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Abstract Retinal vessel tree extraction is a crucial step for
analyzing the microcirculation, a frequently needed process
in the study of relevant diseases. To date, this has normally
been done by using 2D image capture paradigms, offering
a restricted visualization of the real layout of the retinal
vasculature. In this work, we propose a new approach that
automatically segments and reconstructs the 3D retinal ves-
sel tree by combining near-infrared reflectance retinography
information with Optical Coherence Tomography (OCT)
sections. Our proposal identifies the vessels, estimates their
calibers, and obtains the depth at all the positions of the
entire vessel tree, thereby enabling the reconstruction of the
3D layout of the complete arteriovenous tree for subsequent
analysis. The method was tested using 991 OCT images
combined with their corresponding near-infrared reflectance
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retinography. The different stages of the methodology were
validated using the opinion of an expert as a reference. The
tests offered accurate results, showing coherent reconstruc-
tions of the 3D vasculature that can be analyzed in the
diagnosis of relevant diseases affecting the retinal microcir-
culation, such as hypertension or diabetes, among others.

Keywords Computer-aided diagnosis - Vascular
structure - Retinal imaging - Optical Coherence
Tomography

1 Introduction

The analysis of the retina is frequently used in many rel-
evant diagnostic procedures as useful information can be
obtained for diseases such as hypertension or diabetes.
Computer-aided diagnosis (CAD) systems can thus be of
the utmost importance in assisting clinicians in the differ-
ent diagnostic processes, facilitating and simplifying their
work.

The retinal vessel tree is one of the most widely examined
structures as it represents the most direct and least inva-
sive way to observe the human circulatory system. Hence,
analysis of the retinal vasculature has proved extremely use-
ful due to its relation with a number of pathologies. In
this regard, some works have stated that retinal vasculature
calibers are a significant biomarker for diabetes [16, 23].
Smith et al. [29] also identified retinal vasculature caliber
as a relevant sign in the analysis of hypertension as small
vessel changes can anticipate the presence of severe hyper-
tension. Other studies [7, 26] have also defined calculations
on the microcirculation of the retina as possible indices for
cerebrovascular disease as well as for other cardiovascular
illness events related to retinal vasculature calibers [32, 35].
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The retinal vasculature has also demonstrated its usefulness
in other problems as is the case, for example, in biometrics,
where vessel intersections are used in a similar manner to
fingerprints [25].

The most widely used image modalities in this respect
are angiography and retinography, which give a 2D rep-
resentation of the real layout of the eye fundus. Most
of the proposals in the literature were made using these
image modalities, providing only a partial representation
of the vessel tree. Some surveys have described the var-
ious proposals that have been put forward in the matter
[12], and representative examples of the principal paradigms
employed will now be described.

Thresholding is one of the methodologies used in the
problem, as in the works of Zhang et al. [43] or Yong et
al. [42] where adaptive thresholds were designed in pro-
cesses that aimed for the localization and segmentation of
the vessels. Xiaoyi and Mojon [38] designed a sophisticated
framework that includes adaptive local thresholding in an
approach combining hypothetical thresholds and a posterior
verification step.

Tracking approaches have also been implemented, as
in the work of Wink et al. [34], who designed a semi-
automatic method that starts from a set of user-defined
points in the image and retrieves the central axis of tubular
structures. For that purpose, a vectorial multiscale feature
image was included for wave front propagation, a process
that adapts perfectly to the problem of multiscale vessels.
Mendonga and Campilho [21] presented a methodology that
combines the extraction of the centerline of the vascula-
ture with the subsequent application of region growing to
construct the final vessel segmentation. Lazar and Hajdu
[18] implemented a region-growing process that integrates

a hysteresis thresholding scheme including the response
vector similarity of adjacent pixels.

Different edge detector approaches have also been used
to deal with the issue, including specific improvements
since they normally present certain drawbacks in the detec-
tion of vessels in noisy scenes or blurred contours. Dhar
et al. [8] studied the robustness of the Canny and Lapla-
cian of Gaussian detectors, demonstrating that the Canny
filter offers a more stable behavior in a variety of image
conditions. Xiaolin et al. [37] modified Canny with a bilat-
eral filter to remove noisy artifacts and facilitate vessel
detection.

As in many other medical imaging procedures, Wavelet
transform has shown its potential in this particular applica-
tion, as demonstrated in the proposal by Fathi et al. [10],
which provided satisfactory results integrating the infor-
mation over multiple classification scales. Nayak et al. [22]
also employed the Wavelet transform for the purpose of ves-
sel identification in a context of patients that presented dia-
betic retinopathy. Soares et al. [30] designed a methodology
that used a 2D Gabor Wavelet over multiple scales as the
feature for a classification process with a Bayesian classifier.

Chen et al. [4] used graph-cuts in an unsupervised
approach to identify the vessels, as did Xu et al. [40], where
vessel width is derived in a segmentation process using a
graph-theoretic method.

Of all the strategies employed, Artificial Neural Net-
works (ANNS) is one of the most widely referenced in many
different medical imaging procedures, as they usually pro-
vide correct results in largely complex problems. ANNs
appear frequently in the ophthalmological research field,
as in the work by Sinthanayothin et al. [28], where neu-
ral networks extract the main structures of the eye fundus

Fig. 1 Set of OCT sections in combination with the near-infrared reflectance retinography
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Fig. 2 Scheme of the proposed
methodology
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such as the optic disk, the fovea, or the blood vessels. Li
et al. [19] approached the problem as a modality data trans-
form, using a neural network that discriminates vessel pixels
in the image. In the work of Alonso-Montes et al. [1], the
proposed method included a Convolutional Neural Network
(CNN) with the aim of optimizing vascular tree extrac-
tion in order to meet real-time requirements. Jiang et al.
[15] used ANNS characterizing the pixels with a 8D vector
composed of intensity descriptors and pixel strength fea-
tures and subsequently trained the network to achieve the

Fig. 3 Segmentation process of
the vessel tree. a Original
image. b Result after
pre-processing, enhancement,
hysteresis thresholding and
cleaning of small structures. ¢
Final result after dilation step

segmentation. Vega et al. [33] developed an elaborate net-
work they refer to as a Lattice Neural Network with
Dendritic Processing (LNNDP) to extract the vessels with
successful results. Other classifiers were also considered,
such as random forest in the work by Cheng et al. [5], where
the authors defined a large and heterogeneous set of features
combined with the abovementioned classifier.

Approaches that exploit different kinds of pattern anal-
ysis have also appeared in the literature. Staal et al. [31]
searched for ridges to detect the lines which match with
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Fig. 4 2D vessel tree extraction
process. a Input retinography. b
2D Vessel tree segmentation. ¢
Skeletonized segments. d
Detected end points. e
Bifurcations to be corrected. f
Crossings to be corrected

d

vessel centerlines. The line elements are then partitioned
in patches to extract features and perform the final vessel
detection using a K-NN classifier. Kovacs and Hajdu [17]
designed a process of template matching using generalized
Gabor function-based templates to detect the centerlines and
subsequently applying a reconstruction step to obtain the
final segmentation. Chakraborti et al. [3] implemented a
self-adaptive matched filter combining vesselness filtering
with a high degree of sensitivity for the detection of vessels
in retinographies. Yin et al. [41] constructed an orienta-
tion aware-detector based on the principle that the vessels
are locally oriented and have linearly elongated structures.
Imani et al. [14] used a morphological component anal-
ysis (MCA) algorithm in a method that overcomes the
difficulties of the problem in retinographies with lesions,
facilitating the discrimination between vessels and lesions.
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More recently, Optical Coherence Tomography Angiog-
raphy (OCTA) has emerged as an image modality that uses
the spectral domain for a non-invasive visualization of the
retinal and choroidal vasculature [6]. The use of OCTA
is not yet widespread in health services due to its recent
appearance and the high cost of acquiring this type of
technology.

Optical Coherence Tomography (OCT) imaging is
widely used in clinical services. It offers additional depth
information instead of the classical 2D layouts provided
by angiographies and retinographies. This information is
crucial for obtaining the real 3D layout of the retinal ves-
sels and enabling clinicians to perform an analysis that
comes closer to reality. Only a small number of works have
appeared that use OCT images to deal with the issue of
vasculature segmentation. Moreover, these few proposals

Fig. 5 Example of a detected bifurcation and the corresponding correction made
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Fig. 6 Example of a detected crossing and the corresponding correction made

consist of limited methodologies that still offer 2D represen-
tations of the retinal vasculature. In this regard, Niemeijer
et al. [24] presented an approach that segments the retina
in multiple layers with the vessel projections and performs
a classification stage in the projected image to extract the
vessels. Xu et al. [39] implemented a 3D boosting learn-
ing to detect the vessels, after which the method applies a
post-processing to remove false-positive detections. In the
work of Pilch et al. [27] statistical shape models were con-
sidered with manually segmented vessels. This vessel set
was then used for a subsequent training stage. Once trained,
the resulting model is used to identify the final contours of
the vessels in the axial direction. Guimaraes et al. [13], in
a study of abnormal retinal vascular patterns, identified the
vessel depths at all the positions using the OCT images. In
the work of Wu et al. [36] Coherent Point Drift was included
in an approach for the segmentation of the vessel points.
These points are established as landmarks in a context of
image registration.

In such a context, this work presents a complete method-
ology for 3D extraction of the retinal vessel tree and its 3D
reconstruction using OCT images. Hence, a more complete
vasculature representation permits a more reliable analy-
sis of the retinal microcirculation that is needed in many
diagnostic processes.

This paper is organized as follows. Section 2 presents
the proposed methodology and the characteristics of all the
stages. Section 3 presents some practical results and the val-
idation of key steps of the proposal, compared to the manual

Fig. 7 Diameter estimation. a
Representation of the analyzed
direction at each point of a
segment. b Example of a
segment overlapping the vessel

annotations of a clinician. Finally, Sections 4 and 5 include
the discussion and conclusions of this proposal as well as
possible future work.

2 Methods

The proposed method receives, as input, a set of OCT
images. The images correspond to consecutive OCT sec-
tions that represents the morphology of the retinal layers.
This technique provides tomographic images of the biolog-
ical tissue with high resolution in progressive scans over
the eye fundus of the patient. These images are comple-
mented with the corresponding near-infrared reflectance
retinography that is provided in combination with the
OCT sections. Both sources of information, the consec-
utive OCT sections and the corresponding near-infrared
retinography, are directly provided by the capture machine.
Figure 1 illustrates an OCT scan composed of the near-
infrared reflectance retinography and the consecutive OCT
sections.

The method is organized in a set of progressive stages.
Firstly, the arteriovenous tree is extracted in the near-
infrared reflectance retinography, constructing the set of
segments that represents the vessels and correcting all
the detected misrepresentations at the intersections. Sub-
sequently, diameters over the detected points are cal-
culated. The vessel segments are then mapped in the
input OCT sections with the aim of identifying the
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Fig. 8 Example of the shadow projection caused by a set of vessels

depth, z, coordinates. The 3D segmentation is finally
constructed with the obtained coordinates. For this purpose,
an interpolation using splines of the extracted vasculature
is calculated to provide a smooth representation. Figure 2
describes the general scheme of the proposed methodology,
each stage of which will be detailed in the following
subsections.
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2.1 2D vessel extraction

The vessels are initially segmented in the near-infrared
reflectance retinography to obtain the first (x, y) coordi-
nates, given its simplicity and well-established techniques.
We used an approach that involves different morphological
operators [2] to obtain an initial representation of the

Fig. 9 Mapping process of vessel coordinates in OCT. Identification of the projection zone
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Fig. 10 Vessel location inside its projection zone in a OCT band

vessels. The segmentation process is performed in two main
stages: vascular structure enhancement and extraction of the
arteriovenous tree.

Firstly, a top-hat filter [9] is used to enhance the biggest
and darkest structures in the image, corresponding to the
vessels. Then, the noise and vascular reflex is minimized
with a median filter, thus facilitating the extraction of a more
precise segmentation.

Vessel enhancement is done using the eigenvalues, A
and X, of the Hessian matrix [11], these being combined
to enhance tubular structures of variable size and therefore

ILM

RPE

Fig. 11 ILM and RPE layers inside the section of an OCT image

identify vessels at different scales. Thus, a function B(p) is
formulated as:

>0

0
B(p) = ~R}, QY

exp(w)(l — exp(—i%)) otherwise
where Rp = A1/A2, c is half of the max Hessian norm and
S measures the “second order structures.” Pixels that belong
to vessels are normally represented by small A; values and
higher positive A, values. This way, we reinforce the robust-
ness of the method by minimizing the influence of the input
image characteristics in the parameters of the system.

After this enhancement, vascular segmentation is
achieved in two steps: an initial segmentation and the
subsequent removal of isolated structures. The initial
segmentation is done by means of a hysteresis-based thresh-
olding. A hard threshold (7},) obtains pixels with a high
confidence of being vessels while a weak threshold (7))
keeps all the pixels of the tree, including the spurious ones.
The final vessel segmentation is formed by all the pixels
included by T, that are connected to at least one pixel
obtained by T7j,. The values for 7, and T,, are calculated
from two image properties: the percentage of image rep-
resenting vessels and the percentage of image representing
fundus. The gap between both percentages will include all
the non-classified pixels. The values for the thresholds are
easily derived after calculating the percentiles with:

k(n/100) — Fy
+— Xg,

Jk
where L — k is percentile lower limit &, n indicates the size
of the set, Fy is the accumulated frequency for k — 1, f
measures the frequency of percentile k and c is the size of
the percentile interval (1 in this case).

As the images can include noisy artifacts due to capture
devices or pathologies, a cleaning step is then applied. All
isolated detections smaller than a given size are removed
from the results. Finally, as this strategy can produce discon-
tinuity inside the vessels, a final dilation process is applied
with the result that vessel borders grow towards the center,
filling the existing gaps. This dilation process is done using
a modified median filter. In order to avoid an erosion when
the filter is applied to the external border of the vessels, the
resulting value will only be set if it is a vessel pixel. To
“fill” as many white gaps as possible the dilation process is
applied iteratively, repeated N times to guarantee the filling
of the vessels. Figure 3 illustrates this vessel segmentation
approach with an example.

2D segmentation methodologies typically present cumu-
lative errors as they misrepresent the edges of the vessels.
For that reason, their direct use for vasculature reconstruc-
tion is not recommended. Instead, proposals that identify
the centerline of the vessels are desired to correct possible
deviations in the detections. Firstly, our proposal identifies

Pr =Ly k=1,2,..,99 )

@ Springer



2216

Med Biol Eng Comput (2017) 55:2209-2225

200 urn

Fig. 12 Identification process of the ILM and RPE layers in a OCT section

the vessels as a set of segments that identify the approx-
imate centerlines. We used the strategy explained in [25]
where curvature level curves are used to identify the creases
(crest and valley lines) that identify the vessels. In particu-
lar, Level Set Extrinsic Curvature (LSEC) was implemented
in this work, Eq. 3, given its invariant properties. The result
of this method identifies the entire centerline of the vessels,
a kernel structure that is subsequently used in the 3D ves-
sel reconstruction. Given a function L : RY — R, the level
set for a constant / consists of the set of points x|L(x) = [.
For 2D images, L can be considered as a topographic relief
or landscape and the level sets as its level curves. Negative
minima of the level curve curvature k, level by level, form
valley-like curves and positive maxima ridge-like curves.

_3
k=QLcLyLyy — L3Lex — LiLyy) (L2 + L3) 72 A3)

where

L=, L B e @)
- 9 — b a’ x’
T 90 TP T a0 Y

Fig. 13 Vessel detection in an
OCT section inside the search
region between ILM and RPE
layers

@ Springer

However, the usual discretization of LSEC is ill-defined
in a number of cases, giving rise to unexpected discon-
tinuities at the center of elongated objects. Due to this,
the Multilocal Level Set Extrinsic Curvature with Structure
Tensor, MLSEC-ST operator, originally defined [20] for 3D
landmark extraction of CT and MRI volumes, is used:

d ogi

k=—divi) == (55),d=2; )

i=

where w' is the component at the position i of w, the nor-
malized vector field of L : RY — R. This last is defined by
Eq. 6, where Oy is the d-dimensional zero vector.

zim, if llwl >0

6
O, if |wl=0 ©

w

Although the method finds the approximate centerline,
it detects more than 1-pixel width vessel segmentations as
the vessels present different degrees of creaseness over their
structure. All the detected pixels are subsequently assigned
to a particular segment to guarantee that all of them only
belong to a single one. In this way, we obtain a skeletonized
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Fig. 14 Representation of a 3D
tubular structure associated to a
curve
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vessel tree, organized by a set of segments that are repre-
sented by two end points and a list of consecutive pixels.
Finally, small segments are filtered from the results consid-
ering that these detections belongs to other noisy structures
that can appear in the eye fundus, as shown in Fig. 4a—c.

2.2 Intersections correction

The crease procedure presents a significant limitation due
to the many problems it experiences in correctly identifying
vessels at intersections. This occurs because the method
is unable to identify the crease directions in these areas,
as shown in (Fig. 4d). All these intersections are revised
to correct any wrong detection. The main objective con-
sists of recovering, by joining segments, the information
lost in the crease extraction phase. Hence, all detected end
points are categorized as either belonging to a bifurcation,
belonging to a crossing or being correctly identified as an
end.

— Bifurcations. For each end point, the closest distance to
any other segment is calculated and those under a given
threshold are marked for joining in a bifurcation of a
single vessel. The identified end point is connected to
this closest segment by interpolation using its own con-
tinuity. Figure 5 illustrates the situation with an example
of a bifurcation and the correction that was performed
in the intersection.

— Crossings. Two end points that are significantly close
to a crossing segment. When a pair of end points is
within a given threshold, the continuity between them
is considered. In this case, the points are connected
by interpolation and belong, as a result, to a single

Table 1 Results of the intersections correction process

Correction of crossings Correction of bifurcations

Sensitivity (%)  82.75 99.54
Specificity (%)  99.56 76.28
Accuracy (%) 94.98 92.47
MCC (%) 87.28 82.26

Pi

segment. Figure 6 presents an example of crossing and
the corresponding correction.

The end points that are neither marked as bifurcations
nor crossings are directly considered as correctly detected
end points. Figure 4d—f shows an example of the process of
analysis and correction of end points.

2.3 Caliber estimation

In addition to vessel coordinates, we also need to determine
their calibers for the 3D reconstruction. The orientation of a
vessel at a coordinate, 6, is calculated as the angle between
consecutive vessel points Py(x1, y1) and P>(x3, y2) as:

0 = arctan (u> @)
X2 — X1

The caliber is then estimated in the perpendicular directions
of 0, as Fig. 7a illustrates. We analyze the initial vessel
segmentation image was previously obtained by the crease
method to find the width at each point. Hence, the method
looks for the edges (limits of the vessel) in each perpendicu-
lar direction, an easy process in a binary image. Finally, two
distances, r; and r,, are calculated as the distance from the
centerline to the edges. Their sum indicates the final caliber
at the point in question:

d=r1+nr (8)

Vessel caliber is searched in both directions as the detected
centerlines are not always exactly placed in the center of
the vessels, as is the case of the example shown in Fig. 7b.
Therefore, the sum of both distances produces a more
accurate estimation of a vessel’s caliber.

2.4 Mapping in the OCT images

The depth position of the vessels, z, is calculated using the
depth information that is provided in the OCT sections.

In the OCT images, any structures that appear in the
eye fundus, in our case vessels, block the transmission of
light and therefore leave a shadow proportional to their size.

@ Springer
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Fig. 15 3D visualization of
intersections correctly managed.
Row 1: examples of crossings.
Row 2: examples of intersections

Figure 8 includes an OCT image where the shadows of
several vessels are delimited.

Each OCT section corresponds to a band in the 2D
retinography. The positions of the vessels in the OCT sec-
tions are represented by the intersections of the band and the
vessel tree in the 2D retinography. These intersections iden-
tify the columns of the band where the vessels are located,
and are mapped in their corresponding OCT sections. A
search is made for intersections in the retinography in all
the bands that correspond to the OCT sections, making it
possible to identify all the columns of the OCT sections in
which vessels are to be be found. This process is repeated
for all the bands in the 2D retinography that correspond
with the OCT sections. Then, a rectangle with the same
size as the calculated caliber is constructed, ri + rp, that
matches with the projection zone, or in other words with the
shadow produced by the vessel. This process is illustrated in
Fig. 9.

This projection zone, delimited by the constructed rect-
angle, contains the vessel location. By identifying its posi-
tion we can derive the corresponding depth z of the vessel
coordinate. Figure 10 includes the location of a vessel inside
the projection zone of the OCT section.

2.5 Vessel depth estimation
The method calculates the depths, z, in three progressive
stages:

Identification of the ILM and RPE layers Inside the
projection zone, we can restrict the search region to the
retinal layers that delimit the possible vessel location. This
search space is enclosed by the Inner Limiting Membrane

Table 2 Errors obtained by the caliber estimation process

Error Relative error
Global mean 0.1813 0.0438
Global standard deviation 0.3190 0.0754

A TH
L P

(ILM) and the Retinal Pigment Epithelium (RPE) retinal
layers. Figure 11 identifies the ILM and RPE inside an OCT
section of an OCT image.

Firstly, a Gaussian filtering is applied to smooth the
image and remove noise. As both ILM and RPE show the
edges with the largest contrast of all the layers, Canny
edge detector is then applied to find these limits. A hori-
zontal gradient is used to obtain the strongest and clearest
detections of both layers. As a result, the upper and lower

connected lines delimit both ILM and RPE layers. Figure 12
includes the results of the detection of both layers.

Vessel location The vessels appear in the OCT images as
dark elliptic areas. Therefore, we search for the darkest
neighborhood between ILM and RPE layers. The darkest
point of the darkest neighborhood is marked as the vessel
center (Fig. 13). To reinforce the detection, a mean filter of
3 x 3 size is previously used to remove possible noisy dark
pixels and minimize the risk of wrong detections.

Final depth estimation Finally, the depth coordinate z is
derived using the RPE layer as baseline and calculating the
distance from it to the detected location of the vessel:

z=1|Cy — P 9

where C, measures the the vessel location in the OCT
section and P; the baseline of the RPE layer.

Table 3 Results obtained for the vessel mapping and depth calculation
stages of the methodology

Vessel mapping in OCT ~ Depth calculation
Correctly processed 1,168 1,433
Test set size 1,348 1,561
Success rate (%) 86.64 91.80

@ Springer
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Fig. 16 Vessel mapping in the
OCT sections. a Near-infrared
reflectance retinography with
the intersection of vessels at the
band of an OCT section. b
Identification of the projection
zone of a mapped vessel point

2.6 3D vasculature reconstruction

The vessels are represented by segments S, where each point
P; of a segment S is represented by the 3D coordinates
(x, v, z) and its diameter d, parameters that were previously

Fig. 17 Examples of correct
vessel depth identifications.
Row 1: vessels to be located.

Row 2: obtained detections m

ey

calculated. Interpolation by splines is used with the entire
set of points of S connecting them in a curve. This permits
a smooth representation to be visualized, minimizing abrupt
transitions between vessel coordinates of consecutive OCT
sections in images with low OCT image resolution.
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Fig. 18 Final 3D
reconstructions of the vessel
tree. 1! column: original
images. 2"¢ column: final 3D
reconstructions

The vasculature is reconstructed as tubular shapes (due
to the tubular structure of the vessels) centering on the
centerline points P; with a diameter size equivalent to
the calibers, d. Figure 14 illustrates this 3D representation
process over a curve.

3 Results

The proposed method was validated with an image dataset
of 991 OCT sections from 21 patient scans. The local
ethics committee approved the study and the tenets of the
Declaration of Helsinki were followed. These images were
captured with a Spectralis OCT confocal scanning laser
ophtalmoscope from Heidelberg Engineering. The image
acquisition was done by selecting the dense volume scan
type over a scan angle of (20° x 20°, roughly 6 mm x 6 mm)
consisting of 49 B-mode scans acquired utilizing Automatic
Real-Time (ART Mean) = 16 (number of scans averaged).
B-mode scans are separated by 120 um between each other

@ Springer
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and composed of 1024 A-mode scans, with a separation of
5.5 um. Each A-mode scan has 496 pixels with 3.8 um
resolution. The system acquires the images at a given frame-
rate (8.8 frames/second) and with a given bit depth (32-bits).
The images, all centered on the macula, were taken from
both eyes. OCT scans centered on the macula are widely
used since clinicians employ this imaging modality to study
this specific region of the eye fundus in the context of
different pathologies.

Given the complexity of the manual segmentation of the
entire vessel tree, we did not carry out a global analysis
of the entire vasculature automatic segmentation process.
Instead, specific tests of key steps of the methodology
were performed to provide a more insightful idea of the
robustness of the defined stages.

Intersections represent one of the most difficult struc-
tures of the vasculature. For that reason, we analyzed the
performance of the intersections correction process to
determine the extent to which the method is capable of
correctly representing these complex vasculature regions.
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Fig. 19 Examples of
intersections incorrectly
managed. 1°7 row, bifurcation.
2nd row, crossing. a Vessel
detection before intersection
correction. b Corrected
vasculature. ¢ Desired result

|
e

Eighty-seven crossings and 222 bifurcations were manu-
ally annotated by a specialist from within the image dataset.
Then, we analyzed whether the method identified them cor-
rectly using the manual labeling as a reference. The metrics
obtained are presented in Table 1, including the accuracy,
sensitivity, specificity and the Matthews correlation coef-
ficient (MCC). As we can see, satisfactory results were
achieved. Figure 15 includes different examples of inter-
sections that were correctly handled by the methodology.
In particular, Fig. 15 Row 1 includes four complex cross-
ings, with vessels that are significantly close to each other,
including a highly complicated case of a multiple crossing
involving several vessels. Figure 15 Row 2 shows a het-
erogeneous set of bifurcations including a double chained
intersection and another bifurcation with a close crossing
that could interfere with the correct identification of this
junction.

Another crucial stage is that of vessel caliber estima-
tion. In order to measure the performance of our method
in this respect, we constructed a test set with 220 random

Fig. 20 Examples of incorrect
vessel mappings in the
corresponding OCT sections. a
Near-infrared reflectance
retinography with the
intersection of vessels at the
band of a OCT section. b
Identification of the projection
zone of a mapped vessel point

b c

points from 24 segments , also randomly selected. Again, a
specialist annotated the diameters of the selected points to
use as a reference to test the performance of this automatic
stage of the proposal. At each point, the corresponding error
is calculated as:

Error =d, — d. (10)

whereas the relative error is:

de —d,
de

Relative_Error = (11)
where d, is the annotated diameter and d. is the diame-
ter resulting from the method. Table 2 presents the errors
obtained by the caliber estimation process.

The next step is vessel mapping in the OCT sections.
We conducted another experiment to quantitatively validate
the vessel mapping process. A set of 1,348 mapped points
randomly taken from the entire image dataset was selected
for validation. In this case, a success is considered to be
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where a point is mapped by the method within the anno-
tated projection zone. The results, shown in Table 3, indicate
an accuracy of over 86%. Figure 16 shows four successful
mapping examples including the corresponding projection
zones in the OCT sections.

A further test was designed to validate the robustness
of the depth estimation. An expert clinician segmented
the vessels in the OCT images, constructing a set of 1,561
annotated vessel points that were randomly selected. The
gold standard establishes that a success is considered to be
when the location result falls inside the manual segmen-
tation. As presented in Table 1, a success rate of 91.80%
was obtained, demonstrating the robustness of the proposal.
Figure 17 presents eight examples of correct vessel identifi-
cations inside the projection zones. Figure 18 includes three
examples of final 3D reconstructions. They illustrate the
potential of the 3D extraction and reconstruction of the arte-
riovenous tree with respect to classical 2D segmentations
for further analysis and diagnostic processes. In general
terms, and in the opinion of the experts, the method offers
correct and promising results, providing an innovative 3D
vasculature view that constitutes a better representation of
the real layout of the vessels than that given by classical 2D
representations.

4 Discussion

The identification of the vasculature in the near-infrared
reflectance retinography guarantees the use of a robust and
proven methodology to identify the locations of the vessels,
even in the case of the identification of small vessels, a typ-
ical situation in the macular region. This way, we only map
the vascular profiles in the OCT sections and calculate their
depth, using the spatial coordinates and their caliber. The
support of the near-infrared reflectance retinography, pro-
vided directly by the capture machine in combination with
the OCT sections, greatly facilitates this work, with only
those areas in the sections that belong to real vessels being
analyzed.

This methodology takes OCT images focused on macula
as its input. The macular region includes the smallest and
most tenuous vasculature of the retina, and for this reason
we consider that the tests were carried out in one of the most
complex scenarios available. In other areas the vessels are
thicker and more visible, presenting a higher contrast that
facilitates their detection.

The method was tested under a set of images that were
captured from healthy individuals and patients presenting
diabetic retinopathy or hypertension, proving the capa-
bility of the method to identify the vasculature under a
large variability of conditions. These conditions may pro-
duce changes mainly in the vascular calibers (thickening,
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narrowing or appearance of small protuberances) or in the
vascular structure (increased tortuosity or neovasculariza-
tion). These changes do not alter the vessel visualization
in the retinography as well as the shadow projection in the
OCT sections. In addition, the three-dimensional visualiza-
tion of the real layout of the vasculature that this method
provides facilitates the analysis and identification of these
changes.

As no other complete 3D methods have been published
to date we are unable to perform any kind of comparison
with other proven approaches. Instead, we used the opin-
ion of expert clinicians to identify the relevant stages of the
method and test its performance, validating its accuracy as
compared to manual annotations by the experts at key stages
of the methodology.

Most of the errors came from complex intersections more
often than not involving more than two segments. Examples
of this can be found in Fig. 19, where two intersections that
were not correctly included are presented. The columns rep-
resent the original vessel detection, the final results of the
method and the desired results, respectively. In the case of
Fig. 19 Row 1, as we can see from the desired result, the ana-
lyzed region belongs to a junction of 3 different vessels. Two
of them constitute an intersection but the third belongs to
the end of a vessel, with no real final connection. However,
given the proximity of this end point, the method interprets
that another intersection exists. Figure 19 Row 2 shows a
particular case where the method interprets two different
bifurcations instead of a crossing.

Normally, methodologies for retinal vasculature identi-
fication omit tiny vessels in the image. In the case of our
method, we consider it important to mention the high rate
of detection of vessels appearing in the macular region, a
region of the eye fundus where vessels are smaller than in
the rest of the retina. The errors in caliber estimation are
presented in Table 2. Given the complexity of the images,
with a significant noise level and blurred vessel contours, it
is often highly complicated to exactly detect the limits. For
this reason, a relative error rate in the estimation of vascula-
ture calibers of about only 4% can be considered to be more
than acceptable.

Figure 20 includes two incorrect mapping examples.
Most of the failures tend to occur when the detected vessel
is elongated in parallel to the band of the OCT sections. In
these cases, the method is not capable of correctly matching
the exact point of the intersection. This situation could be
minimized through the use of higher resolutions, which
could help to discriminate the exact intersection points.
Alternatively, OCT sections in the perpendicular direction
or radial directions, as provided by some capture machines,
could also help to minimize these errors.

We also present a number of incorrect detections in the
vessel location phase, as shown in Fig. 21. In this case,
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Fig. 21 Examples of wrong
vessel depth identifications. 157
column, vessels to locate. 274
column, results: red circle, the
obtained vessel location: green
circle, real vessel location

although the method finds the darkest spot between the [LM
and RPE layers, it belongs to noisy artifacts or overlapping
vessels, not to the target vessel. Incorrect detections are on
the whole mainly due to (1) noisy artifacts or vessels that
are too close to and appear in the same region of the OCT
section as the target vessel position; (2) alterations of a par-
ticular layer producing dark regions that can be confused
with a vessel; and (3) the impossibility of detecting the dark
spot of a vessel. In the latter case, this is because vessels are
at times located in parallel to the OCT section and thus do
not produce the typical dark spot that identifies a vessel.

5 Conclusions

This work presents a new fully automatic methodology
to obtain the 3D segmentation and reconstruction of the
retinal arteriovenous tree using OCT images. A 3D repre-
sentation offers a more complete set of information for the
analysis of the retinal microcirculation, in contrast to the
2D visualizations of classical retinographies, enabling more
accurate analysis and diagnosis in different clinical proce-
dures. Vessel tree analysis is crucial for the early diagnosis
of several relevant diseases such as nicking (AV nicking)
or retinal vascular tortuosity. AV nicking is the situation
where a small arteriole is swollen or dilated and crosses
over a vein compressing it and is a highly relevant indica-
tor in prevalent conditions that alter the caliber of vessels.
For its part, retinal vascular tortuosity indicates the degree
of elongation or bending of the retinal vasculature. Both
are signs of hypertension, arteriosclerosis or other vascular
conditions and a 3D representation of the vessels can lead
to more accurate identifications and measurements of both
indicators.

The proposed method covers the entire automatic seg-
mentation process: initial 2D vasculature identification,
caliber estimation and mapping in the OCT images to cal-
culate the depth coordinates. Finally, the method uses the
resulting (x, y, z) vasculature coordinate set combined with

their calibers d to reconstruct the entire vessel tree. The
proposed approach was validated with 21 patient scans
summing an image dataset of 991 OCT sections with
their corresponding near-infrared reflectance retinographies.
Key stages of the methodology were tested, providing coher-
ent and promising results.

In future works, we plan to analyze and improve the
different stages to achieve higher success rates. Automatic
artery and vein classification is also planned for inclusion,
adding valuable information to retinal microcirculation
analysis in any diagnostic process. Images with perpendic-
ular or radial sections will also be tested with the aiming of
reducing the limitation of the method in its application in
the same direction, in all cases. In addition, further valida-
tions will be made in the other areas of the retina, to confirm
the accuracy of the proposal with bigger and cleaner vessels.
Despite the difficulties, we will also inspect new methods to
extract the vascular structure directly in the OCT sections,
using only these images for the whole 3D reconstruction
process and thereby avoiding the multimodality dependence
of near-infrared reflectance retinography. The identification
of the three-dimensional structure or the retinal vasculature
could serve as input in posterior clinical studies that may
involve the calculation and analysis of different measurements,
as tortuosity or the arterio-venular-ratio. These measurements
were typically calculated in two dimensions, mainly in the ana-
lysis of classical retinographies. Extension to three dimensions
could be achieved using the real layout of the vasculature
that may lead to more precise analysis and diagnosis.
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