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Abstract The aim of this work was to develop an event-
by-event Monte Carlo code for light transport (called
MCLTmx) to identify and quantify ballistic, diffuse, and
absorbed photons, as well as their interaction coordinates
inside the biological tissue. The mean free path length
was computed between two interactions for scattering or
absorption processes, and if necessary scatter angles were
calculated, until the photon disappeared or went out of
region of interest. A three-layer array (air-tissue-air) was
used, forming a semi-infinite sandwich. The light source
was placed at (0,0,0), emitting towards (0,0,1). The input
data were: refractive indices, target thickness (0.02, 0.05,
0.1, 0.5, and 1 cm), number of particle histories, and λ
from which the code calculated: anisotropy, scattering,
and absorption coefficients. Validation presents differ-
ences less than 0.1% compared with that reported in the
literature. The MCLTmx code discriminates between bal-
listic and diffuse photons, and inside of biological tissue,
it calculates: specular reflection, diffuse reflection, ballis-
tics transmission, diffuse transmission and absorption,
and all parameters dependent on wavelength and thick-
ness. The MCLTmx code can be useful for light transport
inside any medium by changing the parameters that de-
scribe the new medium: anisotropy, dispersion and atten-
uation coefficients, and refractive indices for specific
wavelength.
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1 Introduction

Nowadays, there are a lot of applications of visible photons in
health, so they have become more important in the diagnostic
and therapy for different pathologies [1–4]. However, it has to
deal with the presence of high scattering and high absorption
in biological tissues. To tackle the problem is required to com-
prehend the behavior of light inside the irradiated medium or
biological tissue, it can be estimated from model calculations
using measured optical properties or direct measurements.
Specifically, photon transport simulations using Monte Carlo
technique have offered a useful tool to develop codes that can
be used to estimate light distribution with different geometries
and optical properties. Then, the light transport simulation has
been applied in optical imaging or phototherapy [5–9]. The
optical dosimetry can be computed byMonte Carlo simulation
in depth lesions using optical fiber or a biological carrier for
treatment [2] and superficial lesions with an external light
source, in photodynamic therapy, etc. On the other hand, in
the diagnostic when the source is distributed inside the tissue
[10–12], it is usually applied to superficial lesions due to light
must goes through small thickness of tissue plus the skin to
reach the detector [13]. It is noteworthy, that the detector
quantifies ballistic and diffuse photons in optical imaging
technique. In the transport simulation model were considered
both kinds of photons: (a) ballistic photons (those that were
not reflected at first interface and those that went through the
medium 1 – medium 2 – medium 1 without interacting) [14],
(b) diffuse photons (those that interact with medium 2) [15,
16]. In diagnostic, the mentioned photons have influence on
image quality and; in therapy, they determine the possible
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damage to the tissue. To understand and analyze the behavior
of photons and improve the therapy or diagnostic techniques,
it has been performed transport simulations of visible photons
in homogeneous medium, heterogeneous medium, biological
tissue, etc. [17–19]. However, to accomplish visible photons
transport, it is necessary to know the probabilities of light
interaction with the biological tissue or some optically equiv-

alent medium, through the reduced scattering coefficient (μ
0
s ),

scattering coefficient (μs), absorption (μa), total (μt), and an-
isotropy (g) as a function of wavelength (λ) [20–24].

Furthermore, it is known that the accuracy of μ
0
s ¼ μs 1−gð Þ

depends on how well were made the diffuse light measure-

ments. In many cases, μ
0
s, μs, μa, μt and g have been measured

in vitro and in vivo for different types of tissue and these
quantities have shown differences of one order of magnitude
or greater [21, 23–25].

Therefore, the aim of this work was to develop an event-
by-event Monte Carlo code for light transport to identify and
quantify ballistic, diffuse and absorbed photons, as well as
their interaction coordinates inside the biological tissue.

2 Method

A newMonte Carlo code called MCLTmx code (Monte Carlo
Light Transport mx) was developed in C++ language (Dev-
C++ compiler) for visible photons transport according to pre-
viously published data [20, 25–27]. All random variable in-
volved in light transport was obtained with Monte Carlo tech-
nique. The mean free path length was computed between two
interactions considering photon scattering and absorption pro-
cesses, if necessary scattering angles were calculated, until the
photon disappeared or went out of region of interest. A three-
layer array (medium 1 – medium 2 – medium 1) was used,
forming a semi-infinite sandwich (Fig. 1). The source was
placed at (0, 0, 0), emitting towards positive Z, where initial
directional cosines were (0, 0, 1). Input data were: refractive
indices, target thickness, number of particle histories, and λ
from which the code calculated anisotropy factor and scatter-
ing and absorption coefficients. Output data are specular re-
flection (SRfx), diffuse reflection (DRfx), ballistic transmis-
sion (BTrmt), diffuse transmission (DTrmt), total transmission
(TTrmt), and absorption (Abs). Additionally, the MCLTmx
code has the option to save reflection, transmission, and inter-
action coordinates.

2.1 Ballistic photons

Reflected ballistic photons in the first interface were identified
if randomly number generated was less than or equal to the
specular reflection [27], if this number is larger, the photon
gets into the diffusive medium 2, assuming its first interaction

would be beyond the second boundary and if not reflected on
it, the photon was quantified as transmitted ballistic photon.
The simulated BTrmt was compared against theoretical trans-
mittance given by the Beer-Lambert expression.

2.2 Diffuse photons

Data reported in literature for tissue interaction coefficients are
different until one order of magnitude for same tissue, so that
in this work were used those with greater agreement. The
relationship between the angles of incidence and refraction
was obtained by Snell’s law. Interaction probabilities inside
tissue as a function of wavelength were calculated by reduced
dispersion coefficient obtained from (Jacques SL, 2013) [23]
with the following equation,

μ
0
s λð Þ ¼ 46

λ
500 nmð Þ

� �−1:421

cm−1� � ð1Þ

Anisotropy was obtained from [22] using the following
function,

g λð Þ ¼ 0:943−5:6e−0:0084 λ ð2Þ

Using Eqs. 1 and 2, the dispersion coefficient was obtained
by the following equation,

μs λð Þ ¼ μ
0
s

1−g λð Þð Þ ð3Þ

On the other hand, the absorption coefficient as a function
of wavelength was obtained from the data shown in [21] with
following equation,

μa λð Þ ¼
5:54þ 2939:68

32:7

4 λ−414:8ð Þ2 þ 32:72

 !
si 350 ≤ λ < 510 nm½ �

2:30þ 1073:01
81:2

4 λ−550ð Þ2 þ 81:22

 !
si 510 ≤ λ ≤ 750 nm½ �

8>>>><
>>>>:

ð4Þ

It is noteworthy that, in validation case the following input
data were used: 0.02 cmmedium thickness with the following
optical properties, μs = 90cm−1, μa = 10cm−1, g = . 75, n2 = 1
y n2 = 1.0001, agreement with reported in [26, 27], also 0.05,

I0

DRfx
DTrmt

BTrmt

SRfx
Abs

Air AirTissue

Fig. 1 Sandwich geometry used in Monte Carlo simulation
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0.1, 0.5, and 1 cm thicknesses were used to compute DRfx,
BTrmt, DTrmt, and Abs.

On the other hand, to obtain DRfx, BTrmt, DTrmt, and
Abs for air-tissue-air geometry, the MCLTmx code re-
quires the following input data: wavelengths to calculate
the quantities mentioned in Eqs. 1 to 4, refractive indices,
target thickness (tissue), and number of particle histories.
0.02, 0.05, 0.1, 0.5, and 1 cm thicknesses and 350, 400,
450, 500, 532, 550, 600, 633, 650, 700, and 750 nm
wavelengths were used.

3 Results

It was verified that random numbers generator had a uniform
distribution between 0 and 1. If this condition is not satisfied,
diffuse reflectance and transmittance can shift until 25% in
validation case.

To ensure that light transport was correct, the validation was
performed using a semi-infinite sandwich geometry, five simula-
tions were carried out with 1 × 107 number of particle histories for
each one. For 0.02 cm thickness, following results were obtained:
SRfx = 6.17 × 10−5 ± 1.7 × 10−6, DRfx = 0.09743 ± 7.4 × 10−5,
BTrmttheoretical = 0.13533, BTrmt = 0.13542 ± 1.12 × 10−4,
DTrmt = 0.52549 ± 1.1 × 10−4, TTrmt = 0.66092 ± 1.1 × 10−4,
andAbs = 0.24157 ± 1.4 × 10−4. Diffuse reflectance obtainedwith
MCLTmx was compared with previous studies [27], where DRfx
are 0.09711 (Prahl et al.), 0.09734 (MCML), and 0.09739
(van de Hust), these values showed differences smaller
than 0.1% respect to Prahl et al. [26] and less than 0.01%
respect to MCML and Van de Hust (1980) as is shown in
Wang et al. [27]. On the other hand, total transmissions
were 0.66159, 0.66096 and 0.66096 for Prahl et al.
(1989), MCML and Van de Hust (1980), respectively,
these values showed differences smaller than 0.101% re-
spect to that calculated with MCLTmx. Besides that, thick-
nesses mentioned in method section were used, it was
found that the standard deviation calculated for MCLTmx
code is increased as a function of thickness from 0.5 to 2%
for all quantities, except for diffuse or total transmittance
(where ballistic is zero) with 0.5 cm thickness, where stan-
dard deviation was 14.41%, because only 5 to 7 photons
can escape from second layer with that thickness, running
1 × 107 number of particle histories. The behavior of each
quantity mentioned is shown in Fig. 2.

The total attenuation coefficient was also calculated and
corroborated with data from Fig. 1 corresponding to BTrmt.
It presented a difference of 0.11% with that used as input
data in the simulation. Also, from Fig. 1, the following
amounts: DRfx, BTrmetric, BTrmt, DTrmt, TTrmt, and
Abs can be determined as a function of thickness of the
propagation medium, as well as they can be useful for opti-
cal dosimetry, because the code allows to know the amount

of energy deposited within the target region as a function of
the incident beam. On the other hand, it is possible to know
the number of photons that leave the medium and its output
coordinates, this will allow the reconstruction of images for
optical diagnostic.

DRfx, BTrmttheoretical, BTrmt, DTrmt, TTrmt, and Abs as a
function of wavelength and thickness for the biological tissue
were obtained, and show in Fig. 3.

Figure 4 shows that the diffuse transmittance as a function
of wavelength and thickness, which agrees with that observed
experimentally.

Absorbance data as a function of wavelength and thickness
are also available as shows in Fig. 5, this will allow to perform
optical dosimetry applied for example, in photodynamic ther-
apy, etc.

Although the MCLTmx code performs light transport cor-
rectly, the results of the Figs. 3, 4 and 5 depend on the accu-
racy of the scatter and absorption coefficients used.
Simulation time was less than 10 min using a 2.7 GHz
processor.

4 Discussion

After validating the MCLTmx code, the quantities DRfx,
BTrmttheoretical, BTrmt, DTrmt, TTrmt, and Abs for the bio-
logical tissue were obtained, increasing the thickness of tissue
and wavelength of the incident light, with 1 × 107 number of
particle histories with five simulations for each case. It is note-
worthy that, the differences in each of five simulations were
less than 1%, this cause that the error bars are not visible in
Figs. 3, 4, and 5. Except for three cases, which were less than
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(validation), where BTrmtfit is an analytical function fitted to data of
ballistic transmission (BTrmt)
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6%. From Fig. 3, the diffuse reflection does not present a
pattern as a function of the wavelength, but it reaches a min-
imum or maximum, which is different for each wavelength. It
is noteworthy that, the MCLTmx code has advantage over
other Monte Carlo simulations [19, 26, 27], because each
quantity mentioned above is calculated separately, at this stage
is able to simulate three-dimensional transport in homoge-
neous biological structures in a sandwich geometry or any
volume determined by mathematical functions as spheres, el-
lipses, etc. Nevertheless, the MCLTmx code cannot perform
simulation in heterogeneous biological structures because
does not support a rectangular spatial grid like that reported
in (Majaron B, 2015) [19].

Ballistic transmittance decreases when energy decreases or
wavelength increases and it becomes almost zero from

0.05 cm onwards in biological tissue; these results were agree-
ment with theoretical transmittance given by the Beer-
Lambert expression and those reported in literature, where it
was shown that the imaging-depth range remains limited to
0.1 cm at best in human soft tissues because of aberrations and
multiple scattering [28, 29], then thickness and ballistic pho-
ton fluence limit the image quality of ballistic optical tomog-
raphy, due to many methods have been developed to increase
this imaging-depth range [30].

On the other hand, diffuse photons are useful in biomedical
optics and medicine, for example in optical coherence tomog-
raphy (OCT), OCT performs high resolution, cross-sectional
imaging of the internal microstructure in biological tissues by
measuring echoes of backscattered light [31, 32], the
MCLTmx code could be useful in OCT because it can follow
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all photons and promises to be useful in many clinical
applications.

Adding up ballistic and diffuse contributions from results, it
was obtained the known light behavior at macroscopic level,
that is, the total transmittance increases with the wavelength.
Additionally, theMCLTmx code shown that transmitted light at
the macroscopic level is mainly due to diffuse radiation contri-
bution, because the diffuse transmittance is greater one order of
magnitude than ballistics transmittance for thicknesses of up to
0.5 cm. The above could be considered in image reconstruction
where the ballistic part of the beam is mainly considered, for
example, in fluorescence microscopy where both contributions
are separated to better the image quality [33]. On the other hand,
it was reported a computational technique that uses all photons
to form an image, opening new avenues in non-invasive testing,
analysis, and diagnosis [34], and it presents another potential
use for the MCLTmx code. Mentioned studies are related to
optical window, it defines the range of wavelengths where light
has its maximum depth of penetration in biological tissue, so it
is primarily limited by absorption process. Therefore, the results
in Figs. 3, 4, and 5 are useful to determine the optical window in
that specific tissue. In general, theMCLTmx code couldmake it
possible to compute the optical windows of any kind of biolog-
ical tissue using their respective cross-sections in the simula-
tion. Another advantage of this new code is that can be deter-
mined which wavelength will be optimal to make an optical
image in a specific case because the code allows to work with a
spectrum of wavelengths. It may also be used in Cerenkov
imaging technique because in this effect is emitted a light spec-
trum [12]. Currently Cerenkov luminescence (CLT) tomogra-
phy is a novel imaging modality to study charged particles with
optical methods by detecting the Cerenkov luminescence pro-
duced in tissue; it is a powerful imaging technique that allows
dynamically and three-dimensionally resolving the metabolic
process of radiopharmaceuticals. It uses optical method to de-
tect radiopharmaceuticals with low cost and high sensitivity.
However, because of the strong absorption and scatter
of biological tissues, the reconstruction of CLT is al-
ways converted to an ill-posed linear system which is
hard to solve, so they are continuously developed recon-
struct algorithms [35–37]. Therefore, the MCLTmx code
will become a useful tool to reconstruct a Cerenkov
image or correct it if it is reconstructed by another
method as mentioned in (Liu H, 2016; Zhong J, 2011)
[35, 36].

In general, the MCLTmx code can be applied in bio-
medicine specifically in optical imaging and optical do-
simetry, using following input data: anisotropy, refractive
indices, dispersion and absorption coefficients of the me-
dium, and wavelength of incident light. Also, the light
transport in other materials using the MCLTmx code is
possible by changing the corresponding cross-sections
and all input data.

5 Conclusions

An efficient code was developed to perform light transport in
biological tissue called MCLTmx. It allows to know the spec-
ular reflection, diffuse reflection, ballistic and diffuse trans-
mission, and absorption of photons for wavelengths from
350 to 750 nm; although, this can be changed to increase or
decrease the interval.

The new code can also save the coordinates of each inter-
action, so it is a useful tool for optical dosimetry and optical
imaging.

In general, the MCLTmx code will be useful for light trans-
port inside any medium, using the corresponding values of
refractive indices, anisotropy, scattering and absorption coef-
ficients, and wavelength.
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