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Abstract Group independent component analysis (GICA)
has been successfully applied to study multi-subject function-
al magnetic resonance imaging (fMRI) data, and the group
independent component (GIC) represents the commonality
of all subjects in the group. However, some studies show that
the performance of GICA can be improved by incorporating a
priori information, which is not always considered when
looking for GICs in existing GICA methods. In this paper,
we propose an improved multi-objective optimization-based
constrained independent component analysis (CICA) method
to take advantage of the temporal a priori information extract-
ed from all subjects in the group by incorporating it into the
computational process of GICA for group fMRI data analysis.
The experimental results of simulated and real data show that
the activated regions and the time course detected by the
improved CICA method are more accurate in some sense.
Moreover, the GIC computed by the improved CICA method
has a higher correlation with the corresponding independent
component of each subject in the group, which means that the
improved CICA method with the temporal a priori informa-
tion extracted from the group can better reflect the common-
ality of the subjects. These results demonstrate that the
improved CICA method has its own advantages in fMRI
data analysis.

Keywords fMRI . GICA . CICA . Temporal a priori
information .Multi-objective optimization

1 Introduction

In the past two decades, functional neuroimaging has be-
come an important tool for studying various neural mech-
anisms in the brain. In particular, functional magnetic res-
onance imaging (fMRI) has drawn considerable attention
due to being noninvasive and having high spatio-temporal
resolution [1–3]. Many methods have been used for fMRI
data analysis, and these methods are generally divided
into model-based methods and data-driven methods
[4–6]. The model-based methods require a priori informa-
tion about the experimental paradigm, and usually only
local brain area data are considered in these methods rath-
er than data from the whole brain. On the contrary, data-
driven methods do not depend on any a priori informa-
tion, and several of these methods have been fruitfully
applied to the field of fMRI data analysis, such as princi-
ple component analysis (PCA), independent component
analysis (ICA), and clustering analysis (CA).

Among them, the purpose of ICA is to decompose the
observed multivariate data into the source signals, which
are assumed statistically independent and non-Gaussian.
Since it was first introduced into this field for single-
subject fMRI data analysis [7], it has become one of the
most popular methods to analyze fMRI data [8–10].
Compared with univariate methods such as general linear
model (GLM) methods based on the single voxel level
[11], ICA is a multivariate method that considers the in-
teractions between the voxels and is increasingly being
applied to extract functional neural networks from the
fMRI data of various cognitive activities without relying
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on any a priori information. Currently, ICA has been
widely used for fMRI data analysis in a resting state
[12, 13] or a specific cognitive task-related state [14,
15]. In many circumstances, ICA needs to be used for
multiple-subject fMRI data analysis, which is usually re-
ferred to as group ICA (GICA) [16].

As a kind of purely data-driven blind source separation
technique, ICA does not require any a priori information.
However, many studies have shown that the capabilities
of ICA can been greatly improved if some a priori infor-
mation is incorporated into the estimation process when it
is available [17–19]. This kind of method is usually called
constrained ICA (CICA) or ICA with reference (ICA-R)
[20, 21]. Compared with the classical ICA, CICA or ICA-
R only extracts the sources of interest without extracting
all the sources by introducing the a priori information into
the calculation process, and this method avoids computing
uninteresting sources, facilitates subsequent applications,
and reduces the computation time and storage require-
ments [22, 23]. In addition, the separation quality and
accuracy of interesting sources can also be improved
through the incorporation of a priori information [24,
25]. On this basis, a great number of other extension
methods have been proposed [26–29].

Currently, the existing methods with a priori informa-
tion generally consider specific knowledge associated
with the sources. For example, the spatial template of
some mature networks, such as the visual network or the
default mode network, and the specific experimental par-
adigms of some cognitive task experiments, such as block
stimulation mode in a visual cognitive experiment, are
considered [30–32]. However, this knowledge about the
sources is not always known, especially in the case of
complex cognitive activity. It is important to get available
a priori information from the existing data itself. Recently,
we proposed a method called GICA-IR to extract some
intrinsic, spatial a priori information from data from
groups of subjects. The results demonstrated that the
group independent component (GIC) computed by
GICA-IR is more representative of the commonality of
the subjects in the group through incorporating this infor-
mation into the GICA extraction procedure [33].

However, as far as we know, there are very few papers
that study how to obtain temporal a priori information from
the subjects in a group for multi-subject fMRI data analy-
sis. In this paper, we propose a novel method to extract the
temporal a priori information from the data from groups of
subjects and then incorporate it into a GICA computational
process for group fMRI data analysis using the improved
multi-objective optimization-based CICA method. The ex-
perimental results showed that the GIC computed by the
improved CICA method is more representative of the com-
monality of subjects in the group.

2 Methods

In this section, we first briefly introduce the relevant knowl-
edge about ICA and GICA. Then, a detailed description of the
proposed improved CICA method with temporal reference
signal is presented. Finally, we provide a description of the
experimental data and data processing.

2.1 Independent component analysis

Assume X = (x1, x2,…, xT)
′ is a T × V matrix of observed

fMRI data from a single subject, where T and V represent the
number of time points and the number of voxels within the
brain, respectively. Then, the classical spatial ICA can be for-
mulated as the following linear generative model:

X ¼ MS ð1Þ
where S = (s1, s2,…, sN)

′ is anN × Vmatrix in which each row
represents a spatial source and N denotes the number of
sources. These sources are assumed to be unobservable, inde-
pendent, and non-Gaussian. M is a T ×N unknown mixing
matrix that mixes the N sources to generate the observed
fMRI data, whose columns contain the associated time
courses of the N source signals. Solving the ICA is estimating
an N × T unmixing matrix W = (w1, w2,…, wN)

′ such that
Y = (y1, y2,…, yN)

′ is a good approximation of the sources S
according to the following equation:

Y ¼ WX ð2Þ

Many algorithms can be used to solve the ICA model in
(1), and currently the most widely used ICA algorithms in-
clude InfoMax [34] and FastICA [35].

2.2 Group independent component analysis

ICA was implemented on the multi-subject fMRI data, often
referred to as GICA. Temporal concatenation GICA
(TCGICA) is the most widely used method in the existing
GICA approaches, which assumes that all subjects have com-
mon, spatially independent components (ICs). Specifically,
assuming that there are K subjects in total, and Xi is a T × V
matrix that represents the fMRI data of each subject i (i = 1,
⋯ ,K), the TCGICA concatenates the fMRI data ofK subjects
along the temporal dimension and then decomposes the KT ×
V group data as follows:

Xb ¼ X
0
1;X

0
2;⋯;X

0
K

� �0

¼ bMSb ð3Þ

where bM is a KT × L group mixing matrix, bS is a L × V
matrix in which each row represents a GIC, and L denotes
the number of GICs.
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2.3 The improved CICAwith temporal reference signal

In this subsection, we first give the specific steps of the
method for extracting the temporal reference signal from
the group of subjects, and then we present a detailed de-
scription of the improved multi-objective optimization-
based CICA method.

2.3.1 The extraction of the temporal reference signal

We assume there are a total of K subjects in the group,
and all subjects have T time points and V voxels after
normalization. First, we implemented ICA on each of
the subjects in the group. For each subject i, ICA was
defined as

X i ¼ M iSi; i ¼ 1; 2;…;K
� �

ð4Þ

whereXi is aT × V fMRIobserveddata,Si ¼ s11; s12;…; s1Nið Þ0
is anNi ×Vmatrix, andeach rowrepresents an ICof subject i.M i

¼ m11;m12;…;m1Nið Þ is aT ×Nimixingmatrix.For thesakeof
simplicity, we only considered the case where each subject has
just one IC of interest, and the correspondence of the ICs of
different subjects could be obtained by the absolute value of the
spatial correlation [36].

Now we denoted sini i ¼ 1; 2;…;Kð Þ as the nist IC,
which is the source of interest for the subject i, and mini
i ¼ 1; 2;…;Kð Þ is the corresponding time course. Finally,
these time courses were concatenated into a time course
with greater length:

m ¼ m1n1
0
;m2n2

0
;…;mKnK

0
� �0

ð5Þ

where m represents the temporal reference signal, which
is a column vector of size KT × 1, and it is used as rti in
the following improved multi-objective optimization-
based CICA method for group fMRI data analysis.

2.3.2 The improved multi-objective optimization-based CICA
method

In this paper, the proposed improved CICA with temporal
reference signal method was established with the multi-
objective optimization framework as follows:

Maximize J wið Þ≈ E G ŝ ið Þ½ �−E G vð Þ½ �f g2
ε1 wið Þ ¼ abs E m̂i∙rti½ �ð Þ

�
Subject to wik k2 ¼ 1

ð6Þ

where J(wi) is the negentropy of the estimated IC,

ŝi ¼ wT
i X̂ . m̂i ¼ Z−1wi denotes the time course corre-

sponding to bsi, and it is a column vector of size KT × 1.
Z denotes the L × KT whitening matrix, which is obtained
by eigenvalue decomposition, and L denotes the number
of ICs. v is a Gaussian random variable with a zero mean
and a unit variance. G(∙) is a non-quadratic function, and
G(v) = log(cosh(v)) is used in this paper. rti denotes a tem-
poral reference signal, which is a column vector of size
KT × 1, and ε1 wið Þ ¼ abs E m̂i∙rti½ �ð Þ is specifically defined
as the Pearson correlation coefficient to measure the
closeness between m̂i and rti where both m̂i and rti have
a zero mean and unit variance. Each solution of the multi-
objective optimization problem in (6) corresponds to an
optimal unmixing column vector wi that is constrained
to ‖wi‖

2 = 1.
For multi-objective optimization problems, there is no

global solution that makes all of the cost functions
achieve the optimum simultaneously. Therefore, a trade-
off solution is needed to balance the optimality of all cost
functions. Among the methods of solving the multi-
objective optimization problem, the weighted summing
method is simple and efficient, and it is achieved by op-
timizing the weighted sum function of the objective func-
tions on the condition that the weight value of each ob-
jective function is positive and the sum of all weights is 1
[37]. Therefore, this method was adopted to solve the
multi-objective optimization problem of (6) in our study.
To avoid the calculation process being controlled by the
objective function with a larger value, the arc-tangent
function was used to normalize the objective function
J(wi) in (6):

f 1 wið Þ ¼ 2=πð Þ∙arctan ci∙J wið Þ½ � ð7Þ

where ci in (7) is automatically determined so that the
possible values of f1(wi) and ε1(wi) range from 0 to 1
[36]. Then, the reformulated linear weighted objective
function is

f wið Þ ¼ a1∙ f 1 wið Þ þ a2∙ε1 wið Þ ð8Þ

where ai (i = 1, 2) is the weight parameters and a1 + a2 = 1.
Then, the iteration algorithm for optimizing f(wi) can be
derived as follows:

∇ f wið Þ ¼ a1∙∇ f 1 wið Þ þ a2∙∇ε1 wið Þ ¼ 2a1∙ 2=πð Þ∙ci= 1þ ci∙J wið Þ½ �2
� �

∙ E G wT
i X̂

� �h i
−E G vð Þ½ �

� �
∙E X̂ ∙g wT

i X̂
� �h i

þ a2∙E Z−1rti
� �

ð9Þ

where g(∙) is the derivative of G(∙), sog(v) = tanh(v). E(∙)
can be estimated as the mean of all samples. Once the
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gradient of the weighted sum function in (8) is calculated,
the steepest ascent iteration formula can be set up
as follows:

wi k þ 1ð Þ ¼ wi kð Þ þ μ kð Þ∙di kð Þ ð10Þ

where wi(k) denotes the value of wi after the kth iteration. di(-
k) = ∇f(w

i
(k))/‖∇f(wi(k))‖, and μ(k) denotes the step-length.

Finally, the corresponding time course can be calculated by
using the following formula when the IC si is obtained:

m̂i ¼ Z−1wi ð11Þ

where wi is the unmixing column vector corresponding to si:
In the last subsection, the whole process for the proposed

method is summarized as a flowchart (see Fig. 1).

2.4 Experimental data

In this subsection, the simulated and real fMRI data were
used to evaluate the performance of the improved CICA
method at the group level for fMRI data analysis.

2.4.1 Simulated data

The simulated fMRI data were obtained using the
code downloaded from http://mlsp.umbc.edu/simulated_
fmri_data.html [38], where a set of spatial sources
with different simulated hemodynamic time courses

were designed to generate the data through linear
superposition. Specifically, the data for each simulated
subject were produced by mixing the eight original
sources with their corresponding time courses, and a
total of 100 sample images were included in the data,
where each source image had 60 × 60 pixels with 100
time points (see Fig. 2). The eight original sources were
designed such that source 1 was task related, source 2 and
source 6 were transiently task related, source 5 was func-
tion related, and source 3–source 4 and source 7–source 8
were artifact related. In particular, the task-related source
1 had a time course similar to the block-like shape that is
often used to imitate an experimental paradigm.

In this experiment, 20 groups of simulated datasets
were produced from the same original sources/TCs by
adding specific variability to each subject, and each sim-
ulated dataset included five subjects. The spatial variation
in the sources of each subject was portrayed by adding
Gaussian noise with a different signal-to-noise ratio
(SNR) to the source images, and the signal-to-noise ratios
ranged from 0.3 to 0.4 and were randomly determined for
different subjects. The temporal variation in time courses
was simulated by applying time delay and amplitude
modulation, which were also randomly determined with
the time courses.

2.4.2 Real fMRI data

A real fMRI dataset from five subjects who completed a
visual task was included in this study. All five subjects

Fig. 1 The flowchart of the proposed method. Xi (i = 1, 2,…, K)
represents the fMRI data of subject i. Mi (i = 1, 2,…, K) and Si (i =
1, 2,…, K) represent the temporal and spatial components of subject
i, respectively, which are obtained using ICA. m represents the

temporal reference rti. M and S represent the group temporal and
spatial components, respectively, which are obtained using the
improved CICA method
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were notified about the aim of this study, and they signed
a written consent letter. The block pattern of OFF-ON-
OFF-ON-OFF-ON was used as the experimental para-
digm, and each block lasted 20 s. In the BON^ state, the
visual stimulus corresponded to a radial blue/yellow
checkerboard that reversed at 7 Hz. In the BOFF^ state,
the participants were required to focus on a cross at the
center of the screen. The BOLD fMRI data from two
subjects were acquired using single-shot SENSE gradient
echo EPI with 37 slices, providing whole-brain coverage
and 70 volumes, a TR of 2.0 s, and a scan resolution of
64 × 64. The in-plane resolution was 4 mm × 4 mm, and
the slice thickness was 4 mm. The other three subjects
were acquired using single-shot SENSE gradient echo
EPI with 40 slices, providing whole-brain coverage and
70 volumes, a TR of 2.0 s, and a scan resolution of
80 × 80. The in-plane resolution was 3 mm × 3 mm,
and the slice thickness was 3 mm.

2.5 Data processing

All of the calculations in this study were implemented on a
workstation whose operation system platformwasWindows 7
Unlimited Service Pack 1, with an Intel(R) Xeon(R) E5-1620
3.60 GHz processor and 40 GB RAM. The preprocessing and
calculation steps from FastICA and the improved CICA
methods were run using Matlab (Matlab, 2012b, MathWorks
Inc., Sherborn, MA, USA) [39].

The preprocessing steps of the real-data experiment
were implemented using SPM8 software (http://www.fil.
ion.ucl.ac.uk/spm/), which included slice timing, motion

correction, spatial normalization, and smoothing with a
Gaussian kernel of 8 mm. In all experiments, FastICA,
the newly published method [39] (which is denoted as
CICA in this paper), and the improved CICA method
were used. Specifically, FastICA was implemented using
GIFT software (v2.0e) (http://mialab.mrn.org/software/)
for the purpose of comparison. Moreover, ICASSO [40]
with 20 runs of ICA was used to obtain reliable ICs, and
MDL [41] was used to estimate the number of ICs.
Furthermore, the positioning and display of the spatial
networks were implemented using MRIcro software
(http://www.mricro.com).

3 Results

In this section, the advantages of the improved CICA
method are demonstrated by comparing the experimental
results obtained with the improved CICA method with
those obtained with FastICA and CICA for the group
fMRI data analysis. Specifically, the spatial a priori infor-
mation in CICA was obtained using a previously
described method [33], and a detailed description is
presented in Appendix 1.

First, a power analysis of the receiver operating char-
acteristic (ROC) curve was adopted to evaluate the spa-
tial detection ability of these methods in the simulated
experiment, which is denoted by the area surrounded by
the ROC curve, and a larger area under the curve (AUC)
is usually better [42]. Second, the correlations among
the time courses computed by FastICA, CICA, and the

Fig. 2 The simulated original
sources and their corresponding
time courses, which are all
normalized to have a mean of zero
and a unit variance. Specifically,
source 1 represents task-related
information, source 2 and source
6 represent transiently task-
related information, source 5 rep-
resents function-related informa-
tion, and the others four sources
(source 3–source 4 and source 7–
source 8) represent artifact-related
information
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improved CICA methods with the true time course were
used to measure the temporal performance, which can be
calculated using the following formula:

corrcoef TC ¼ abs cov TTC; TCð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov TTCð Þcov TCð Þ

p� �
ð12Þ

where TTC represents the true time course and TC rep-
resents the time courses computed by each method.
Finally, the correlations among the GICs computed by
FastICA, CICA, and the improved CICA methods with
the corresponding IC of each subject were used to eval-
uate the group-level analysis, which can be calculated as
follows:

corrcoef ICi ¼ abs cov GIC; ICið Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov GICð Þcov ICið Þ

p� �
ð13Þ

where GIC represents the group independent component
and ICi represents the corresponding independent compo-
nent of subject i.

In the experiments in this paper, the weighting param-
eter Ba^ of the improved CICA method was a value from
0.1 to 0.9 with a step length of 0.1, and then we decided
which Ba^ to use according to the evaluation of the exper-
imental results of each Ba.^ The corresponding results
were the final experimental results. Specifically, in order
to guarantee the consistency of the selection of the opti-
mal weighting parameters for the simulated data and real
data experiments, the index obtained by the following
formula (14) was used to select the best situation. We first
calculated the average of the correlation coefficients be-
tween the GIC and the corresponding IC of each subject
across all subjects and then combined this average with
the correlation coefficient between the true time course
and the time course calculated with a new average, which
was used as the quantitative indicator to select the
weighting parameter of the improved CICA method:

index ¼ corrcoef TC þ ∑ K
i¼1corrcoef ICi=K ð14Þ

where K denotes the number of subjects in the group and
K = 5 for both simulated data and real data experiments in
this paper.

3.1 Simulated data results

In this experiment, we focused on the task-related source
1, and its corresponding time course had a block-like
shape that closely matched the experimental paradigm.
The results of using weighting parameter a = 0.6 for
dataset 8, a = 0.1 for dataset 14, and a = 0.9 for other
datasets are presented according to formula (14).

Figure 3 shows the AUCs of the ROC curves of the
GICs that were computed by FastICA, CICA, and the
improved CICA methods on the 20 simulated datasets. It
can be seen clearly from the figure that the AUCs of
CICA were significantly higher than those of the im-
proved CICA, except dataset 14, and those of FastICA
across all datasets, and the AUCs of the improved CICA
are significantly higher than those of FastICA, except
dataset 8. These significant differences were verified by
T test with a confidence level of 95%, which demonstrat-
ed that CICA has the best source recovery ability, and the
improved CICA method with the temporal reference sig-
nal extracted from the group of subjects had better source
recovery ability compared with FastICA.

Figure 4 shows the correlation coefficients (CCs)
among the true time course and the group time courses
computed by FastICA, CICA, and the improved CICA
methods on the 20 simulated datasets. It can be seen from
the figure that the CCs of the improved CICA are signif-
icantly higher than those of CICA and FastICA across all
simulated datasets using T tests with a confidence level of
95%, while the CCs between CICA and FastICA were not
significantly different. These results demonstrate that the
improved CICA method had better temporal detection
performance compared with CICA and FastICA methods.

Figure 5 shows the average CCs of the GIC with the
corresponding IC of each subject in the group across the
20 simulated datasets and their standard deviations, which
are obtained using GICs computed by FastICA, CICA,
and the improved CICA methods. We can see from the
figure that the CCs calculated by CICA and the improved
CICA methods were significantly higher than those of
FastICA, which was verified by T tests at a confidence
level of 95%. At the same time, the CCs of the improved
CICA were slightly higher than those of CICA, but they
were not significantly different. These results demonstrate
that the GIC computed by the improved CICA method
was more representative of the commonality of subjects

Fig. 3 The AUCs of FastICA, CICA, and the improved CICA methods
on the 20 simulated datasets
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in the group. That is, the temporal reference signal ex-
tracted from the group of subjects improved the analysis
of the group data.

3.2 Real data results

In this section, only the task-related independent compo-
nent is considered. The performance of the improved
CICA method was compared with FastICA and CICA
for fMRI data analysis at the group level. The results
using weighting parameter a = 0.9 with the improved
CICA method are presented according to formula (14).

Figure 6 shows the visual regions detected by FastICA,
CICA, and the improved CICA methods. We can see from
the figure that the regions of the improved CICA method
are better than those of FastICA and similar to those of
CICA, which means that the improved CICA method is
superior to FastICA in source recovery using the temporal

reference signal from the group of subjects and has the
same performance as the CICA method.

Figure 7 shows the prior block and the time courses
computed by FastICA, CICA, and the improved CICA
methods as well as the CCs between the prior block and
the time course of each method. It can be clearly seen
from the figure that the CC of the improved CICA method
is higher than those of CICA and FastICA, which means
that the time course computed by the improved CICA
method is more accurate than those of FastICA and
CICA and further demonstrates its better temporal
performance.

Figure 8 shows the CCs between the GIC and the cor-
responding IC of each subject in the group. The results
were obtained using GICs computed by FastICA, CICA,
and the improved CICA methods. We can see from the
figure that the GICs computed by CICA and the improved
CICA methods have a higher correlation with the corre-
sponding IC of each subject than with that of FastICA.
These significant differences were found using T tests at a
confidence level of 95%. Although the CCs of the im-
proved CICA were slightly lower than those of CICA,
they were not significantly different. This result indicates
that the GIC calculated by the improved CICA method
can better reflect the commonality of subjects in the
group.

4 Discussion

In this study, the improved CICA method with the tempo-
ral a priori information extracted from the group data had
better performance in detecting brain functional connectiv-
ity through the experimental results with the simulated and
real fMRI data. First, the results in Figs. 3 and 6 show that
the spatial source recovery of the improved CICA method
was better than that of FastICA, but it was not as good as
CICA. Second, the results in Figs. 4 and 7 show that the
time courses of the corresponding sources computed by the
improved CICA method were more accurate than those of
the FastICA and CICA methods. Finally, the results in
Figs. 5 and 8 demonstrate that the correlation between
the GIC computed by the improved CICA method and
the corresponding IC of each subject in the group was
improved in comparison with that of FastICA, but there
was no significant difference with CICA, which means that
the GIC computed by the improved CICA method was
more representative of the commonality of the subjects in
the group.

In this paper, in order to imitate the situation of noise
contained in the real fMRI data, noises with different
SNRs that ranged from 0.3 to 0.4 were added to the sim-
ulated data, which were used for the evaluation of the

Fig. 5 The average CCs of the 20 simulated datasets among the GIC and
the corresponding IC of each of the five subjects and their standard
deviations, which are obtained using GICs computed by FastICA,
CICA, and the improved CICA methods

Fig. 4 The CCs among the true time course and the time courses
computed by FastICA, CICA, and the improved CICA methods on the
20 simulated datasets
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performance of the different methods. However, if the
SNR of the added noise was too small, all methods
showed poor performance in signal detection and thus lost
the significance of evaluation. On the contrary, if the SNR
of the added noise was too large, all methods produced
better detection results and that there was no obvious
comparability between the different methods. The SNR
range adopted in this paper was a trade-off between these
two situations, and it was much closer to the noise found
in real data.

In the classical CICA method, the a priori reference signal
was incorporated using a constraint condition g(y) = ε(y, r)
− ξ ≤ 0, where y denotes the output signal, r denotes a

reference signal, ε(y, r) is a distance criterion, and ξ is a thresh-
old parameter that needs to limit the distance such that the
desired output signal should be the only one satisfying the
inequality constraint. However, it is difficult to predetermine
the threshold parameter ξ in practical application because the
ICs are blind, so the choice of a suitable ξ is quite dependent
on the applied CICA. Improper ξ often leads to two possible
consequences. When ξ is beyond the upper bound of the fea-
sible range, the output may produce an undesired IC. On the
other hand, when ξ is smaller than the lower bound of the
range, the output cannot produce any IC. Therefore, special
effort has to be made to determine a proper parameter. In this
paper, the multi-objective optimization strategy was applied to
estimate ICs with the CICA method, which circumvents the

Fig. 8 The CCs between the GIC and the corresponding IC of each
subject in the group. The results were obtained using GICs computed
by FastICA, CICA, and the improved CICA methods

Fig. 7 The prior block (black) and time courses computed by FastICA
(blue), CICA (green), and the improved CICAmethod (red), and the CCs
between the prior block and the time course of each method, including
corrcoef1 for FastICA, corrcoef2 for CICA, and corrcoef3 for the
improved CICA method (color figure online)

Fig. 6 The visual areas from slices 28 to 43 are detected by FastICA, CICA, and the improved CICAmethods. All the spatial maps are z-scored with the
same threshold of 2
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selection of threshold parameter ξ, and the results demonstrat-
ed its improved performance.

In this paper, the weighted summation method was used to
solve the multi-objective optimization problem of Eq. (6). The
weight parameters Ba1^ and Ba2^ in formula (8) reflect the
importance of the corresponding objective function f1(wi)
and ε1(wi) in the summation function f(wi). The goal of the
weighted summation method is to seek a balance between the
independence of the output signal and the similarity with the
reference signal and then to obtain a source signal that is the
closest to the reference signal with the largest independence.
According to theory, applying the linear weighted summation
method to solve the multi-objective optimization problem in
[37] was proposed by Klamroth et al. As long as the weight
parameters satisfied the conditions that they were strictly pos-
itive and added to 1, then one point of the Pareto optimal set
can be found with one choice of such weights [43].

When using the linear weighted summation method to
solve the multi-objective optimization problem, the summa-
tion function will contain the corresponding weight parame-
ters that are usually determined manually according to arti-
ficial experience, and this processmeans that the experimen-
tal results obtained by this approachwill containmany kinds
of situations. Therefore, it is necessary to choose the best
situation according to certain evaluation indicators from
these results by additional post-processing steps. In the ex-
periments in this paper, the weighting parameter Ba^ of the
improved CICA method was a value from 0.1 to 0.9 with a
step length of 0.1, thus making the results include nine kinds
of situations. To guarantee the consistency of the selection of
the optimal weighting parameters for the simulated data and
real data experiments, the index obtained by formula (14)
was used to select the best situation, and the evaluation re-
sults of all situations obtained by formula (14) are shown in
Appendix Tables 1 and 2, which correspond to simulated-
data and real-data experiments, respectively, and are present-
ed in Appendix 2. However, sometimes the final evaluation
resultsmay be differentwhen adopting a different evaluation
index. For example, in the simulated data experiment in this
paper, ifweuse the averageofAUCs (seeFig. 3) andCCs (see
Fig. 4) to choose the optimal weighting parameter, the best
situation is a = 0.9 for dataset 18, which is different from the
results obtained by formula (14). The evaluation results of all
situations obtained by this approach are shown in Appendix
Table 3, which is also presented in Appendix 2.

In addition, tensor decomposition (TD) has also shown
better performance with multi-subject fMRI data analysis in
recent years due to its ability to retain multi-way linkages and
interactions presented in the data [44], and it can be used to
obtain common spatial maps (SMs), common time courses
(TCs), and subject-specific intensities [45, 46]. However, the
TD method sometimes may converge to a local optimal solu-
tion because of the noise in the fMRI data, such as canonical

polyadic decomposition (CPD), which is a popular TD meth-
od. To improve the robustness of CPD with respect to noise,
some additional properties have been efficiently incorporated
into CPD as modality constraints [47]. For example,
Beckmann and Smith proposed a solution using the statistical
independence as a spatial modality constraint in TD by com-
bining ICA with CPD [45]. Recently, Kuang et al. propose a
new combined ICA and CPD method by incorporating TC
delays into a CP model as the temporal constraint to obtain
the shared TC, and then estimated the shared SM using a least-
square fit post shift-invariant CPD [48]. Therefore, how to
extract a priori information from the data itself and how to
introduce it into the TDmethod to improve fMRI data analysis
will be questions worth studying in the future.

5 Conclusions

In this paper, we proposed a multi-objective optimization-
based improved CICA method with temporal a priori infor-
mation extracted from group subject data and then used it for
group fMRI data analysis. The experimental results of simu-
lated and real fMRI data showed that the group data analysis
using the improved CICA method was better than that of
FastICA in both spatial and temporal domains, and it not only
increased the accuracy of spatial sources and time courses but
also improved the correlation of the GIC with the correspond-
ing IC of each subject in the group. Compared to the CICA
method, it only performed better temporally, and there was a
slight deficiency in spatial source signal recovery. On the
whole, it has its own advantages in fMRI data analysis as a
blind source separation method.
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Appendix 1

In this section, we provide a detailed description of extracting
spatial a priori information from group data [33]. Similar to
extracting temporal a priori information from group data as
described in this paper, we first need to implement ICA at the
single-subject level. Now assuming that we have obtained the
ICs, Si(i = 1, 2,…, K), of each subject in the group using for-
mula (6), then these ICs will be used to extract the spatial a
priori information by principal component analysis (PCA). For
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simplicity, we consider the situation inwhich each subject in the
group has one IC of interest corresponding to the group IC
(GIC). The correspondence of the ICs across different subjects
corresponding to the GIC can be measured using the absolute
value of the spatial correlation [36].

We denote the location set of voxels in the mask of
subject i as VLSi( i = 1, 2,…, K), and sini i ¼ 1; 2;…;Kð Þ
denotes the nith IC of subject i corresponding to the GIC of
interest. Then, we can calculate the location set of common
activated voxels in all sini i ¼ 1; 2;…;Kð Þ at the same
threshold θ and denote it as CAVLS:

CAVLS ¼ jjabs sini jð Þð Þ≥θ; j∈VLSi; i ¼ 1; 2;…;K
n o

ðs1Þ

Let scini i ¼ 1; 2;…;Kð Þ denote the common voxels from

sini with regard to the index CAVLS where scini is a column

vector of size v × 1 and can be retrieved as

scini ¼ abs sini jð Þð Þj j∈CAVLSf g; i ¼ 1; 2;…;K
� �

ðs2Þ

Here, the absolute value in sini is used in formula (s1)
and formula (s2) due to the network of interest possibly
having negative activation in the IC. Although it may
mean that scini i ¼ 1; 2;…;Kð Þ contains some noise, the

spatial reference is extracted from all scini i ¼ 1; 2;…;Kð Þ
by PCA, which has the ability to reduce the noise.

Now we use PCA to calculate the spatial reference
signal from the K × v matrix R which consists of all
scini i ¼ 1; 2;…;Kð Þ:

R ¼ sc1n1 ; s
c
2n2 ;…; scKnK

h i0

ðs3Þ

Then, the eigenvalueλk (k = 1, 2,…,K) such that λ1 ≥ λ2 ≥
⋯ ≥ λK ≥ 0, and the corresponding eigenvectors ek (k = 1, 2,
…,K) of the covariance matrix C = E[RR′] can be calculated,
where ek is a column vector of size K × 1. Finally, we selected
the first principal component as the spatial reference r:

r ¼ e
0
1R ðs4Þ

where r is a row vector of size 1 × v and the correspond-
ing contribution of r can be calculated by
cr ¼ λ1=∑ K

k¼1λk . In particular, if all subjects in the
group have the same mask, then the spatial a priori in-
formation can be obtained directly through formulas (s3)
and (s4).

Appendix 2

Table 1 The evaluation results of
the nine situations of the
improved CICA method obtained
by formula (14) on the 20 datasets
in the simulated-data experiment

a = 0.1 a = 0.2 a = 0.3 a = 0.4 a = 0.5 a = 0.6 a = 0.7 a = 0.8 a = 0.9 index

0.5703 0.6510 0.6611 0.6666 0.6700 0.6723 0.6739 0.6752 0.6762 9

0.7606 0.7715 0.7752 0.7770 0.7781 0.7788 0.7793 0.7797 0.7800 9

0.5493 0.5923 0.6090 0.6185 0.6248 0.6292 0.6324 0.6349 0.6369 9

0.6185 0.6413 0.6486 0.6521 0.6542 0.6556 0.6566 0.6573 0.6579 9

0.7259 0.7291 0.7301 0.7307 0.7310 0.7312 0.7313 0.7314 0.7315 9

0.6736 0.7375 0.7551 0.7639 0.7691 0.7726 0.7750 0.7769 0.7783 9

0.7352 0.7761 0.7793 0.7809 0.7819 0.7826 0.7830 0.7834 0.7836 9

0.6130 0.6445 0.6992 0.7137 0.7421 0.7424 0.7396 0.7355 0.7218 6

0.4108 0.6665 0.6949 0.7099 0.7190 0.7251 0.7295 0.7327 0.7352 9

0.7146 0.7332 0.7393 0.7422 0.7441 0.7453 0.7461 0.7468 0.7472 9

0.5980 0.6487 0.6638 0.6709 0.6751 0.6778 0.6797 0.6811 0.6822 9

0.6859 0.7460 0.7638 0.7730 0.7785 0.7822 0.7849 0.7868 0.7883 9

0.7357 0.7611 0.7695 0.7737 0.7761 0.7777 0.7789 0.7798 0.7804 9

0.7333 0.7313 0.7302 0.7294 0.7289 0.7286 0.7283 0.7281 0.7280 1

0.5475 0.6185 0.6744 0.6954 0.7084 0.7171 0.7232 0.7278 0.7313 9

0.5467 0.6152 0.6456 0.6574 0.6647 0.6698 0.6735 0.6763 0.6785 9

0.5655 0.6529 0.6684 0.6766 0.6817 0.6851 0.6876 0.6894 0.6908 9

0.6004 0.6835 0.6860 0.6870 0.6886 0.6879 0.6882 0.6883 0.6885 5

0.6429 0.6651 0.6723 0.6760 0.6781 0.6795 0.6805 0.6813 0.6818 9

0.6029 0.6691 0.6789 0.6841 0.6873 0.6895 0.6911 0.6923 0.6932 9

The bold numbers indicated the "index" values of the best situation obtained by formula (14) in each simulated
dataset
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