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Abstract Quantitative thickness computation of knee car-
tilage in ultrasound images requires segmentation of a
monotonous hypoechoic band between the soft tissue-
cartilage interface and the cartilage-bone interface. Speckle
noise and intensity bias captured in the ultrasound images
often complicates the segmentation task. This paper
presents knee cartilage segmentation using locally statistical
level set method (LSLSM) and thickness computation using
normal distance. Comparison on several level set methods
in the attempt of segmenting the knee cartilage shows that
LSLSM yields a more satisfactory result. When LSLSM
was applied to 80 datasets, the qualitative segmentation
assessment indicates a substantial agreement with Cohen’s
κ coefficient of 0.73. The quantitative validation metrics
of Dice similarity coefficient and Hausdorff distance have
average values of 0.91±0.01 and 6.21±0.59 pixels, respec-
tively. These satisfactory segmentation results are making
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the true thickness between two interfaces of the cartilage
possible to be computed based on the segmented images.
The measured cartilage thickness ranged from 1.35 to 2.42
mm with an average value of 1.97 ± 0.11 mm, reflect-
ing the robustness of the segmentation algorithm to various
cartilage thickness. These results indicate a potential appli-
cation of the methods described for assessment of cartilage
degeneration where changes in the cartilage thickness can
be quantified over time by comparing the true thickness at a
certain time interval.

Keywords Cartilage · Image segmentation · Knee joint ·
Level set · Ultrasound · Thickness computation

1 Introduction

Osteoarthritis (OA) in the knee joint is a prevalent dis-
ease occurred among the elderly [12]. Degenerative change
in the cartilage is one of the primary features of this dis-
ease [13]. X-rays, that are useful to depict bony structures,
can provide an assessment of joint space width (JSW) for
OA screening and diagnosis [21]. However, JSW assess-
ment only provides an indirect measurement of the cartilage
thickness through the distance between femur and tibia that
demonstrates weak sensitivity to change [3]. Magnetic reso-
nance imaging (MRI) allows a precise depiction of the entire
joint structures, including the cartilage and its pathological
changes [9]. In recent years, there have been considerable
developments for cartilage segmentation to assess the carti-
lage thickness in three-dimensional (3-D) MRI images [6–8,
20, 22, 23, 29]. However, routine clinical use of MRI is lim-
ited due to high cost and low availability of the equipment
[19].
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Among other medical imaging modalities, ultrasound is
considered to be non-invasive, radiation-free, portable, real-
time, and cost-effective. As an affordable and widely acces-
sible diagnostic tool compared to MRI, ultrasound imaging
offers an excellent alternative to help diagnose the presence
of the knee OA disease [17]. While MRI provides a compre-
hensive assessment of intra-articular structures, ultrasound
imaging has a complementary role in the evaluation of
extra-articular structures [13]. Although the visualization
of deeper articular structure and subchondral bone is pre-
vented by the nature of the sound, it has demonstrated its
ability in depicting more appearance features of the knee
OA than X-rays and computed tomography [1]. It has been
used to measure the thickness and detect the degenera-
tive change in the cartilage [2], in patients with knee pain
[13], osteoarthritis and rheumatoid arthritis [11] where the
cartilage thickness was measured manually by drawing a
perpendicular line between hyperechoic lines of the soft
tissue-cartilage interface and of the cartilage-bone interface
(see Fig. 1) [13, 19].

Segmentation is a necessary task that has a significant
influence on the accuracy of the thickness computation
[8]. As in Fig. 1, the femoral condylar cartilage in ultra-
sound images is depicted as a monotonous hypoechoic band
between the adjacent tissues and the smooth bony surface
[13]. Hence, the goal in segmenting knee cartilage from the
ultrasound images is to locate the boundaries between the
two interfaces. Segmenting the cartilage from surrounding
tissues is a challenging task due to the boundary between
different tissues is not sufficiently distinct.

Due to physical constraint in the ultrasound image acqui-
sition, speckle noise and intensity inhomogeneity occur in
the ultrasound images, which tend to adversely affect the
image contrast (see Fig. 1). While speckle noise appears as
dense, bright and dark granular objects in close proximity
throughout the image, intensity inhomogeneity causes a
slowly changing intensity contrast where the same tissue
region may exhibit various contrasts at several locations
and the intensity distributions between different tissues
are overlapped significantly. When spatial intensity varia-
tion caused by intensity inhomogeneity is considered and
not the one caused by speckle, the problem of intensity
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Fig. 1 A 2-D ultrasound image of the femoral condylar cartilage
depicted as a monotonous hypoechoic band between the soft tissue-
cartilage interface and the cartilage-bone interface

inhomogeneity can be addressed similar to the intensity
bias correction in MRI images [27]. It is applied retro-
spectively in the acquired images and also often combined
with the segmentation methods, for which, several level
set methods for joint segmentation and intensity bias cor-
rection have been proposed [15, 18, 26, 32]. Although
developed for other imaging modality, these methods are
suitable and can be adapted as a technique for locating
the cartilage boundary in the ultrasound images. It has
been explained in [27] that the underlying assumption of
the multiplicative noise model is related to the ultrasound
physics of image formation. While intensity-based seg-
mentation techniques are generally insensitive to noise,
the use of local image intensity and intensity bias estimation help
to cope with intensity inhomogeneity.

This paper presents segmentation and thickness compu-
tational approaches to the knee cartilage in two dimensional
(2-D) ultrasound images as an initial step for assessment of
the cartilage degeneration. A summary on the methodolo-
gies to obtain short-axis knee cartilage of the 2-D ultrasound
images is given. The locally statistical level set method
(LSLSM) applied in locating the cartilage boundary in a
noisy and bias-corrupted image is explained. To ensure
the thickness computation is performed in the cartilage
region only, the cartilage region is then extracted where its
surrounding tissue regions are removed from the final seg-
mentation results. The normal distance as a technique for
computing the cartilage thickness on the isolated cartilage
region is described. Segmentation result and computational
time of LSLSM are compared to other relevant level set
methods in the attempt of segmenting the knee cartilage.
Next, qualitative and quantitative evaluation of the segmen-
tation performance of different level set methods over 80
data sets is illustrated using Cohen’s κ statistics, Dice simi-
larity coefficient and Hausdorff distance metrics. The mean,
standard deviation, and intraclass correlation coefficient are
computed to determine the accuracy and reproducibility of
the thickness computation on a set of segmented cartilage
images. Bland-Altman plot is used to measure agreement
between thickness measurement obtained manually and
using normal distance. The methods described can be used
to assess cartilage degeneration where changes in the car-
tilage thickness are quantified over time by comparing the
true thickness at a certain time interval.

2 Materials and methods

2.1 Image acquisition

An ultrasound image acquisition protocol to capture the car-
tilage of the knee joint is described here. The Toshiba Aplio
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MX ultrasound machine is utilized with a 2-D linear array,
8-12MHzmultifrequency transducer (PLT-805AT). In order
to obtain short-axis views of the femoral condylar cartilage
on the trochlear notch, the subject were scanned in vivo in
the supine position with the knee fully flexed (120◦). The
transducer was placed transversely to the leg and perpendic-
ular to the bone surface, just above the superior margin of
the patella [13, 19]. Ten asymptomatic subjects (male, age
range: 23-27 years, mean age: 24.75 ± 2.18) were recruited.
The written consent was obtained prior to the ultrasound
scanning. Four different scans of the cartilage were obtained
from both left and right knee joints with repositioning of
the ultrasound probe between acquisitions. The images were
stored in DICOM format at a resolution of 0.1316× 0.1316
mm. The musculoskeletal sonography was performed by
a professional sonographer. The study received approval
from the University of Malaya Medical Ethics Committee
(MECID No. 20147-396).

2.2 Locally statistical level set method

Let I denote a given image defined on the image domain �.
In the level set methods, a contour is represented by the zero
level set of the level set function. Let φ : � → � be a level
set function that takes positive and negative signs inside and
outside the contour, which represent an image partition of
the image domain � into two disjoint regions, respectively

�1 = {x : φ(x) > 0}, and �2 = {x : φ(x) < 0}, (1)

The two regions �1 and �2 are accordingly represented
with their membership functions defined byM1(φ) = H(φ)

andM2(φ) = 1−H(φ). The regularized Heaviside function
Hε(φ) and its derivative, the smoothed Dirac delta function
δε(φ) with ε = 1 [4], are computed by

Hε(φ) = 1

2

(
1 + 2

π
arctan

(
φ

ε

))
, (2)

δε(φ) = 1

π

(
ε

ε2 + φ2

)
. (3)

The two-phase case of the statistical and variational mul-
tiphase level set method is considered [30, 32]. It is also
called as the locally statistical level set method (LSLSM).
The energy of LSLSM is derived based on Gaussian dis-
tributions of local image intensity and multiplicative noise
model. The energy functions ei are defined in the first row
of Eq. 4 and computed using the equivalent expression in
the second and the third rows of Eq. 4.

ei(x) = ∫
�

K(y − x)
(

|I (x)−b(y)ci |2
2σ 2

i

+ log(2πσ 2
i )

2

)
dy,

= 1
2σ 2

i

(
I 21K − 2ciI (b ∗ K) + c2i (b

2 ∗ K)
)

+ 1
2 log(2πσ 2

i )1K,

(4)

where b, ci , and σ 2
i for i = 1, 2 are the bias field, the piece-

wise constant, and the variances, respectively. ∗ denotes
the convolution operation. The function 1K is defined as∫

K(y − x)dy which is equal to constant 1 everywhere
except near the image boundary. A truncated uniform kernel
function K is defined by

K(z) =
{

a for |z| ≤ ρ,

0 for |z| > ρ.
(5)

with a positive constant a such that
∫

K(z)dz = 1 and ρ is
the kernel’s radius defined as the distance between the kernel
center point x and other pixels y within the kernel support.

In order to reduce the overlapped intensity distribution in
the image, only image intensities I (x) in a neighborhood of
y are involved in the above energy functions whose size is
controlled by the scale of the kernel function K . The small
scale of the neighborhood enables to handle intensity inho-
mogeneity since the intensities involved are only in the local
region at a certain scale centered at the point x [15].

The image intensities are approximated by spatially vary-
ing means and variances of Gaussian distributions. To
accomplish joint segmentation and bias field correction, the
means are approximated by multiplication of the bias field
b and the true image signal within the window estimated
by piecewise constants ci . The functions ei that represent
an image partition and a bias field estimation are com-
bined with membership function Mi(φ) to be incorporated
into the level set formulation. The total energy function
of LSLSM is given by

E(φ, ci, b, σi) = ν
∫
�

|∇Hε(φ(x))|dx
+ ∫

�

2∑
i=1

ei(x)Mi(φ(x))dx,
(6)

with the first term being the regularization term to compute
the arc length of the zero level set where its relative strength
is controlled by the parameter ν.

By minimizing the energy function E, image segmen-
tation and bias field estimation are jointly performed by
estimating the membership functions Mi(φ), the variances
σ 2

i , the restored bias field b, and the constants ci . In the iter-
ative process, the energy minimization with respect to each
variable φ, ci , b, and σi is obtained. These variables are
derived from the equivalent expression of the energy func-
tional in the form of convolution. The minimization problem
is solved by iterating between two steps.

In step one, the variables {ci , b and σi} are estimated.
During the level set evolution, these variables are updated by
minimizing the energyE with respect to one of the variables
while others are fixed, respectively.

By substituting the functions ei in Eq. 4 into the energy
functional E in Eq. 6, the derivative of E is taken with
respect to ci for fixed φ, b, and σi . Then, the resulting
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expressions are equated to zero, ∂E
∂ci (x)

= 0. The optimal
ci that minimizes E satisfy the following Euler-Lagrange
equations:∫

�

−2I (b ∗ K)Mi(φ) + 2ci(b
2 ∗ K)Mi(φ)

2σ 2
i

dy = 0, (7)

From Eq. 7, the optimal constants ci approximating the
image intensity in each region are given by

ci(x) =
∫
�
(b ∗ K)IMi(φ)dy∫

�
(b2 ∗ K)Mi(φ)dy

. (8)

Keeping φ, ci and σi fixed and minimizing the energy
functional E with respect to b, and then equating the result-
ing expressions to zero, ∂E

∂b(y) = 0, the optimal b that
minimizeE satisfy the following Euler-Lagrange equations:

2∑
i=1

∫
�

−2Ici(Mi(φ) ∗ K) + 2bc2i (Mi(φ) ∗ K)

2σ 2
i

dx = 0,

(9)

From Eq. 9, the restored bias field b is obtained as follows

b(y) =
∑2

i=1
ci

σ 2
i

(IMi(φ) ∗ K)

∑2
i=1

c2i
σ 2

i

(Mi(φ) ∗ K)

. (10)

From the following Euler-Lagrange equations

∫
�

2∑
i=1

(
I 21K−2Ici (b∗K)+c2i

(
b2∗K

))
Mi(φ)

2σ 2
i

+ log(2πσ 2
i )(Mi(φ)∗K)

2 dx = 0,

(11)

The minimizer of the variances σ 2
i is given by

σ 2
i =

∫
�

(
I 21K − 2ciI (b ∗ K) + c2i (b

2 ∗ K)
)
Mi(φ)dx∫

� (Mi(φ) ∗ K) dx
.

(12)

In step two, assuming that all the variables ci , b, and σi

for i = 1, 2 are known, and then the level set function φ is
evolved, so that the energy functional E is minimized. Fix-
ing ci , b, and σi , the minimization of E(φ, ci, b, σi) with
respect to φ is obtained by solving the gradient flow equa-
tion ∂φ

∂t
= − ∂E

∂φ
where ∂E

∂φ
is the Gâteaux derivative of the

energy E. By calculus of variations, the Gâteaux deriva-
tive can be computed and the corresponding gradient flow
equation is expressed as follows

∂φ

∂t
= δε(φ)

(
νdiv

( ∇φ

|∇φ|
)

− e1 + e2

)
. (13)

To keep the level set evolution stable, for every iteration
of Eq. 13, the level set function is diffused by [31]

φn+1 = φn + �t · �φn, (14)

where φn is the level set function obtained from the n-th
iteration of Eq. 13 and �t represents the diffusion strength
where � denotes the Laplacian operator.

2.3 Evaluation of segmentation accuracy

In order to evaluate the segmentation results, qualitative
and quantitative segmentation assessments are performed
using Cohen’s κ statistics and two validation metrics of Dice
similarity coefficient (DSC) and Hausdorff distance (HD),
respectively. Over the total data sets of 80 images, the man-
ual outlines as ground truth data were compared against its
isolated cartilage region obtained by the algorithm to be
evaluated qualitatively and quantitatively.

2.3.1 Qualitative assessment

The overall segmentation quality of the cartilage anatom-
ical structure in ultrasound images are validated by two
experts. The segmentation quality of the cartilage area was
assessed by differentiating the boundaries between the soft-
tissue - cartilage interface and the cartilage - bone interface,
which categorized as follows: Grade 1: excellent segmenta-
tion quality, with excellent differentiation of the boundaries
between the two interfaces and no significant overlap seg-
mentation areas. Grade 2: good segmentation quality, with
good differentiation of the boundaries between the two
interfaces and only small overlap segmentation areas. Grade
3: poor segmentation quality, with poor differentiation of
the boundaries between the two interfaces and some over-
lap segmentation areas. Grade 4: bad segmentation quality,
with bad differentiation of the boundaries between the two
interfaces and large overlap segmentation areas.

Inter-observer agreement for the segmentation quality of
the cartilage area obtained by LSLSM is expressed as the
Cohen’s κ statistics [5]. The observed agreement, the chance
agreement, and the κ statistics for agreement between
two observers were calculated. The observed agreement is
the number of occasions of complete agreement between
observers divided by the total number of occasions. The
chance agreement is the probability that the observers will
provide the same response to an observation. The kappa
coefficient is defined as the observed agreement which is
above and beyond that due to chance. Different ranges
for kappa values characterise the degrees of agreement. A
kappa value of less than 0 implies poor agreement (agree-
ment worse than that of chance alone), 0.00 to 0.20 slight
agreement (agreement equal to that of chance alone), 0.21
to 0.40 fair agreement, 0.41 to 0.60 moderate agreement,
0.61 to 0.80 substantial agreement and 0.81 to 1.00 almost
perfect agreement [14].
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2.3.2 Quantitative assessment

Two different metrics adopted to examine the segmentation
performance are DSC and HD metrics. DSC quantifies area
similarity between two comparing segmentation regions.

DSC(A, B) = 2|A ∩ B|
|A| + |B| , (15)

where A and B are the pixel areas of the segmented and
reference contours, respectively. DSC is defined as the ratio
between twice of the common pixel area of A and B and
the sum of the individual areas. This metric indicates the
relative locations and sizes of the contour pair. The value is
bounded in [0, 1] and the value of 1 implies that the contour
pair has the same location and size (or area).

HD, dH (X, Y ), is used to compute the boundary mis-
match between two comparing segmented boundaries.

dH (X, Y ) = max (d(X, Y ), d(Y, X)) , (16)

d(X, Y ) = max
x∈X

min
y∈Y

‖x − y‖, (17)

where X and Y are sets of points extracted from the seg-
mented and reference contours of A and B, respectively.
dH is defined as the maximum of the directed Hausdorff
distances d(X, Y ) and d(Y, X), which are the largest rank
between the point x ∈ X to the nearest point in Y and
vice versa. The small value of dH implies a minimal shape
difference between two comparing contours.

2.4 Cartilage thickness computation

Several computational approaches have been proposed for
estimating the cartilage thickness in the 3-DMRI images [8,
20, 22, 23]. The thickness computation was performed on
the 3-D cartilage surface obtained from a 3-D reconstruction
of segmented sagittal knee cartilage slices or a direct 3-D
MRI cartilage segmentation. Vertical distance provides z-
directional distance between points on the upper and lower
surfaces [10]. Proximity method computes the shortest dis-
tance from each point on a given surface to the closest point
on the opposing surface [8, 16]. Another class of methods
defines the thickness as the distance between two points
where the normal vector in a central axis intersects the upper
and lower surfaces [22]. Since the central axis are generated
by an average of the two surfaces, it does not provide a true
normal thickness [23]. In [28], the thickness is defined as the
length of streamlines approaching the opposing boundary
from a normal direction. Instead of using the streamlines,
the normal distance [10] estimates the thickness from the
length of surface normal vectors between the upper and
lower surfaces [23]. It provides the true normal thickness

from one surface to another that yielded the most accurate
estimation.

In this work, the normal distance is adapted as a tech-
nique for estimating the cartilage thickness in short axis
knee cartilage of the 2-D ultrasound images. It is used to
compute the true normal thickness of the cartilage from
one boundary to another. The thickness computation is per-
formed by evenly spacing m points along the boundary,
then taking the normal vector from the boundary points
(xi, yi), and the perpendicular line is created from (xi, yi)

to the intersection points of the upper or lower boundary
of the cartilage. The distance between two points from the
normal vector of the upper (or lower) boundary to the inter-
section of the line with the lower (or upper) boundary is
used to compute the cartilage thickness ti for each point,
respectively. The average thickness of the cartilage t̄ is taken
from the mean of the thickness at all m boundary points,
t̄ = 1

m

∑m
i=1 ti .

3 Results

3.1 Comparison with other level set methods

In this section, a comparison of different level set meth-
ods in their attempt of segmenting a real knee cartilage
ultrasound image is provided. A brief summary of the
other two level set methods without and with multiplicative
component estimation is given as follows

The first method is the local Gaussian distribution fit-
ting (LGDF) model [25]. Similar to LSLSM, LGDF also
assumes a Gaussian distribution with spatially locally vary-
ing mean and variance. However, LGDF can only be used
for segmentation since it does not estimate multiplicative
component as in LSLSM which can be used for joint seg-
mentation and bias estimation. The energy functions ei of
LGDF are written as

eLGDFi (x) =
∫

�

K(y − x)

(
|I (x) − fi(y)|2

2σ 2
i

+ log(2πσ 2
i )

2

)
dy,

(18)

where

fi(y) =
∫
�
(K(y − x)I (x)Mi(φ))dx∫
�
(K(y − x)Mi(φ))dx

, (19)

and

σ 2
i =

∫
�

∫
�

K(y − x) |I (x) − fi(y)|2 Mi(φ)dxdy∫
�

∫
�

K(y − x)Mi(φ)dxdy
. (20)
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The second method is considered as the locally weighted
K-means variational level set (WKVLS) [15]. WKVLS
ignores the variance component that is taken into account
in LSLSM which helps to distinguish different tissues
more accurately. Similar to LSLSM, WKVLS is essentially
designed to simultaneously estimate the multiplicative bias
field while segmenting the images. The energy functions ei

of WKVLS is given by

eWKVLS
i (x) = ∫

�
K(y − x)

(|I (x) − b(y)ci |2
)
dy,

= I 21K − 2ciI (b ∗ K) + c2i (b
2 ∗ K),

(21)

where

ci(x) =
∫
�
(b ∗ K)IMi(φ)dy∫

�
(b2 ∗ K)Mi(φ)dy

, (22)

and

b(y) =
∑2

i=1(ciIMi(φ) ∗ K)∑2
i=1(c

2
i Mi(φ) ∗ K)

. (23)

In this experiment, LSLSM was compared to the other
two methods without and with multiplicative component
estimation, i.e., LGDF and WKVLS, respectively. All the
methods were implemented in MATLAB R2014a in an Intel
(R) Xeon (R), 2.00 GHz, 32 GB RAM with the following
parameter settings. Small kernel’s radius ρ = 5 was cho-
sen to provide more accurate boundary location. For images
with intensity range in [0, 255], the parameter ν was set to
0.001 × 2552. It was chosen to be small when segmenting
objects of any size. The time steps for level set evolution
�t1 and for regularization �t2 were set as �t1 = 0.01
for LGDF, �t1 = 0.1 and �t2 = 0.1 for WKVLS, and
�t1 = 0.01 and �t2 = 0.01 for LSLSM. Image size is 420
× 150 pixels.

Figure 2 illustrates segmentation results of the three
related level set methods that were applied for the carti-
lage boundary segmentation. The initial contour and the
final contours are coloured in red and green, respectively.
The initial contour is in circle shape with 10 pixels radius
and placed just around the center of the images. These

three segmentation algorithms were generally able to distin-
guish different tissues in the presence of noise and intensity
inhomogeneity. This is due to the use of local image inten-
sity defined in a local neighborhood that suppresses the
overlapping intensity distribution. With the multiplicative
component estimation, WKVLS and LSLSM were able to
reduce the non-uniform textures and then locate the bound-
aries between different tissues correctly as seen in Fig. 2c,
d. Without the multiplicative component estimation, LGDF
produced unstable segmentation result where misclassified
contours inside the object and some unnecessary contours
around the object appear in the final contours in Fig. 2b.
Both models yield satisfying segmentation results, while
LSLSM that considers the variance component obtained a
better segmentation result than WKVLS.

DSC and HD were computed from the manual outline
and the isolated cartilage region as depicted in Fig. 3. The
cartilage region was isolated from its surrounding tissues in
the final contours. Connected-component labeling was used
to remove other tissue regions in the binary image. This is
to ensure that the validation metrics of the DSC and HD
are computed based on the cartilage region and not affected
by segmentation of the surrounding tissues. DSC and HD
values for the segmentation results of LGDF, WKVLS, and
LSLSM in Fig. 2b, c, d are summarized in the first, second,

and third rows of the matrices

⎡
⎣ 0.9027
0.9148
0.9423

⎤
⎦ and

⎡
⎣ 6.8557
7
6.3246

⎤
⎦,

respectively. DSC value obtained by LSLSM is higher than
the ones obtained by WKVLS and LGDF while HD value
obtained by LSLSM is smaller than the ones obtained by
WKVLS and LGDF. In addition, the total computational
time of LGDF, WKVLS, and LSLSM required for 500
iterations are 54.82, 13.77, and 12.97 seconds, respectively.

3.2 Knee cartilage ultrasound image segmentation

In this subsection, the three different level set methods were
applied to segment a set of 80 real knee cartilage ultrasound
images. The data sets comprise of four repeated scans of

Fig. 2 Segmentation results of
three different level set methods
in segmenting the knee cartilage
of the ultrasound image. The red
circle with 10 pixels radius
represents the initial contour.
The green lines represent the
final contours
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Fig. 3 a Manual segmentation
of the cartilage. Cartilage
regions extracted from the
segmented images by b LGDF,
c WKVLS, and d LSLSM

the cartilage imaged from both left and right knee joints of
the ten subjects. Figure 4 depicts a subset of 10 segmenta-
tion outcomes of LSLSM for left and right knee cartilages
from a subset of five subjects, respectively. Segmentation
results of LGDF, WKVLS, and LSLSM were evaluated
qualitatively and quantitatively over the total data sets of 80
images. While the qualitative segmentation assessment is
performed using Cohen’s κ statistics, the quantitative seg-
mentation assessment is performed using validation metrics
of DSC and HD. The manual outlines as ground truth data
were compared against its isolated cartilage region obtained
by the algorithm to be evaluated qualitatively and quanti-
tatively. An expert segmented the cartilage manually from
each ultrasound image scan. The isolated cartilage region as

in Fig. 3 was extracted from its surrounding tissues in the
final contours using connected-component labeling.

The number of observed agreements is 67 images
(83.75% of the observations), as grade 1 (excellent) in 39
images (48.75%), as grade 2 (good) in 21 images (26.25%),
as grade 3 (poor) in 5 images (6.25%), as grade 4 (bad) in 2
images (2.5%). The number of agreement due to chance is
32.05 images. An overall segmentation quality of the carti-
lage areas for all 10 subjects rated by two experts indicates
a substantial agreement with κ = 0.73.

Figure 5 illustrates segmentation performance of LGDF,
WKVLS, and LSLSM validated using DSC and HD val-
ues over the total data sets of 80 images. Figure 5a shows
the computed DSC values for 80 images fall in the range

Fig. 4 Left and right columns
represent segmentation results
obtained by LSLSM for left and
right knee cartilages of a subset
of five subjects, respectively.
The initial contours are
represented by the red circles
with 10 pixels radius and placed
just around the center of the
image. The green lines represent
the final segmentation contours
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Fig. 5 a DSC and b HD
measures for three different
methods over a set of 80 knee
cartilage ultrasound images
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between 0.84 and 0.94, 0.29 and 0.95, and 0.82 and 0.95
for LGDF, WKVLS, and LSLSM, respectively. The higher
value of DSC indicates that the two comparing contours
have a good agreement in size and location which corre-
spond to more accurate segmentation results. The computed
HD values in Fig. 5b are ranging from 4.47 to 8.83, 5.39
to 19.10, and 4.69 to 8.25 pixels for LGDF, WKVLS, and
LSLSM, respectively. The smaller HD values correspond
to the least difference in shape between two comparing
contours.

The means, standard deviations, and p values of DSC and
HD values for all methods over 80 data sets are summarized
in Table 1. It indicates that LSLSM obtained higher aver-
age value of DSC for all available data sets than LGDF and
WKVLS. Meanwhile, the average value of HD obtained by
LSLSM is smaller than obtained by LGDF and WKVLS.
It implies that LSLSM provides a good area similarity and
a minimally different contour shape which illustrates the

satisfactory segmentation outcomes for all available data
sets. In addition, p values in Table 1 indicate that LGDF and
LSLSM have means significantly different from WKVLS
(p < 0.0001). Meanwhile, it is found that the mean of
LGDF is not statistically significant from LSLSM where p-
values forDSC andHDmetrics are 0.69 and 0.27, respectively.

Segmentation errors were mainly due to the overlapped
intensity distribution between different tissues. The boundary

Table 1 Statistics of the evaluation metrics

Methods DSC HD (pixels)

Mean ± SD p value Mean ± SD p value

LGDF 0.90 ± 0.02 0.69 6.33 ± 0.62 0.27

WKVLS 0.73 ± 0.14 < 0.0001 8.32 ± 2.17 < 0.0001

LSLSM 0.91 ± 0.01 − 6.21 ± 0.59 −
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between different tissues is not sufficiently distinct, par-
ticularly around the interfaces of soft tissue-cartilage and
cartilage-bone. The variances of the Gaussian distributions
that are taken into account in LGDF and LSLSM helps to
distinguish the two interfaces more satisfactorily. Although
WKVLS considers the multiplicative component, it does
not take into account the variance component, thus tends
to misclassify the two interfaces. In addition, the degree of
inhomogeneity is varied between the scanned images. These
may be the cause of the less satisfactory segmentation per-
formance indicated by DSC values below 0.8 and HD values
above 7 pixels in the graphs.

3.3 Cartilage thickness measurement

In this subsection, the cartilage thickness is computed based
on the segmented images using the normal distance. The
cartilage images were acquired four times each from both
left and right knee joints of the ten subjects as described
in Section 2.1. The cartilage images were firstly seg-
mented using LSLSM described in Section 2.2. Connected-
component labelling was used to remove surrounding tissue
regions from the final contour results. An example of an
isolated cartilage region extracted from the segmentation
outcome is illustrated in Fig. 3. Using this isolated carti-
lage ensures the thickness measurements are performed in
the cartilage region only. The cartilage thickness was cal-
culated over 80 image data sets using the normal distance
as described in Section 2.4. The true thickness of the carti-
lage is estimated by the length of boundary normal vectors
between the upper and lower boundaries of the cartilage [22,

23] as depicted in Fig. 6b, c, d, and e. The measurements
were made at every pixel on its upper and lower boundaries.

The obtained measurements of the cartilage thickness
ranged from 1.35 to 2.72 mm, 1.36 to 2.45 mm, 1.33 to
2.17 mm, 1.68 to 2.39 mm, and 1.35 to 2.42 mm for manual
thickness measurement, the normal distance in the cartilage
area segmented by the manual outline, LGDF, WKVLS,
and LSLSM, respectively. It reflects the robustness of the
segmentation algorithms to various cartilage thickness. The
statistics such as mean, standard deviation, and the intra-
class correlation coefficient (ICC) in Table 2 were computed
to determine the accuracy and reproducibility of the carti-
lage thickness computation using the normal distance. ICC
values were determined from the thickness measurements of
the four repeated scans for all methods. Higher value of ICC
indicates a good reproducibility between the measurement sets.

From Table 2, it can be seen that the thickness measure-
ment obtained manually is found more reproducible than
the ones computed by the normal distance. Moreover, the
thickness computation based on the manual segmentation
results are found to be more reproducible than the ones
based on the segmentation results obtained by the algo-
rithms. The thickness computation obtained by LSLSM is
found more reproducible than LGDF and WKVLS. This
is attributed to segmentation accuracy obtained by LSLSM
that is higher than LGDF and WKVLS. The variations of
the intensity inhomogeneity across all data sets make the
segmentation algorithms difficult to accurately capture each
cartilage boundary and causes the less satisfactory segmen-
tation results. Meanwhile, the thickness measurement and
the segmentation results that are obtained manually are less

Fig. 6 a Manual thickness
measurement of the cartilage.
Thickness computation of the
cartilage using the normal
distance on the cartilage area
segmented by b the manual
outline, c LGDF, dWKVLS,
and e LSLSM
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Table 2 Cartilage thickness measurement results

Methods Image Mean ± SD ICC

Manual measurement Original image 2.02 ± 0.13 0.95

Normal distance Manual outline 2.00 ± 0.13 0.94

LGDF 1.83 ± 0.10 0.91

WKVLS 2.06 ± 0.09 0.85

LSLSM 1.97 ± 0.11 0.92

affected by the variations in the intensity inhomogeneity for
all data sets.

The cartilage thickness computed by the normal dis-
tance on the cartilage area segmented by the manual outline,
LGDF, WKVLS, and LSLSM was compared to the results
obtained by the manual measurement using Bland-Altman
plot. The manual measurement is provided by drawing
the perpendicular line between the hyper-echoic lines at

the soft tissue-cartilage interface and at the cartilage-bone
interface [13, 19]. In each knee joint, three separate mea-
surements were performed at three locations, i.e., the
trochlear notch, two-thirds lateral (two-thirds of the dis-
tance from the trochlear notch to the convexity of the lateral
trochlea), and two-thirds medial (two-thirds of the distance
from the trochlear notch to the convexity of the medial
trochlea) as illustrated in Fig. 6a. The average value is taken
from the manual measurement at the three locations.

Bland-Altman plots depicted in Fig. 7a, b, c, and d are
used to illustrate an agreement of the cartilage thickness
obtained by two measurement methods. The mean differ-
ences for all pairs of the thickness measurements were
0.02 ± 0.17, 0.19 ± 0.20, −0.04 ± 0.22, and 0.05 ± 0.18
mm for the manual outline, LGDF, WKVLS, and LSLSM,
respectively. Small mean difference indicates no signifi-
cant bias for both comparing methods. In addition, p values
for the manual outline, LGDF, WKVLS, and LSLSM are
0.70, < 0.0001, 0.20, and 0.19, respectively. There was no
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Fig. 7 Bland-Altman plots for the thickness measurements obtained manually and by the normal distance in the cartilage area segmented by
a the manual outline, b LGDF, cWKVLS, and d LSLSM
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significant difference in the thickness measurements ob-
tained manually and by the normal distance in the carti-
lage area segmented by the manual outline, WKVLS, and
LSLSM. Meanwhile, the measurement result by the nor-
mal distance in the cartilage area segmented by LGDF is
significantly different from the manual measurement result.
It can also be observed that nearly all differences between
measurements by the two methods lie within the 95% limit
of agreement, i.e., 0.34 to −0.31, 0.59 to −0.20, 0.39 to
−0.48, and 0.39 to −0.29 mm for the manual outline,
LGDF, WKVLS, and LSLSM, respectively. Meanwhile,
there were only several differences between measurements
by both compared methods that fall outside the limits of
agreement.

4 Discussion

The cartilage boundary segmentation and thickness com-
putation in short axis knee cartilage of the 2-D ultra-
sound images pose a considerable challenge and clinical
value. This paper studies cartilage boundary segmentation
using LSLSM with the energy functional and the variables
expressed in the equivalent expression of the convolution
operation. The cartilage thickness is automatically com-
puted by averaging the normal distances along the seg-
mented cartilage area. Comparison experiment on several
level set methods in segmenting the knee cartilage ultra-
sound image shows that LSLSM yielded a more satisfactory
result than other methods. Cohen’s κ coefficient indicates a
substantial agreement of the cartilage segmentation quality
rated by two experts. DSC and HDmetrics computed from a
set of the knee cartilage ultrasound images show a very good
and consistent segmentation outcome. ICC value computed
from the thickness measurements of the four repeated scans
indicates a good reproducibility of the thickness measure-
ments. Bland-Altman plot demonstrates a good agreement
between the measurements by the normal distance and the
manual measurement.

The cartilage boundary segmentation possible with
LSLSM has allowed the segmentation results to be used
for making computation of the cartilage thickness in the
2-D ultrasound images. The obtained results show the accu-
racy and reproducibility of the segmentation and thickness
estimation methods. The methods described in this work
are useful to characterize the normal cartilage and can also
be applied to delineate the degenerative diseases such as
osteoarthritis. It can be used to assess cartilage degener-
ation typically seen as the cartilage thinning. Changes in
the cartilage thickness can be quantified over time by com-
paring the true thickness at a certain time interval, i.e., six
months. The robustness in segmenting and computing vari-
ous cartilage thickness demonstrated in this work indicates

a potential application of the methods for the assessment of
the cartilage degeneration, which is left for future work.

The incorporation of the joint shape-intensity prior con-
straint in [24] to LSLSM could increase the robustness
to capture shape and thickness variations in the cartilage.
The inclusion of different grades of the cartilage degen-
eration to investigate the performance of the segmentation
and thickness computational techniques to various degen-
eration progression in the cartilage is also of interest for
future work. Future improvement also includes reducing or
eliminating two user interactions involved in this work, i.e.,
the contour initialization and the extraction of the cartilage
region from surrounding tissues.

Since the short-axis view of the knee cartilage in the 2-D
ultrasound image is seen as a projected image plane from the
real 3-DMRI volume of the knee joint, the distance between
the cartilage interfaces in the 2-D ultrasound images may
not be seen to be perpendicular between upper and lower
3-D cartilage surfaces. Therefore, spatial registration of the
2-D ultrasound image plane to the 3-D MRI volume to pro-
vide a precise relation of the thickness computation on both
imaging modalities could also guide future work.

5 Conclusion

The knee cartilage boundary segmentation using LSLSM
and thickness computation using the normal distance in
short axis knee cartilage of the 2-D ultrasound images have
been presented. The energy functional derived from Gaus-
sian distributions of local image intensity and multiplicative
noise model allowed LSLSM to cope with speckle noise
and intensity bias thus capture the monotonous hypoechoic
band between the two interfaces of the soft tissue-cartilage
and the cartilage-bone that represents the cartilage region.
The cartilage thickness is then computed by averaging
the normal distances along the segmented cartilage area.
The knee cartilage boundary segmentation possible using
LSLSM has allowed the obtained segmentation results to
be used for computing the cartilage thickness in the 2-
D ultrasound images. The robustness in segmenting and
computing cartilage of various thickness demonstrated in
this work indicates a potential application of the meth-
ods for the assessment of the cartilage degeneration where
the changes in the cartilage thickness can be quantified
over time by comparing the true thickness at a certain time
interval.
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