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method provides a quantitative assessment of ISS in HYPS, 
which could significantly enhance our knowledge in ther-
apy management of ISS.
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1  Introduction

The incidence of infantile spasms (ISS), which is a severe 
infantile epilepsy syndrome, occurs between 2 and 3.5 per 
10,000 live births [12, 21]. The seizure semiology in ISS is 
an epileptic spasm with contraction of muscles of the neck, 
trunk, and extremities and often occurs in clusters. If left 
untreated, there is risk for intractable seizures throughout 
life as well as greater intellectual disability. Given that ISS 
was described 174 years ago, assessment, diagnosis, and 
management for the disorder are still very enigmatic, and 
physicians have not yet reached consensus on objective 
protocols for diagnosing ISS [20]. The diagnosis of ISS is 
based on both the semiology of the seizure and the EEG 
pattern of hypsarrhythmia (HYPS); however, variations of 
HYPS can make the diagnosis of ISS challenging.

HYPS is characterized by a chaotic background that has 
high amplitude with multifocal discharges. The interrater 
reliability of HYPS in ISS has proven to be poor, and quan-
tification of discharges from EEG readings remains chal-
lenging and subjective [10]. In particular, an expert elec-
troencephalographer has to interpret an EEG by inspecting 
and approximating the characteristics of HYPS subjec-
tively rather than through objective quantification. Due to 
the complex nature of these signals, even experienced EEG 
readers tend to interpret HYPS differently, which can have 
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serious implications in the treatment of the infant [10, 1]. 
In order to address such a limitation, the objective of the 
present study is to develop a novel method that could assist 
clinicians to successfully identify and localize the epilep-
tic discharges associated with ISS in HYPS. Quantification 
of the features of HYPS would make the EEG interpreta-
tion more reliable and objective, which could potentially 
improve management and ultimately the success of the pre-
scribed treatment.

Several algorithms have been developed to detect epilep-
tic discharges during epilepsy. The methods based on tem-
plate matching techniques require an EEG reader to pre-
specify spike characteristics such as amplitude and duration 
of the discharges to design epileptic spike templates. Once 
those values are defined, the algorithm searches in the time 
domain for waveforms that match the template in order 
to locate epileptic discharges [11, 15, 17]. The methods 
based on mimetic techniques are also time domain-based 
where use a pre-specified characteristics, such as, ampli-
tude, slope, and duration to locate spike [13, 16, 25]. The 
methods based on time–frequency techniques transform 
the EEG signal from the time domain to the joint time–
frequency domain and perform the spike detection in the 
transformed domain. For example, in [19] the authors use 
wavelet transform to highlight the spikes in the scalogram 
domain, where the higher frequencies represent a high tem-
poral resolution and is suitable to spike detection. However, 
the aforementioned methods have been developed for epi-
leptic discharge detection in EEG signals associated with 

other types of epilepsy, but not in the presence of HYPS. 
Given the chaotic appearance of EEG during HYPS (see 
Fig. 1), there is a need for a novel method, which is able 
to detect epileptic discharges with multiple foci and vary-
ing morphologies associated with ISS in HYPS. The pro-
posed algorithm applies a high-resolution time–frequency 
(TF) representation known as matching pursuit TF domain 
to transform the EEG signals into TF domain. It then 
uses a matrix decomposition method and a novel TF fea-
ture extraction method to characterize and locate epilep-
tiform discharges associated with ISS in the presence of 
HYPS. In a previous work, we developed a novel method 
to detect such epileptiform discharges during HYPS [24]. 
The approach consisted of four stages: First, construct the 
time–frequency domain (TFD) of the EEG recording using 
matching pursuit TFD (MP-TFD). Second, decompose the 
TFD matrix into two submatrices (i.e., spectral components 
in W and corresponding temporal components in H) using 
nonnegative matrix factorization (NMF). Third, extract a 
spectral feature from every decomposed spectral compo-
nent in W, and fourth, compare this spectral feature with 
a preset threshold and if larger then use the corresponding 
temporal component to locate the epileptiform discharges. 
The algorithm was successful in detecting the spikes, but 
the false positive rate was relatively high. In the present 
paper, we further expanded our algorithm to address this 
limitation. The algorithm was successful in detecting the 
spikes, but the false positive rate was relatively high. In the 
present paper, we further extended our algorithm to address 

Fig. 1   A representative bipolar montage EEG recording exhibiting HYPS. The EEG appears highly disorganized with high amplitude wave-
forms and contains multifocal discharges with variable morphologies
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this limitation. The technical contributions of the pre-
sent work include: (1) Selected NMF model order using a 
Bayesian NMF method based on automatic relevance deter-
mination instead of selecting an empirical model order. (2) 
Extracted several temporal features from the decomposed 
temporal components in H in addition to the feature from 
the spectral component, and (3) trained a classifier based 
on support vector machine (SVM) and employed it to 
detect the epileptiform discharges. In Sect. 2, we presented 
our novel TF feature extraction and classification algorithm 
for epileptiform discharge detection. The proposed method 
was evaluated on a dataset of patients with ISS as reported 
in Sect.  3. The results were discussed in Sect.  4 and the 
paper was concluded in Sect. 5.

2 � Materials and methods

2.1 � Dataset and preprocessing

The EEG recordings from five infants (4–9 months old) 
with ISS were used to evaluate the proposed spike detec-
tion algorithm in the presence of HYPS. Subject consent 
was obtained through the Infantile Spasms Registry and 
Genetic Studies via a protocol approved by the University 
of Rochesters Research Subjects Review Board. A 5-min 
section of awake EEG was selected for each subject. All 
EEGs were recorded based on the international standard 
10-20 system with sampling rates of 256 {2}, 500 {1}, 
and 512 {2} samples per second where {.} indicates the 
number of patients. The recording EEGs were imported to 
Persyst EEG software (Persyst, San Diego, CA) for arti-
fact reduction and then were imported into MATLAB and 
bandpass filtered (0.5–30 Hz) for further analysis. All the 
epilepticform discharges were manually marked by an 
epileptologist.

2.2 � Construct time–frequency domain

Time–frequency domain (TFD) provides a two-dimen-
sional energy representation of a signal in terms of its 
temporal and spectral content. However, the time and 
frequency resolution of a TFD determines the success-
ful representation of the epileptiform discharges. For 
example, short-time Fourier transform (STFT), which 
is the most common TFD, may not present the transient 
waveforms associated with the epileptiform discharges of 
interest. The main reason for such a behavior is the time 
and frequency resolution tarde-off in STFT, which means 
that if we reduce the window size in an STFT, the fre-
quency resolution will be decreased and vice versa [18]. 
Therefore, in this work, a high-resolution TFD known as 
the matching pursuit TFD (MP-TFD) is employed. The 

MP-TFD provides a high-resolution representation of 
the temporal and spectral information and is suitable for 
highly non-stationary data [8, 5].

The implementation of MP-TFD for an input EEG sig-
nal, x(t), consists of two stages. In stage one, the signal, 
x(t), is iteratively decomposed over an overcomplete dic-
tionary of TF atoms as shown in Eq. (1).

where 
〈

Ri
x , gγ i

〉

 is the expansion coefficient on a TF atom 
gγ i(t) at ith iteration and RI

x is a residue signal after I iter-
ations. At every iteration, i, the input signal is correlated 
with all the possible atoms from the redundant diction-
ary, D =

{

gγr (t)
}

r=1:R and the atom with the maximum 
correlation magnitude is selected as gγ i(t). In this work, 
we selected a redundant dictionary of TF Gabor atoms as 
described in the following equation:

where γr represents the TF decomposition parameters 
(sr , pr , fr ,φr) denoted as scale factor, translation, fre-
quency modulation and phase, respectively, and g in our 
work is the Gabor function [18]:

In addition to the high TF resolution of the MP-TFD 
that will be achieved using Gabor atoms, if large enough 
numbers of iterations are used in the MP decomposition 
step, then most of the coherent energy of the signal will 
be modeled by the Gabor atoms. The residue term can be 
easily ignored as it contains the non-coherent noise of the 
EEG signal, x(t).

The second stage of the MP-TFD implementation con-
sists of summing the Wigner Ville distribution (WVD) [4, 
6] of each decomposed Gabor atom as shown in the fol-
lowing equation:

where Wgγ i(t, f ) is the WVD of each MP selected Gabor 
atom gγ i(t), and MP is the MP-TFD constructed for the 
EEG signal, x(t). It is known that WVD provides the 
highest possible TF resolution for a mono-component 
signal [6]. Since Gabor atoms gγ (t) are also mono-com-
ponents, the constructed MP-TFD will inherits the high 
TF resolution of the WVD and can provide a suitable rep-
resentation domain for analyzing the epileptic spikes of 
EEG signals during Hyps.

(1)x(t) =
I−1
∑

i=0

〈

Ri
x, gγ i

〉

gγ i(t)+ RI
x ,

(2)gγr =
1

√
sr
g

(

t − pr

sr

)

ej(2π fr t+φr),

(3)g = 2(1/4)e−π t2 .

(4)MP =
I−1
∑

i=0

∣

∣
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〉
∣

∣

∣

2
Wgγ i(t, f ),
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2.3 � TF matrix decomposition

There are various techniques for the dimensionality reduc-
tion in the TFD data. One effective approach is the appli-
cation of a matrix decomposition on the TFD to deter-
mine a low-rank factorization of the TFD dataset into 
low-dimensional components, which are suitable for fea-
ture extraction and classification applications. There are 
several matrix decomposition methods including singular 
value decomposition (SVD), principle component analysis 
(PCA), and nonnegative matrix factorization (NMF). How-
ever, only NMF enforces the non-negativity of the decom-
posed components and provides decomposed bases with 
nonnegative elements, which can result in a natural inter-
pretation for the TFD data. As shown in the previous stud-
ies [19–2], NMF has been successfully employed in the 
TF feature extraction applications. It decomposes the non-
negative TFD data into two nonnegative factors denoted 
as temporal basis matrix (i.e., H) and spectral basis matrix 
(i.e., W), which correspond to the temporal and spectral 
structure of the TFD data, respectively. The following 
equation describes the matrix decomposition by NMF:

where the non-negativity of W and H is the decomposi-
tion constraint, F denotes the number of elements in the 
frequency domain, N denotes the length of signal in time 
domain, and the K (<< min(F,N)) is the model order 
that dictates the number of decomposed bases, and [·]T 
denotes transposition of the bases hk.

2.3.1 � Model estimation

Selection of the NMF model order, K, is usually per-
formed arbitrary or by trial and error; however, deter-
mining an effective value for K (i.e., Keff ) could avoid 
overfitting and underfitting of the NMF decomposition 
to the TFD data. In this study, we employed a Baysian 
NMF method based on automatic relevance determina-
tion (ARD) [22] to select the order of the EEG TFD 
decomposition. In this probabilistic ARD model, each k
th spectral bases of W and its corresponding temporal 
bases from H are related together through a common 
scale parameter or relevance weight denoted as �k. If �k 
is small, it means that those bases are driven to zero or 
decoupled, leading to a more sparse model and smaller 

(5)MPF×N ≈ WF×K ·HK×N ≈
K
∑

k=1

wkh
T
k ,

Keff. The parameter, �k, is obtained from an inverse 
Gamma prior as shown below:

where a and b, which are fixed for all k, denote shape and 
scale hyperparameters for W and H models when expo-
nential priors (E) are selected as described below: 

 where, given u ∈ {w, hTk }, E(u|�k) =
1
�k
exp(− u

�k
) if u ≥ 0. 

Otherwise, E(u|�k) = 0 for u < 0.
The Baysian NMF enforces the following objective 

function:

where D(.|.) is the KL-divergence operator, f (wk) 
and f (hk) are model functions, f (u) = ||u||1, where 
u ∈ {wk , h

T
k }, c = F + N + a+ 1, and � = (�1, �2, . . . , �K ) . 

The first term in Eq. (8) minimizes the error in the data 
fitting, and the second and third terms regularize the fit to 
the common scale parameter, �k. If �k is large, the second 
term is suppressed while the other term is increased. This 
inverse proportion aims to prune irrelevant components 
out of the model, causing it to become sparse. If W and 
H are assumed to be known, Eq. (8) can be used to find 
parameter � by optimizing that cost function with respect 
to �, and then by keeping � known, to solve for W and H 
by optimizing the following cost function:

where const = Kc(1− logc). This process starts with ini-
tial values of K (< Keff), W, and H, and will be repeated 
iteratively as shown in Algorithm  1 until there is not a 
significant change (<tol) in the value of the common 
scale parameter, �k. In this paper, majorization–minimi-
zation [9] optimization method was used to solve for W 
and H from Eq. (9).

(6)p(�k|a, b) =
ba

Ŵ(a)
�
−(a+1)
k exp(−

b

�k
),

(7a)p(hTk |�k) = E(hTk |�k),

(7b)p(wk|�k) = E(wk |�k)

(8)

C(W,H, �) = −log p(W,H, �|V)

= D(V|WH)+ c

K
∑

k=1

1

�k
(f (wk)+ f (hk)+ b)+

c log �k + const,

(9)

C(W,H) =
1

φ
D(V|WH)+

c

K
∑

k=1

log(f (wk)+ f (hk)+ b)+ const,
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After the algorithm is converged, Keff is calculated as 
the number of components that the ratio of 

�k− b
c

b
c

 is strictly 
larger than the threshold tol. This step is shown in the fol-
lowing equation:

2.3.2 � Feature extraction algorithm

The MP-TFD of an EEG signal is decomposed to its TF 
spectral and temporal bases, (i.e., wk and hk, respectively) 
using the NMF Eq. (5) and Keff calculated in Eq. (10). As 
shown in Fig.  2a, b, each temporal basis may consist of 
multiple semi-Gaussians; for example, the temporal basis 
in Fig. 2b has two temporal semi-Gaussians. Each temporal 
semi-Gaussian indicates the presence of its corresponding 
spectral basis in time. Our objective is to identify the tem-
poral semi-Gaussians that represent epileptic spikes and to 
make this happen, we extract a set of features from each 
temporal semi-Gaussian such that they are discriminative 

(10)Keff = |{k ∈ {1, . . . ,K} :
�k − b

c
b
c

> tol}|.

between the epileptic spikes and the rest of EEG signals. 
Since the epileptic spikes are generally characterized by 
their high frequency contents as well as their short intervals 
in the time domain, we propose five features where three 
(i.e., Ah, Ch, and Bh) are from the temporal semi-Gauss-
ian and the other two are from the corresponding spectral 
basis (i.e., MFw and Aw). For example, there are two tem-
poral semi-Gaussians in the decomposed TF spectral and 
temporal bases shown in Fig. 2b. Hence, two feature bases 
are extracted where each feature vector contains five fea-
ture elements denoted as MFw, Aw, Ah, Ch, and Bh and are 
extracted as follows:

Spectral features The spectral mean frequency (MF) of 
each spectral basis, wk, is calculated as one of the features 
as shown below:

where MF(wk) is the mean frequency value of spectral 
basis wk, k ∈ [1, 2,..., Keff], F is the number of frequency 
samples in wk, and fs is the sampling frequency of the EEG 
recording. The other spectral feature, Aw, is extracted as the 
area under the spectral basis. To calculate this feature, first 
the basis is normalized to its maximum magnitude value 
and then the area under the normalized basis is calculated 
at shown in Fig. 2a.

The MF values provide a measure of the frequency 
content of the decomposed spectral basis. If the MF value 
of a spectral basis is high, it means that basis represents 
high frequency content of the MP-TFD. Since epileptic 
spikes contain high frequency structures, it is expected 
that MF feature can separate spike basis from the rest 
of EEG structure. The area under the normalized basis 
indicates a measure of the spread of the energy over 

(11)MF(wk) =
∑F

f=1 fwk(f )
∑F

f=1 wk(f )
fs,

Fig. 2   Proposed TF feature 
extractions and the correspond-
ing feature vectors are shown in 
this figure. Two feature vectors 
(F1 and F2) are extracted from 
the spectral and temporal basis 
shown in (a) and (b), respec-
tively, as shown in (c). The 
thick-dashed vertical line on the 
first temporal semi-Gaussianis 
associated with a spike marked 
by the epiletologist. Hence fea-
ture vector F1 is labeled as class 
“1” while the other feacture 
vector is labeled as “0”
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Algorithm 1 NMF Model Estimation Algorithm
1: Inputs: Matrix VF×N , tolerance 0 < tol << 1, maximum iteration I,

number of factor K
2: Initialize: WF×K , HK×N

3: Calculate: c = F +N + a+ 1
4: Calculate: b =

√

(a−1)(a−2)µv

K
, where µv =

∑

k E[wfkhkn], and E[.] refers
to the emperical mean.

5: while (τ < tol)
6: H = H.( WT [(V/WH)]

WT+1/repmat(λ,1,N)), < . > indicates element by an element
product.

7: W = W.( [(WH)(β−2)V]HT

HT+1/repmat(λ,F,1))

8: λk =
∑F

f=1 wfk+
∑N

n=1 hkn+b

c
for all k

9: τ = maxk=1,...K |(λk − λ̂k)/λ̂k|, where λ̂k is the vector of relevance
weights at the previous iteration.

10: end while
11: Calculate: Keff in Eq.(10)
12: Outputs: W, H, λ, and Keff (model order)
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frequency domain. The epileptic spikes are specified by 
a spread of energy over frequency, so the area feature 
is designed to distinguish the spectral basis with a large 
spread as potential epileptic spikes.

Temporal features For every temporal semi-Gaussian 
from the temporal bases, hk, three features are extracted: 
the area under the plot, Ah, the height or maximum value, 
Ch, and the duration in time, Bh. Figure 2b demonstrates 
these three features for a temporal basis with two semi-
Gaussians. The epileptic spikes tend to be high bursts of 
energy over a short period of time so larger values of Ah 
and Ch with a small value of Bh is expected to differen-
tiate spike-related semi-Gaussians from the rest of EEG 
structure.

As explained above for every temporal semi-Gauss-
ian in the temporal bases five TF feature elements are 
extracted from the temporal basis and its corresponding 
spectral basis. Hence, the number of the extracted TF 
feature vectors is equal to the number of semi-Gauss-
ians in the temporal basis. For example, if an NMF 
with Keff = 3 is applied to a 10-s duration of an EEG 
signal and the number of semi-Gaussians in the tempo-
ral basis are 2, 1, and 4, a total of seven (i.e., 2 + 1 
+ 4) TF feature vectors will be extracted from the 10 
s-signal, where each feature vector contains five feature 
elements.

2.3.3 � Classification

Once the TF feature vectors are extracted, we use support 
vector machine (SVM) for the classification of the epi-
leptic spikes. First, each extracted TF feature is labeled 
as ‘1’ and ‘0,’ where ‘1’ indicates the presence of an epi-
leptic spike at the center of the corresponding temporal 
semi-Gaussian. For example, in Fig.  2b, the red dashed 
line indicates the presence of an epileptic spike as was 
marked by an epileptologist. Hence, the label of the first 
feature vector was assigned to ‘1’ while the other label 
was set to ‘0.’ Then, SVM hyperplanes are trained to sep-
arate the two classes in the feature space, which will later 
be used to classify any new data. In general, SVM inte-
grates two main concepts. The first concept determines 
maximization of an optimum hyperplane, which maxi-
mizes the distance to the closest data point on each side. 
The other concept applies a kernel function to map the 
feature vectors from lower to higher dimensional spaces 
in order to improve the separation between the two 
classes. In this study, we used radial basis function (RBF) 
kernel, which empirically showed to be suitable for locat-
ing epileptic spikes in the given EEG dataset. The details 
of the classification parameters are explained in the next 
section.

3 � Results

For each subjects, two EEG channels, P4 and O2, were 
selected for our further epileptic spike detection analysis. 
First, each 5-min EEG recording was divided into thirty 
10-s segments. Each segment was transformed to MP-TFD 
with F = 512 and I = 1000 iterations. The model order 
for the NMF algorithm (i.e., Keff) was estimated using 
the ARD method explained in the methods section. The 
model order, K, was initialized 30, the maximum num-
ber of iteration was selected to be 3500, and tol = 10−6.  
The hyperparameter parameter a of the exponential pri-
ors was selected to be any of the values from {0.5, 100, 
500, 1000} [22], and Keff was determined for each value 
of a. Figure 3 shows the range of the estimated Keff for a, 
and as can be seen in this figure when the hyperparameter 
parameter a increases, Keff increases; however, the change 
is not significant. Based on this analysis, we selected the 
average of all the estimated model orders (i.e., 9.32 ≈ 10) 
as the Keff in this study. Hence, K = 10 is selected for the 
model order of the NMF in Eq. (5).

NMF decomposed 10 spectral and temporal bases from 
each 10-s EEG segment, and TF features were extracted as 
explained in Sect. 2. The ‘1’ and ‘0’ labels were assigned 
according to the epileptologist’s markers of the epileptic 
discharges. We applied a statistical test to identify the sig-
nificance of each extracted feature. All the features were 
statistically significant (p value <0.0001). The plots in in 
Fig.  4 show the normalized feature values for the non-
epileptic spikes (NS) and epileptic spikes (S). As can be 
observed from this figure, the features provide a distinction 
between the non-epileptic vs. epileptic discharges.

The extracted TF features were fed to an SVM classi-
fier with RBF kernel with parameter σ = {0.5, 1, 5, 10}. 
The TF features were partitioned into 80% for training 
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0
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15

Hyperparameter a

K
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K
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Fig. 3   Results of Keff versus the hyperparameter parameter a where 
a = {0.5, 100, 500, 1000}. The average Keff is 9.32 ≈ 10
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and 20% for testing from each class. Once the parameters 
of the hyperplane are learned using the training dataset, 
the SVM classifier is used to classify the test data. The 
performance is evaluated by obtaining the receiver oper-
ating characteristic (ROC) curve and calculating the area 
under curve (AUC). The larger the AUC is, the better is 
the performance of the proposed method for localizing 
the epileptic spikes. A cross-validation was performed 
with repeating the testing and classification process 10 
times where each time used a different selection for the 
training and testing set. The average and standard devia-
tion values of the accuracy (Acc), precision (Prec), sen-
sitivity (Sens), specificity (Spec), and AUC for the 10 
experiments are reported in Table 1. The best and worst 
AUC values (i.e., 98.51 and 90.38%, respectively) were 
achieved using σ = 10 and σ = 0.5, respectively. Fig-
ure 5 shows the ROC plots for the best and worst perfor-
mances. As it can be seen, the RBF kernel with param-
eter of σ = 10 shows the highest performance and was 
selected in the proposed study.

We demonstrated the performance of our algorithm in 
case of one 10-s EEG segment as shown in Fig. 6. The tem-
poral and its corresponding MP-TFD representations are 
shown in Fig. 6a, b, respectively. The vertical dashed lines 
indicate six epileptic spikes marked by the epileptologist. 
We applied NMF with Keff =10 to the MP-TFD represen-
tation in Fig. 6b and decomposed 10 spectral and temporal 
bases [w1,w2, . . . ,w10] and [hT1 , hT2 , . . . , hT10], respectively. 
The decomposed spectral and temporal bases are shown 
in Fig.  6c, d, respectively. For visualization purposes, the 
spectral bases were rearranged from the high to low mean 

frequency value, MF(wk), where k ∈ [1, 2,..., 10]; for exam-
ple, in Fig.  6c the 4th spectral basis had the highest mean 
frequency value while the 5th spectral basis had the lowest 
value. The temporal bases in Fig.  6d were also rearranged 
accordingly. We extracted a feature vector (with 5 feature 
elements) from every semi-Gaussian in the temporal bases 
and the corresponding spectral bases and applied the trained 
SVM classifier to classify each feature vector. The center of 
the semi-Gaussians that their corresponding feature vectors 
were classified as epileptic spikes were identified as the loca-
tion of the epileptic spikes. In the example shown in Fig. 6, 
eleven temporal semi-Gaussians were classified as the epi-
leptic spikes. Only the 4th and 2nd bases had feature vectors, 

Fig. 4   Plot below shows the 
normalized features for non-epi-
leptic spike (NS) and epileptic 
spike (S) feature vectors
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Fig. 5   ROC plots of the best and worst performances with AUC val-
ues of 90.38 and 98.51%, respectively
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which were classified as epileptic spikes and the remaining 
bases were classified as non-epileptic spike signals. The 
4th and 2nd temporal bases are zoomed out and shown in 
Fig.  6e. The temporal semi-Gaussians that were classified 
as epileptic spikes are marked by the stars and the algorithm 
reported the centers of those temporal semi-Gaussians (i.e., 
the red stars in Fig. 6e) as the locations of the epileptic spikes 
in the EEG signal. In this example, all the six epileptic spikes 
were successfully located by the algorithm.

Table  2 reports the successful localization of epilep-
tic spikes as true positive (TP) and the false localization 

as false positive (FP) and the clinically available software 
based on template matching techniques. As can be seen the 
developed method successfully located the epileptic spikes 
with 98% accuracy and had a false localization of 7%, 
which was a significant improvement to the existing clini-
cal software. The proposed method also offers a plausible 
improvement over our previously proposed method [24], 
which had only a TP of 86% and FP of 53%.

4 � Discussion

The diagnosis of infantile spasms is based on the semiology 
of the seizure and the EEG background characterized dur-
ing HYPS. However, given the chaotic appearance of EEG 
during HYPS the detection of epileptic discharges with 
multiple foci and varying morphologies associated with 

Table 1   Classification performance of the proposed TF feature 
extraction algorithm

This bold shows the best achieved performance

σ Acc Prec Sens Spec AUC

0.5 75.31 ± 
2.01

96.04 ± 
0.27

52.79 ± 
4.11

97.83 ± 
0.17

93.42 ± 
1.76

1 89.59 ± 
1.48

97.77 ± 
0.28

83.81 ± 
3.15

95.37 ± 
0.33

96.13 ± 
0.44

5 93.03 ± 
5.13

94.28 ± 
1.09

91.77 ± 
11.72

94.30 ± 
1.51

97.90 ± 
0.23

10 94.30 ± 
1.72

93.93 ± 
0.83

94.76 ± 
4.44

93.83 ± 
1.05

98.15 ± 
0.30

Fig. 6   a A 10-s EEG signal, b the MP-TFD representation of the 
EEG signal, c decomposed spectral bases, which are ordered from 
high to low spectral mean frequency value, d the corresponding tem-
poral bases, e the temporal semi-Gaussians, which were classified as 

epileptic discharges are indicated by the stars. The vertical dashed 
lines in (a–c) are the epileptic spikes as marked by the epileptologist. 
The stars in (e) show the detected epileptic spikes by our developed 
algorithm

Table 2   The true positive (TP) and false positive (FP) of the pro-
posed method and the clinically available software

The proposed method Clinical software

TP (%) 98 4

FP (%) 7 0
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ISS in HYPS is challenging. We developed a novel TF fea-
ture extraction and classification algorithm to automatically 
localize the ISS relevant electrical abnormalities known as 
epileptic discharges (or spikes) from EEG signals in HYPS. 
We applied our algorithm to a dataset with a duration of 25 
min and a total of 233 epileptic discharges as marked by 
an electrophysiologist. Our major finding was that a high-
resolution TF representation based on the MP-TFD can be 
used to successfully determine the location of ISS relevant 
spikes. The epileptic spikes tended to be high bursts of 
energies over a short period of time so in time–frequency, 
they were appeared as high frequency contents with short 
durations, which helped us to detect them from the rest of 
EEG structure. The algorithm successfully located 228 of 
the epileptic discharges and had only a false positive of 7% 
(16 non-epileptic discharges). Compared to the previous 
work in [24] with TP of 86% and FP of 53%, our developed 
method provides a significant improvement in FP. There are 
two main reasons for such an improvement: (1) The previ-
ous work relies only on spectral features while the present 
work extracts several temporal features and can provide a 
better representation of the temporal structure of the epi-
leptic discharges. Since the epileptic discharges are mainly 
transients with high mean frequency value, the temporal 
features can successfully differentiate between high spectral 
energies over a short period of time (i.e., epileptic) vs. the 
ones that spread over longer period of time (i.e., non-epi-
leptic). (2) Also, the previous method was an unsupervised 
classifier while the present one is a supervised method. It 
is known that the supervised methods tend to have a higher 
classification accuracy vs. unsupervised ones.

We applied available clinical software to the EEG data-
set, but the method was only able to detect 9 of the epileptic 
discharges. The main reason is that clinical software gen-
erally uses the temporal characteristics of EEG, which are 
appropriate for adult EEGs without the presence of HYPS. 
However, our algorithm is able to locate epileptic dis-
charges even in the presence of the chaotic background of 
EEG during HYPS. The proposed automatic spike localiza-
tion algorithm has the potential to address the need to suc-
cessfully localize the epileptiform discharges of ISS from 
long-term EEG recordings and provide a quantitative and 
objective assessment of the relevant electrical abnormality.

5 � Conclusions

In this paper, we developed a novel TF feature extraction 
algorithm for localization of epileptic discharges in HYPS 
EEGs in children with ISS. The proposed algorithm which 
was based on MP-TFD and NMF matrix decomposition 
was combined with SVM classification method to iden-
tify the EEG waveforms with spikes from the signal. The 

MP-TFD provided a high-resolution representation in TF 
domain, which was able to capture the transient character-
istics of epileptic discharges. NMF algorithm was used to 
adaptively decompose the MP-TFD signal representations 
to the main spectral and temporal bases for a further fea-
ture extraction step. The optimal model order for the num-
ber of decompositions in the NMF was determined using a 
probabilistic automatic relevance determination approach. 
We proposed five novel TF features from both the decom-
posed spectral and temporal vectors and used SVM to clas-
sify them. The evaluation was performed on a dataset with 
ISS patients, and the results were compared with respect 
to an electrophysiologist’s identification of spikes. The 
results showed an average true positive and false positive 
percentage of 98 and 7%, respectively, with an average 
AUC of 98.15± 0.30, which was significantly higher than 
the results from the clinically available software. The pro-
posed algorithm could potentially be used by the clinicians 
to guide the treatment and avoid the catastrophic long-term 
outcome of ISS.
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