface.

For the epicardial boundary, we assume that shape of the
epicardium is similar to shape of the endocardium. The final
segmentation of the endocardial boundary is then coded as
ϕs . Therefore, when segmenting the epicardial boundary

Fig. 6 Ellipses estimation
process. The initial surface is
mapped to 2D contours and
ellipses are estimated for each
xy − plane
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this energy term penalizes the deviation of the AC from the
endocardial shape.

2.3.5 Regularization energy

We also include a regularization term which is normally
used to privilege smooth interfaces in the segmentation
process [9, 10, 14, 29, 31]. It is defined as:

ER(ϕ) =
∫

�

|∇H (ϕ(X))| dX (9)

where ∇ is the gradient operator.

2.3.6 Energy minimization

The complete energy functional is a weighted combination
of the described energy terms, see Eq. 4. It is well known
that minimizing the complete functional is equivalent to
minimizing each energy term separately and then perform-
ing the corresponding combination [49]. Fixing μ1, μ2 and
ϕs , using the calculus of variation and the steepest descent

method, the differential equation which minimizes E with
respect to ϕ is obtained:

∂ϕ

∂t
=

[
λ1

(
− (

L0,0,0 − μ1
)2 + (

L0,0,0 − μ2
)2

)

+ λ2

(
log

(
p

(
L0,0,0/�1

))
log

(
p

(
L0,0,0/�2

))
)

+λ3g

+ λ4Div

( ∇ϕ

|∇ϕ|
)]

δ(ϕ)−2λ5H(ϕ)(ϕ−ϕs) (10)

2.4 Implementation details

Regarding the 3D HT, coefficients were steered using a cri-
terion of maximum energy. Two or three scales were used
depending on the input data.

For the level set implementation, we used a narrow band
algorithm since the final segmentation is only defined by the
zero level set. In the global term EG, we assume Gaussian
distributions whose parameters were computed from results
of the initialization algorithm. All energy terms have been

Fig. 7 Image examples used for
validation. Images show the LV
at base (left), middle (center)
and apex of the heart (right)
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Table 2 Parameters
configuration of the proposed
algorithm

Parameters Values Description

MR Datasets

σj , j = 1, 2 σ1 = 1.0; σ2 = 1.5 Two scales

Tj , j = 1, 2 T1 = 1; T2 = 2

λ1 λ2 λ3 λ4 λ5

λm Endo 0.4–0.7 0.1–0.3 0.1–0.3 0.01 0.001–0.005 Range of weight values

m = 1, 2, .., 5 Epi 0.0 0.2–0.5 0.3–0.5 0.2 0.100–0.300 Window size

Vp(x, y, z) Endo [7 7 1], [3 3 1]

Epi [10 10 0]

CT Dataset

σj , j = 1, 2, 3 σ1 = 1.2; σ2 = 1.8; σ3 = 2.4 Three scales

Tj , j = 1, 2, 3 T1 = 1; T2 = 2; T3 = 4

λm λ1 λ2 λ3 λ4 λ5

m = 1, 2, .., 5 Endo 0.2–0.5 0.5–0.8 0.0–0.1 0.01 0.01–0.05 Range of weight values

Vp(x, y, z) Endo [15 15 1], [4 4 1], [3 3 1] Window size

normalized within the range [0, 1]. In order to stop the AC
evolution, we used the following criterion:

∣∣∣∣
∫

�

H
(
ϕk1(X)

)
dX −

∫
�

H
(
ϕk2(X)

)
dX

∣∣∣∣ < τ (11)

where k1 and k2 represent two different iterations with k2 =
k1 + q, q ∈ Z+ and τ is a threshold.

The shape energy maintains a regular deformation of the
AC during evolution. Since it does not depend on image fea-
tures, it cannot guide the contour toward the boundaries of
the object. For this energy term, we have used a double con-
figuration: a small weight value is assigned to this energy
at the beginning of the evolution and for a specific number
of iterations. This weight is subsequently incremented. With
this configuration, the AC is freely deformed during the
first iterations and then adjusted to maintain the geometrical
shape defined for the processed object.

3 Results

In this section, we present the results obtained with the pro-
posed algorithm using MR/CT studies. Comparisons with
other methods are also presented. Several metrics were
used for evaluation: point-to-curve distance (PCD), point-
to-surface distance (PSD), modified Hausdorff distance
(MHD) [16] and the Dice similarity coefficient (DSC).
Moreover, clinical indices were also used for evaluating the
algorithm.

3.1 Materials

Two sets of MR and one of CT cardiac volumes were
used for validation. The first set of MR data consists of 15

patients selected from the MICCAI challenge database [46].
These images were acquired with a 1.5T GE Signa MRI
during 0–15 second breath-holds with 20 cardiac phases as
temporal resolution over the complete cardiac cycle. Images
were acquired in short axis view. The number of slices for
each volume varies between 6 and 12 from the atrioventricu-
lar ring to the apex (thickness = 8 mm, gap = 8 mm, FOV =
320 mm 320 mm, matrix = 256×256).

The second set of MR data is composed by 15 patients
selected from the database shared by [2]. Similarly, images
were acquired with a GE Genesis Signa MR scanner. For
each patient, 20 volumes describe the entire cardiac cycle.
The number of slices ranges between 8 and 15. Each image
slice consists of 256×256 pixels with pixel-spacing values
between 0.93 and 1.64 mm. Spacing-between slices ranges
from 6 to 13 mm.

We also used a cardiac CT dataset consisting of
15 patients. Tomographic studies were acquired with a
SIEMENS 16-slice CT system. The scanner is composed of
128 detectors and synchronized with the ECG signal. Each
image consists of 512×512 pixels, quantized to 12 bits ×
pixel. There are 10 volumes for each patient describing the
entire cardiac cycle form diastole to systole.

Table 3 DSC obtained using segmentation results of four methods,
including the proposed approach. Evaluation made using images of
MR dataset 1

Endocardium Epicardium

Method 1 [23] 0.890 ± 0.030 0.940 ± 0.020

Method 2 [41] 0.869 ± 0.042 0.921 ± 0.020

Method 3 [35] 0.886 ± 0.039 0.928 ± 0.016

Our Method 0.910 ± 0.018 0.939 ± 0.009
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Table 4 Average PCD, MHD and PSD (mm) obtained for the endo-
cardial and epicardial segmentation using MR data

PCD MHD PSD

MR Dataset 1

Endocardium 1.5430 ± 0.4371 3.2342 ± 1.7985 0.8859 ± 0.2747

Epicardium 1.6204 ± 0.3374 3.3062 ± 1.3570 0.8472 ± 0.1557

MR Dataset 2

Endocardium 1.2731 ± 0.2652 2.0147 ± 1.1707 0.6172 ± 0.1295

Epicardium 1.6287 ± 0.2545 3.1348 ± 1.0244 0.8005 ± 0.1586

Figure 7 shows image examples taken from each dataset. It
can be noted the high variability regarding the image features.

3.2 Parameters selection

In this work, we used experimental tests in order to deter-
mine the best set of parameters to configure the algorithm.
Free parameters in the Hermite-based multiscale stage are
the scales and subsampling values controlled by σ and T .
In the level set functional, we must assign weight values

for each energy term. In our experiments, parameters of
the HT were fixed while parameters of the AC functional
were configured for each test. Table 2 describes the algo-
rithm configuration. Values were assigned depending on the
dataset.

3.3 MR volumes

Results using the first set of MR data using the DSC met-
ric are presented in Table 3. The DSC was computed for
all slices at ED and ES phase for each patient. Results are
finally averaged for all patients and presented separately for
the endocardium and epicardium. The best result for the
endocardium was 0.9387 and the worst 0.8323. Similarly,
for the epicardium we obtained a maximum DSC of 0.9441
and a minimum of 0.8824. Comparisons with other methods
which have used the same dataset are presented in Table 3 as
well. It can be noted that our method achieved better results
as those reported in the state of art.

Results obtained for the first and second dataset using the
PCD and MHD metrics are presented in Table 4. A Box-
Plot graph (see Fig. 8) shows the behavior of the proposed
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Fig. 8 Box-Plot graph using the average PCD (mm) metric evaluated with MR data
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Table 5 DSC computed for the proposed segmentation approach and
two methods of the state of art using MR dataset 2

Endocardium Epicardium

Method 1 [36] 0.9000 ± 0.0300 0.9500 ± 0.0100

Method 2 [33] 0.9052 ± 0.0260 0.9261 ± 0.6721

Our method 0.9123 ± 0.0207 0.9291 ± 0.0175

segmentation method for all patients using the PCD metric.
It is accepted that a good segmentation is achieved when the
computed distance is less than 5 mm [38].

Similarly, results obtained for the second MR dataset are
also compared with two different methods of the state of art
which used the same database of cardiac MR studies, see
Table 5.

Visual performance of the proposed segmentation
method is evaluated in Fig. 9. Volume slices selected from
each MR dataset are illustrated. The LV is visualized at base,
middle and apex of the heart. The red contour is the man-
ual annotation and the green contour is the segmentation
obtained with the proposed algorithm.

We also addressed evaluations using a 3D metric. For
this purpose, we employed the PSD metric whose results
are presented in Table 4 for all MR data. Surface examples
obtained from the segmentation are visualized in Fig. 10.
Examples are presented for the endocardium at ED and ES
phase, and for the epicardium at ED phase.

Bland-Altman analysis was also performed to evaluate
the segmentation using clinical indices. The main objective
of the segmentation in this application is to provide an effi-
cient mechanism to aid in the cardiac function assessment.

Fig. 9 Visual results for LV
segmentation at base (first
column), middle (second
column) and apex (third
column) of the heart for diastole
and systole phases using MR
volumes
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Fig. 10 Surface examples obtained with the segmentation. The red
surfaces correspond to the manual segmentation. The green surfaces
were obtained using the proposed algorithm

End-Diastolic Volume (EDV), End-Sysolic Volume (ESV),
Stroke Volume (SV) and Ejection Fraction (EF) are typical
measurements used for LV evaluation [4, 11, 15, 21, 30, 32].
These metrics can be easily computed from the segmenta-
tion results. Bland-Altman analysis applied to these clinical
indices is depicted in Fig. 11. Here, all volumes gathered
from both MR datasets were used.

3.4 CT volumes

We also addressed evaluations of the algorithm using car-
diac CT volumes. Results are presented for the LV cavity.
Unlike MR studies, the contrast is lower in cardiac CT
and boundaries which separate heart structures are more
difficult to identify. However, cardiac CT studies present
images with bigger size and the number of slices sub-
stantially increases, ranging from 80 to 170. Similarly, the
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Fig. 11 Bland-Altman graph computed for EDV, ESV, SV, and EF indices using all MR volumes, with μ being the mean and std corresponding
to standard deviation. Green lines define the limits of agreement



Med Biol Eng Comput (2018) 56:833–851 845

Fig. 12 Segmentation of the LV
cavity obtained with the
proposed approach using a
cardiac CT study. First row:
volume and slices at ED phase.
Second row: volume and slices
at ES phase. Slices are presented
for base, middle and apex of the
heart

LV cavity is one of the brightest regions in cardiac CT
images. On the other hand, cardiac CT images are normally
acquired using the original axial view with respect to the
human body. This implies that a rotation process is needed
in order to provide the short axis view used for LV eval-
uation. Figure 12 illustrates a segmentation example using
the proposed approach. Results for contours are illustrated.
The PCD, MHD and PSD obtained are presented in Table 6
for ED and ES phase. Likewise, obtained surfaces are pre-
sented in Fig. 12 as well. A Box-Plot graph using the PCD
metric is illustrated in Fig. 13 which was also configured to
show results for the end-diastolic and end-systolic phases. In
addition, Bland-Altman and linear regression analysis using
the cardiac clinical indices (EDV, ESV, SV, and EF) are
also employed for evaluation whose results are presented in
Figs. 14 and 15, respectively.

4 Discussion

The objective of this work is to develop a segmentation
algorithm for LV analysis in cardiac MR/CT volumes.
The performed experiments demonstrate that the proposed
approach is able to extract the LV cavity in CT studies, and
the endocardial and epicardial boundaries in MR data. The
Box-Plot graph in Fig. 8 and results presented in Table 4
show a PCD less than 2 mm achieved for all evaluated
examples using both MR datasets. This value is within the
acceptation error which must be less than 5 mm [38] in order
to be considered as a good segmentation. The MHD is an
alternative distance metric used for performance evaluation.
Although this metric presents higher values than PCD, it can
be noted that results are still within the acceptation error.
The PSD metric was also used for evaluation. Results were

exposed in Table 4 demonstrating the good performance
achieved.

In our experiments, we also addressed quantitative com-
parisons with other methods of the state of art. The DSC
metric was used for this purpose. This is one of the most
standard metrics used for segmentation evaluation. Most
of the authors use this metric for performance assessment.
Tables 3 and 5 describe results obtained with the proposed
method and others found in the literature. It can be noted
that results of our algorithm outperform in most cases the
segmentation achieved with the other methods [23, 33, 35,
36, 41]. Unlike the compared methods, we used a gen-
eralized scheme which can be configured to be applied
satisfactorily to both regions, endocardium and epicardium.

In general, the epicardial boundary is more difficult to
detect due to inhomogeneities surrounding the myocardium
in these types of cardiac studies. Variability of contrasts and
intensities in this region is a direct consequence of different
types of tissues connected with the myocardium. Since we
are using an AC, we need to prevent leaking problems using
a higher weight value for the shape energy (see Table 2).

Figures 9 and 10 illustrate visual results of the segmen-
tation applied to MR data. They are compared with the
manual annotation. The obtained contours and surfaces are
very close to the manual segmentation.

Table 6 Average PCD and MHD (mm)

PCD MHD PSD

ED Phase 0.9387 ± 0.2507 1.2038 ± 0.7171 0.8035 ± 0.3179

ES Phase 0.9718 ± 0.2133 1.4785 ± 1.0679 0.7848 ± 0.2723

Results for LV cavity at ED and ES phase, using the cardiac CT dataset
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Fig. 13 Box-Plot graph using the average PCD (mm) metric evaluated with CT data
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Fig. 14 Bland-Altman graph computed for EDV, ESV, SV, and EF indices using CT volumes
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Fig. 15 Linear regression analysis using the manual and automatic segmentation for EDV, ESV, SV and EF

Bland-Altman graph in Fig. 11 shows results using four
typical cardiac indices. They have been calculated using all
MR volumes. These indices are the final objective of the
segmentation since they allow physicians to assess the LV
function. It can be seen that most of the evaluated examples
lie inside the limits of agreement for all cases.

The algorithm was evaluated using cardiac CT studies
as well. Figure 12 shows visual segmentation results for
the LV cavity. Figures 14 and 15 illustrate the performance
achieved using the clinical indices. Linear regression anal-
ysis demonstrates the effectiveness of this work. A high
correlation between the manual and automatic segmenta-
tion was obtained. Quantitative performance is exposed in
Table 6. In general, the LV cavity is more difficult to
segment at ES phase. Naturally, the cavity at this stage
is more irregular and the size of the papillary muscles
appears to be increased with respect to the region covered

by the blood pool. Conversely, the latter characteristic is
even problematic for physicians when performing manual
segmentations because external boundaries of the papillary
muscles are not visible in some parts (see Fig. 12).

Regarding the designed method, the selection process of
the algorithm parameters has been made experimentally. It
can be noted from Table 2 that more scales were used with
the HT when using cardiac CT volumes. In addition, the
window size used for the local region energy is bigger. This
is logical because the size of volumes in CT is bigger than in
MR. Perhaps, the most critical issue regarding the parame-
ter configuration is to assign the weight values for the shape
energy. If this value is too high during the first iterations,
the AC does not evolve properly because the algorithm tries
to maintain the elliptical shape of the interface on each
xy−plane. Figure 16 shows the effect of varying the weight
value for the shape parameter. Images were taken from a
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Fig. 16 Segmentation results
using different weight values for
the shape parameter. The first
row illustrates a basal image.
The second row corresponds to
an image in the middle of the LV

CT volume. It can be noted that increasing the weight value
helps to maintain the elliptical shape of the contour which
avoids the segmentation of papillary muscles.

On the other hand, the local region energy can easily han-
dle illumination changes and inhomogeneity problems. It
can also be adapted to any type of images. Figure 17 illus-
trates a comparison between the proposed algorithm and
two classical methods (the Chan-Vese model and a Fuzzy
C-means algorithm). This comparison was made using a
MR volume with inhomogeneity problems. Due to the local
region energy, the proposed active contour can handle these
issues present in the LV cavity. Even though it is very
difficult to provide parameter values without having some
knowledge of the input data, it should be very interesting as
future work to design an automatic mechanism for this task.

The 3D HT has been used as model for image data cod-
ing. The main advantages of this transform are the ability to

provide local direction analysis, multiresolution and multi-
scale analysis, different types of texture features, and it is
also easy to implement in any dimension. It can be veri-
fied in Fig. 2 how the useful information is compressed with
the steering process, concentrating most of the energy in a
small number of coefficients. In this work, we are employ-
ing coefficients until first order but the algorithm can be
easily adapted to incorporate more coefficients for this and
other applications if needed.

Finally, we are interested in developing an application for
evaluating the heart mechanical function using MR and CT
studies. As future work, the segmentation will be combined
with motion estimation methods with the aim of providing a
robust and complete tool which integrates these algorithms
and computes different types of clinical indices used for
physicians to evaluate the LV function. Some synchroniza-
tion problems of the LV muscle, and patients with heart

Fig. 17 Results of three
methods applied to segmentation
of the LV cavity in a MR
volume with inhomogeneity
problems. Slices at base (first
row) and middle (second row) of
the heart are presented
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failure and cardiac insufficiency can be identified through
a clinical quantification of heart structures analyzed with
these methods.

5 Conclusion

We have proposed a robust hierarchical multiscale scheme
which uses an AC model and the Hermite transform to
segment cardiac MR/CT volumes. Experimental results
demonstrate the implemented method can be efficiently
used for LV evaluation. Several studies taken from two car-
diac MR databases and our own CT collection of data were
used for validation. As future work, we intend to adapt the
algorithm for segmentation of other heart structures and
other cardiac views in order to provide a more general
framework useful for cardiac evaluation. Given the proper-
ties of the HT and the implicit AC, the proposed method can
be extended to any dimension.
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