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achieved using the wavelet-based features corresponding to 
the 64–128 and 4–8 Hz subbands of scalp EEGs.
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1  Introduction

Indeed, machine learning plays a crucial role in a variety 
of fields and has been widely applied. Ones of the key 
research  fields are biology and medicine. Computational 
techniques and tools derived from machine learning con-
cepts and theories have been applied to obtain better diag-
nosis and prognosis of diseases, treatments, and also health 
monitoring systems. Epilepsy, one of the most common 
neurological disorders, has been a challenging subject and 
gained a great attention from researchers. Epilepsy is char-
acterized by recurrent seizures that are physical reactions 
to sudden, usually brief, excessive electrical discharges in 
clusters of nerve cells [21]. Approximately 50 million peo-
ple worldwide have epilepsy, and most of the people with 
epilepsy live in low- and middle-income countries [21].

An electroencephalogram (EEG) that is recorded using 
electrodes placed on the scalp is the most common diagno-
sis test for epilepsy [13]. The EEG that quantifies electrical 
activity of the brain provides ability to detect abnormalities 
in the brain. Epileptic seizure classification and detection 
are a crucial task of epilepsy diagnosis where specific fea-
tures and patterns of the EEG such as monomorphic wave-
forms, polymorphic waveforms, spike and sharp wave com-
plexes, or periods of reduced electrocerebral activity [8, 
17, 20] are needed to be identified and detected. The scalp 
EEG is very sensitive to signal attenuation and artifacts, 
and also has poor spatial resolution. An intracranial EEG 

Abstract  In this study, wavelet-based features of single-
channel scalp EEGs recorded from subjects with intracta-
ble seizure are examined for epileptic seizure classification. 
The wavelet-based features extracted from scalp EEGs 
are simply based on detail and approximation coefficients 
obtained from the discrete wavelet transform. Support vec-
tor machine (SVM), one of the most commonly used clas-
sifiers, is applied to classify vectors of wavelet-based fea-
tures of scalp EEGs into either seizure or non-seizure class. 
In patient-based epileptic seizure classification, a training 
data set used to train SVM classifiers is composed of wave-
let-based features of scalp EEGs corresponding to the first 
epileptic seizure event. Overall, the excellent performance 
on patient-dependent epileptic seizure classification is 
obtained with the average accuracy, sensitivity, and speci-
ficity of, respectively, 0.9687, 0.7299, and 0.9813. The vec-
tor composed of two wavelet-based features of scalp EEGs 
provide the best performance on patient-dependent epilep-
tic seizure classification in most cases, i.e., 19 cases out of 
24. The wavelet-based features corresponding to the 32–64, 
8–16, and 4–8 Hz subbands of scalp EEGs are the mostly 
used features providing the best performance on patient-
dependent classification. Furthermore, the performance 
on both patient-dependent and patient-independent epilep-
tic seizure classifications are also validated using tenfold 
cross-validation. From the patient-independent epileptic 
seizure classification validated using tenfold cross-valida-
tion, it is shown that the best classification performance is 
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or an electrocorticogram (ECoG) is an alternative approach 
to detect the electrical activity of the brain by placing elec-
trodes on the cortex. The intracranial EEG therefore pro-
vides a better characteristic of brain activity; however, it is 
a more complicated and expensive diagnostic test. Previ-
ously most of studies on epileptic seizure classification and 
detection examine intracranial EEG data.

A number of quantitative features extracting from either 
scalp EEG or intracranial EEG including time-domain fea-
tures, frequency-domain or transform-domain features, and 
also nonlinear features have been applied and shown to be 
useful for epileptic seizure classification and detection. Sev-
eral of those quantitative features have been applied to both 
scalp and intracranial EEGs for epileptic seizure classifica-
tion and detection. Some common time-domain features 
[4, 9, 14, 18] are Hjorth parameters, zero crossing, root 
mean square (RMS), line length, number of local maxima 
and minima, and various statistical values such as variance. 
Average power, total power, powers of spectral subbands, 
peak frequency, mean frequency, and median frequency 
are common frequency-domain features that are typically 
obtained from the discrete Fourier transform, power spec-
tral density (PSD), and the discrete wavelet transform [9, 
12, 15]. In particular, the time-domain features of single-
channel EEGs that provide the best epileptic seizure clas-
sification [9] with respect to the area under receiver oper-
ating characteristic (ROC) curve are line length, nonlinear 
energy, variance, power, and maximum. Recently, several 
nonlinear quantitative measures [6, 7, 14] such as Shannon 
entropy, approximate entropy, fractal dimension, maximum 
Lyapunov exponent, and spectral exponent are common 
nonlinear features applied for epileptic seizure classifica-
tion and detection.

Various computational techniques and classifiers have 
been used to classify EEG into corresponding physiologi-
cal and pathological states associated with epilepsy such as 
ictal state (EEG associated with an epileptic seizure event), 
interictal, pre-ictal, and post-ictal states. Machine learning 
methods are a popular choice recently applied for classify-
ing a set of multiple quantitative features of EEG. Support 
vector machine (SVM) classifiers are applied to scalp EEG 
data [12, 16–18]. However, in [4], a linear discriminant 
classifier is applied for neonatal seizure detection. Evolu-
tionary neural networks are also applied for epileptic sei-
zure classification [7]. Epileptic seizure classification and 
detection can be performed using either patient-independ-
ent- or patient-dependent-based algorithms. A wide range 
of success on epileptic seizure classification and detection 
has been reported. In general, patient-dependent-based 
algorithms provide better performance on epileptic seizure 
classification. Also, the performance on epileptic seizure 
classification and detection depends on seizure morpholo-
gies [12].

In particular, for epileptic seizure classification and 
detection using scalp EEGs, sixty-five quantitative features 
of multichannel scalp EEGs were examined and utilized 
in Ref.  [9]. All sixty-five quantitative features including 
features derived from time-domain analyses, the discrete 
wavelet transform, the continuous wavelet transform, and 
discrete Fourier transform have been previously applied in 
various studies. It was shown that there is a performance 
trade-off between the sensitivity and the specificity. The 
best performance on seizure classification is achieved 
using the relative power obtained from the discrete wavelet 
transform corresponding to a 12.5–25 Hz subband with the 
sensitivity of 71.32% and the specificity of 79.67% when 
the optimal threshold is used [9]. On the other hand, aver-
aged and integrated powers of multichannel bipolar EEGs 
focusing on the 2.5–12 Hz subband were applied for epi-
leptic seizure detection in Ref.  [5]. The sensitivity of epi-
leptic seizure detection was 87.3% for subjects with tem-
poral lobe epilepsy (TLE) and extra-temporal lobe epilepsy 
(ETLE).

The energies determined from the coefficients of dis-
crete wavelet transform corresponding to four subbands 
of multiple-channel scalp EEGs are used for patient-
dependent epileptic seizure detection in Ref.  [17]. Over-
all, 131 of 139 epileptic seizure events are detected for the 
patient-dependent epileptic seizure detection while there 
are 15 false detections [17]. In Ref.  [12], seven quantita-
tive features of 19-channel scalp EEGs including subband 
powers obtained from the continuous wavelet transform 
and various time-domain features and an SVM classifier 
were applied for epileptic seizure detection where the prior 
knowledge on diversity of seizure morphologies was taken 
into account. The high correct detection rate (between 85 
and 100%) and low false alarm rates (between 0.2 and 0.4 
per hour) were achieved [12]. A large set of quantitative 
features of scalp EEGs were applied in Ref. [7] for patient-
dependent epileptic seizure classification. The main fea-
tures examined belonged to morphological-based features, 
time-domain features, frequency-domain, features, and a 
nonlinear feature. The average sensitivity and specificity 
obtained were 89.01 and 94.71%, respectively.

In this study, performances on epileptic seizure classi-
fication using wavelet-based features are examined by, in 
particular, focusing on patient-dependent classification. 
The number of channels of scalp EEGs is minimized which 
yields a small number of wavelet-based features applied 
to epileptic seizure classification. The wavelet-based fea-
tures denoted by �l are given by the logarithm to base 2 of 
variance of detail and approximation coefficients of scalp 
EEGs. Such wavelet-based features are computationally 
relevant to the power spectral density (PSD) [1]. The wave-
let-based approach, however, allows an unbiased estimate 
[1]. SVM is used as a binary classifier to discriminate scalp 
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EEG epochs associated with epileptic seizure event from 
scalp EEG epochs associated with pre-ictal and post-ictal 
states, i.e., non-seizure period. The patient-dependent epi-
leptic seizure classification using wavelet-based features is 
evaluated using two schemes. First, the wavelet-based fea-
tures of scalp EEG epochs corresponding to the first epilep-
tic seizure event are used as a training data. This approach 
complies with the actual application when it is applied 
to real-time or online epileptic seizure classification and 
detection. Furthermore, k-fold cross-validation is applied to 
the patient-dependent epileptic seizure classification using 
wavelet-based features in the second scheme. The perfor-
mance on patient-independent epileptic seizure classifica-
tion is also evaluated using k-fold cross-validation.

2 � Materials and methods

2.1 � Data and subjects

Scalp EEG data of subjects with intractable seizures exam-
ined in this study were obtained from the CHB-MIT Scalp 
EEG Database (available online at http://www.physionet.
org/pn6/chbmit/). The database was collected at the Chil-
dren’s Hospital Boston [3]. All subjects were monitored 
for up to several days following withdrawal of anti-seizure 
medication in order to characterize their seizures and assess 
their candidacy for surgical intervention [3]. All protected 
health information (PHI) in the original recordings was 
replaced with surrogate information in order to protect the 
privacy of the subjects [3]. The scalp EEG recordings were 
acquired using a sampling rate of 256 Hz with 16 bit res-
olution [3]. The international 10–20 system of EEG elec-
trode positions and nomenclature was used for the record-
ings [3].

There are 24 cases of scalp EEG recordings, referred 
to as chb01, chb02, chb03, and so on. The first 23 cases, 
excluding the chb24 case, were recorded from 22 subjects 
(5 males, ages 3–22 years old, and 17 females, ages 1.5–19 
years old) [3]. The chb01 and chb21 cases were obtained 
from the same subject. There are a total of 198 epileptic 
seizure events. Further details on scalp EEG data and cases 
can be obtained at http://www.physionet.org/pn6/chbmit/.

2.2 � Wavelet‑based features of scalp EEGs

The discrete wavelet transform is a representation of a 
signal using a countably infinite set of wavelets that con-
stitutes an orthonormal basis [11]. The wavelet transform 
can be interpreted as a generalized filter bank [22] as the 
so-called mother wavelet is typically associated with a 
bandpass filter. Also, the wavelet transform can be inter-
preted in the context of multiresolution analysis (MRA) 

[10]. The multiresolution analysis generally consists of a 
sequence of successive approximation spaces [19]. Fur-
thermore, the multiresolution analysis leads to a hierar-
chical scheme for the computation of the wavelet coef-
ficients of a given function [19].

A signal x[n] is decomposed into approximations 
and details using the scaling and wavelet functions that, 
respectively, correspond to lowpass halfband filter and 
highpass halfband filter. This can be expressed as

where the scaling function φ1,k[n] and the wavelet func-
tion ψ1,k[n] are, respectively, an orthonormal basis for the 
space V1 and the orthogonal complement of V1, denoted 
by W1, and the space V0 = V1 ⊕W1. The approximation 
coefficients a1[n] and the detail coefficients d1[n] can be 
obtained by

where h[n] and g[n] are, respectively, the impulse 
response of lowpass halfband filter and highpass halfband 
filter.

For a single-level discrete wavelet decomposition 
at level l, the approximation coefficients al[n] can be 
obtained by convolving the approximation coefficients 
al−1[n] with the time-reversed filter of h[n], i.e., h̃[n], 
followed by the downsampling and, similarly, the detail 
coefficients dl[n] can be obtained by convolving the 
approximation coefficients al−1[n] with the time-reversed 
filter of g[n], i.e., g̃[n], followed by the downsampling.

From the L-level discrete wavelet decomposition, 
there are L detail coefficients, i.e., d1, d2, . . ., dL, and one 
approximation coefficients, i.e., aL, obtained. Wavelet-
based features proposed for epileptic seizure classifica-
tion in this study are determined by taking the logarithm 
to base 2 of variance of detail coefficients and approxi-
mation coefficients. The wavelet-based features obtained 
from the detail coefficients dl are denoted by �l, and the 
wavelet-based feature obtained from the approximation 
coefficients aL is denoted by �L+1. Therefore, the wave-
let-based features are given by

(1)x[n] =
∑

k

a0[k]φ0,k[n]

(2)=
∑

k

a1[k]φ1,k[n] +
∑

k

d1[k]ψ1,k[n]

(3)a1[n] =
∑

k

a0[k]h[k − 2n]

(4)d1[n] =
∑

k

a0[k]g[k − 2n]

(5)�l = log2 (var(dl)), where l = 1, 2, . . . , L and

(6)�L+1 = log2 (var(aL))

http://www.physionet.org/pn6/chbmit/
http://www.physionet.org/pn6/chbmit/
http://www.physionet.org/pn6/chbmit/
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2.3 � Data analysis and classification

Segments of single-channel scalp EEGs around epileptic 
seizure events (12  min before seizure onset and 12  min 
after seizure offset, unless limited by the beginning, the end 
of recording, or the contiguous epileptic seizure events) 
are used in this study. The scalp EEG segments are divided 
into epochs with length of 512 samples (2 s) and with 50% 
overlap. Such short length of scalp EEG epochs is chosen 
to be able to capture characteristics of a brief lapse of epi-
leptic seizure event. Scalp EEG epochs associated with 
epileptic seizure event are categorized as an SZ class while 
scalp EEG epochs associated with pre-ictal and post-ictal 
states are categorized as an NS class. The number of SZ 
and NS epochs for each case is summarized in Table 1.

The second-order Daubechies wavelets are used for the 
discrete wavelet decomposition. The Daubechies wavelet 
family, one of the most commonly used wavelet families, 
has several nice characteristics including orthogonality and 
finite compact support. Higher-order Daubechies wave-
lets corresponds to higher regularity and also a number of 

vanishing moments. Scalp EEG epochs are decomposed 
into 7 levels that are the maximum level of wavelet decom-
position using the second-order Daubechies. Accordingly, 
seven detail coefficients, i.e., d1, d2, d3, d4, d5, d6 and d7, 
and one approximation coefficients, i.e., a7, are obtained. 
The coefficients d1, d2, d3, d4, d5, d6, d7, and a7 correspond 
approximately to 64–128, 32–64, 16–32, 8–16, 4–8, 2–4, 
1–2, and 0–1 Hz subbands, respectively.

A feature vector applied for epileptic seizure clas-
sification is composed of all combinations of wavelet-
based features of scalp EEG epochs, ranging from two 
wavelet-based features, i.e., 

(

�i, �j
)

 where i �= j, to seven 
wavelet-based features, i.e., 

(

�i, �j, ..., �n, �o
)

 where 
i �= j �= k �= l �= m �= n �= o. Feature vectors of scalp 
EEG epochs are classified using support vector machine 
(SVM). The radial basis function (RBF) kernel is used 
to train an SVM classifier. Scalp EEG epochs of both 
SZ and NS classes obtained from the first seizure event 
of each subject are used as training data sets. The clas-
sification and the performance evaluation are performed 
by a case-by-case basis, i.e., patient-dependent epileptic 

Table 1   Details of scalp EEG 
epochs

Case Seizure duration (s) No. of epochs

All seizures The first seizure

Max Min Mean SZ NS SZ NS

chb01 101 27 63.1 428 9147 38 1281

chb02 82 9 57.3 166 3049 79 1264

chb03 69 47 57.4 388 9406 50 1078

chb04 116 49 94.5 370 5744 47 1436

chb05 120 96 111.6 548 6877 113 1133

chb06 20 12 15.3 133 13,151 13 1436

chb07 143 86 108.3 319 3795 84 1436

chb08 264 134 183.8 909 6774 169 1436

chb09 79 62 69.0 268 5364 62 1436

chb10 89 35 63.9 433 9587 33 1436

chb11 752 22 268.7 800 3820 20 1014

chb12 97 13 36.9 1395 25,773 59 1438

chb13 70 17 44.6 511 13,520 42 1436

chb14 41 14 21.1 153 11,099 12 1436

chb15 205 31 99.6 1952 22,497 123 988

chb16 14 6 8.4 64 11,441 7 1436

chb17 115 88 97.7 287 3730 88 1436

chb18 68 30 54.5 315 6924 48 790

chb19 81 77 78.7 230 3102 76 1015

chb20 49 29 36.8 278 10,360 27 810

chb21 81 12 49.8 191 5338 54 1436

chb22 74 58 68.0 198 3432 56 892

chb23 113 20 60.6 410 9269 111 1436

chb24 70 16 31.9 479 16735 23 1436
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Table 2   Statistical values (Mean±SD) of wavelet-based features of scalp EEG epochs

Case Class Feature

�1 �2 �3 �4 �5 �6 �7 �8

chb01 SZ 7.64 ± 1.4 9.54 ± 0.8 11.29 ± 0.6 13.96 ± 0.8 16.58 ± 1.3 17.87 ± 1.8 17.96 ± 1.8 19.03 ± 1.9

NS 4.56 ± 1.2 8.40 ± 1.1 9.69 ± 1.0 9.96 ± 0.9 11.95 ± 1.1 13.03 ± 1.4 13.59 ± 1.8 14.61 ± 2.0

chb02 SZ 8.08 ± 1.5 10.93 ± 1.3 13.23 ± 1.2 15.20 ± 1.0 16.69 ± 1.2 17.17 ± 1.6 16.91 ± 1.9 17.74 ± 2.0

NS 7.47 ± 4.7 8.39 ± 4.0 9.18 ± 2.7 10.81 ± 2.0 12.38 ± 1.7 13.92 ± 1.8 14.90 ± 2.0 16.13 ± 2.1

chb03 SZ 9.85 ± 1.4 11.44 ± 1.5 12.38 ± 1.2 12.91 ± 0.9 15.05 ± 0.8 16.12 ± 1.1 16.80 ± 1.8 17.75 ± 1.9

NS 5.66 ± 1.8 7.48 ± 2.1 8.58 ± 2.0 8.82 ± 1.5 9.89 ± 1.6 11.61 ± 2.1 12.72 ± 2.4 13.71 ± 6.6

chb04 SZ 9.03 ± 2.7 9.97 ± 2.2 11.00 ± 1.7 11.50 ± 0.7 13.47 ± 0.6 14.97 ± 1.1 15.10 ± 1.5 15.34 ± 1.9

NS 6.69 ± 5.9 8.27 ± 5.4 9.30 ± 4.2 10.26 ± 3.4 11.27 ± 2.7 12.45 ± 2.7 13.28 ± 2.8 15.17 ± 3.5

chb05 SZ 8.84 ± 1.0 11.54 ± 0.8 13.57 ± 1.1 15.22 ± 1.5 17.16 ± 1.4 18.36 ± 1.7 18.06 ± 2.1 18.48 ± 2.0

NS 4.41 ± 2.0 6.05 ± 2.1 8.25 ± 1.6 10.91 ± 0.9 13.57 ± 1.0 14.66 ± 1.2 14.92 ± 1.6 15.90 ± 1.9

chb06 SZ 8.74 ± 1.6 10.23 ± 1.1 11.26 ± 0.7 12.19 ± 0.5 13.40 ± 1.5 14.96 ± 1.5 14.96 ± 1.4 16.87 ± 1.4

NS 7.36 ± 1.3 10.40 ± 1.3 12.28 ± 1.0 13.50 ± 0.8 15.16 ± 1.0 16.15 ± 1.0 16.34 ± 1.4 17.29 ± 1.7

chb07 SZ 10.27 ± 2.0 11.88 ± 1.9 13.30 ± 1.5 14.67 ± 0.9 16.51 ± 0.8 18.23 ± 1.4 18.49 ± 1.6 18.66 ± 1.8

NS 5.93 ± 1.8 7.72 ± 1.6 9.21 ± 1.4 10.94 ± 1.8 13.08 ± 2.6 14.69 ± 3.2 15.37 ± 3.3 16.12 ± 3.0

chb08 SZ 2.18 ± 1.3 5.44 ± 1.5 8.41 ± 1.5 12.00 ± 1.4 15.42 ± 1.5 17.83 ± 1.8 17.88 ± 2.1 18.90 ± 2.0

NS 1.52 ± 1.1 4.77 ± 1.0 7.17 ± 0.7 9.76 ± 0.9 12.29 ± 1.1 13.89 ± 1.4 14.47 ± 1.6 15.57 ± 1.8

chb09 SZ 7.25 ± 1.5 10.83 ± 1.5 14.30 ± 1.7 16.87 ± 2.0 18.13 ± 1.6 17.95 ± 1.5 18.18 ± 1.6 19.65 ± 2.1

NS 2.85 ± 2.3 5.85 ± 1.6 8.69 ± 1.4 11.19 ± 1.0 13.19 ± 1.1 13.92 ± 2.0 14.69 ± 2.6 15.73 ± 2.4

chb10 SZ 6.03 ± 0.4 10.00 ± 0.5 13.41 ± 0.7 16.33 ± 0.7 18.20 ± 0.7 17.93 ± 0.9 17.69 ± 1.1 18.39 ± 2.1

NS 4.76 ± 1.7 7.01 ± 1.6 8.90 ± 1.1 11.53 ± 0.7 14.85 ± 0.9 17.22 ± 0.9 17.73 ± 1.3 18.32 ± 1.5

chb11 SZ 8.14 ± 2.2 9.50 ± 1.6 11.81 ± 1.0 13.91 ± 0.7 16.05 ± 0.8 16.27 ± 1.2 16.78 ± 1.0 17.30 ± 1.4

NS 5.68 ± 1.6 7.53 ± 1.3 8.99 ± 1.1 10.44 ± 0.9 12.28 ± 1.1 13.58 ± 1.4 14.50 ± 1.7 15.64 ± 1.8

chb12 SZ 3.19 ± 1.2 7.02 ± 1.4 9.82 ± 1.5 12.06 ± 1.1 14.39 ± 1.2 15.41 ± 2.0 15.55 ± 2.2 17.08 ± 2.3

NS 2.46 ± 0.9 6.23 ± 0.9 8.85 ± 0.8 10.92 ± 1.1 13.03 ± 1.5 14.11 ± 1.5 14.82 ± 1.8 15.73 ± 3.6

chb13 SZ 2.60 ± 0.5 5.35 ± 0.5 8.17 ± 0.4 11.64 ± 0.6 14.26 ± 0.9 16.25 ± 1.0 16.19 ± 1.9 16.53 ± 1.7

NS 3.57 ± 1.4 6.38 ± 1.4 8.92 ± 1.2 11.93 ± 1.1 14.03 ± 1.3 13.88 ± 1.4 14.28 ± 1.6 15.40 ± 1.8

chb14 SZ 2.79 ± 0.5 5.74 ± 0.4 7.51 ± 0.6 9.31 ± 1.1 11.04 ± 1.8 11.84 ± 3.3 12.91 ± 2.7 14.53 ± 3.0

NS 1.75 ± 1.2 5.26 ± 0.9 8.46 ± 1.0 11.50 ± 1.1 14.15 ± 1.1 15.76 ± 1.2 16.07 ± 1.5 16.46 ± 1.6

chb15 SZ 2.26 ± 0.3 4.99 ± 0.4 8.01 ± 0.5 10.73 ± 0.7 12.67 ± 0.9 12.38 ± 1.0 11.84 ± 1.5 13.14 ± 2.0

NS 2.24 ± 0.8 4.23 ± 0.8 6.14 ± 0.7 8.40 ± 0.8 9.65 ± 0.9 10.55 ± 1.0 10.90 ± 1.3 11.84 ± 1.8

chb16 SZ 5.83 ± 0.5 9.48 ± 0.6 12.16 ± 0.4 12.37 ± 0.4 12.77 ± 0.8 13.78 ± 0.9 14.59 ± 1.6 16.16 ± 1.7

NS 3.83 ± 1.3 6.59 ± 1.1 8.32 ± 1.0 9.52 ± 1.0 11.63 ± 1.2 13.08 ± 1.6 13.88 ± 1.9 15.20 ± 2.1

chb17 SZ 3.21 ± 0.7 5.05 ± 0.8 7.16 ± 0.8 9.53 ± 0.9 11.88 ± 0.9 13.20 ± 1.1 12.67 ± 1.7 13.60 ± 1.8

NS 1.70 ± 1.1 3.19 ± 0.6 4.50 ± 0.6 6.90 ± 0.7 9.50 ± 0.8 10.71 ± 1.2 11.20 ± 1.8 12.25 ± 2.0

chb18 SZ 5.26 ± 3.4 6.81 ± 2.6 8.23 ± 1.5 10.38 ± 0.9 13.21 ± 1.1 14.57 ± 1.0 14.88 ± 2.0 15.12 ± 2.7

NS -0.37 ± 2.0 2.14 ± 1.6 4.78 ± 1.3 7.29 ± 1.0 8.83 ± 1.1 9.23 ± 1.4 9.58 ± 1.9 10.69 ± 2.3

chb19 SZ 9.18 ± 3.1 10.71 ± 3.1 12.16 ± 3.0 13.48 ± 3.1 14.90 ± 3.6 15.13 ± 4.4 15.08 ± 4.6 16.82 ± 4.4

NS 4.31 ± 2.7 6.24 ± 2.1 7.55 ± 1.8 9.06 ± 1.1 10.95 ± 1.2 12.64 ± 1.8 13.87 ± 2.3 15.01 ± 4.4

chb20 SZ 4.76 ± 1.0 7.41 ± 1.4 9.29 ± 1.9 10.92 ± 2.0 13.09 ± 2.1 14.97 ± 2.3 14.70 ± 1.9 15.88 ± 2.0

NS 1.80 ± 0.4 4.95 ± 0.4 7.39 ± 0.5 9.63 ± 0.7 11.55 ± 0.9 12.61 ± 1.1 13.15 ± 1.4 14.04 ± 1.6

chb21 SZ 2.18 ± 0.6 5.55 ± 0.4 8.91 ± 0.5 11.78 ± 0.8 13.53 ± 0.9 14.09 ± 1.2 15.32 ± 1.3 16.08 ± 1.5

NS 1.69 ± 0.6 4.69 ± 0.4 7.37 ± 0.4 9.93 ± 0.6 11.76 ± 0.7 12.61 ± 1.0 13.16 ± 1.4 14.23 ± 1.7

chb22 SZ 7.27 ± 2.0 8.90 ± 1.4 11.02 ± 0.6 13.66 ± 0.7 16.24 ± 0.9 17.31 ± 1.0 17.20 ± 1.5 17.68 ± 1.6

NS 5.65 ± 2.0 7.50 ± 1.6 8.89 ± 1.3 10.00 ± 0.8 11.57 ± 1.0 12.68 ± 1.5 13.48 ± 1.9 14.96 ± 1.8

chb23 SZ 11.09 ± 1.5 12.49 ± 1.5 13.34 ± 1.3 13.02 ± 0.9 15.08 ± 1.0 17.42 ± 1.6 18.36 ± 1.6 18.75 ± 1.6

NS 4.03 ± 3.2 6.63 ± 2.8 8.54 ± 2.0 9.83 ± 1.1 11.19 ± 1.1 12.32 ± 1.2 12.87 ± 1.6 14.04 ± 1.8

chb24 SZ 5.03 ± 2.1 8.15 ± 3.0 11.47 ± 2.9 14.68 ± 2.6 17.33 ± 3.0 19.65 ± 4.0 19.37 ± 3.8 19.58 ± 3.6

NS 2.58 ± 0.2 4.53 ± 0.3 7.16 ± 0.3 9.74 ± 0.6 11.92 ± 0.7 13.19 ± 0.9 14.06 ± 1.3 14.91 ± 1.3
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seizure classification. Furthermore, to validate a gen-
eralized performance of wavelet-based features on both 
patient-dependent and patient-independent epileptic sei-
zure classifications, tenfold cross-validations are applied 
using feature vectors composing of two wavelet-based 
features, i.e., 

(

�i, �j
)

. For each case, the feature vectors 
of scalp EEG epochs associated with SZ and NS classes 
are randomly divided into ten subsets. Nine subsets of 
feature vectors are used as a training set while another 
subset of feature vectors being used as a testing set. This 
process is repeated ten times with each of the ten subsets 
of feature vectors being used once as the training set. The 
performance of tenfold cross-validation is determined 
from all ten classifications.

The performance of epileptic seizure classifications is 
evaluated using three conventional classification perfor-
mance measures: accuracy, sensitivity, and specificity. 
The accuracy (Ac), the sensitivity (Se), and the specific-
ity (Sp) are given, respectively, by

where TP, TN, FP, and FN denote a number of true posi-
tives, a number of true negatives, a number of false posi-
tives, and a number of false negatives, respectively. All 
channels of bipolar scalp EEG data are analyzed and 
examined in this study. Nevertheless, only results that 
are obtained from the channel providing the best perfor-
mance on epileptic seizure classification for each case 
with respect to the product of sensitivity and specificity 
are presented.

In addition, the performance of patient-dependent epi-
leptic seizure classification using the wavelet-based fea-
tures is compared to that using the best five time-domain 

Ac =
TP + TN

TP + TN + FP + FN

Se =
TP

TP + FN
, and

Sp =
TN

TN + FP

Table 3   Performance on 
patient-dependent epileptic 
seizure classification using 2 
wavelet-based features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FT9-FT10 �2, �5 0.9752 0.9436 0.9767 0.9216

chb02 P7-O1 �2, �4 0.9915 0.9080 0.9955 0.9040

chb03 T7-FT9 �4, �5 0.9802 0.9083 0.9831 0.8929

chb04 C4-P4 �2, �5 0.9523 0.4985 0.9863 0.4916

chb05 P8-O2 �5, �6 0.9856 0.8966 0.9923 0.8897

chb06 F8-T8 �1, �3 0.9924 0.4417 0.9980 0.4408

chb07 FP1-F3 �2, �3 0.9522 0.7106 0.9763 0.6938

chb08 FZ-CZ �4, �6 0.9503 0.7297 0.9809 0.7158

chb09 C3-P3 �2, �4 0.9978 0.9806 0.9987 0.9793

chb10 F7-T7 �4, �5 0.9898 0.7875 0.9998 0.7873

chb11 F7-T7 �3, �4 0.9071 0.6513 0.9783 0.6371

chb12 F8-T8 �2, �4 0.9584 0.2515 0.9972 0.2508

chb13 FZ-CZ �2, �6 0.8425 0.5522 0.8538 0.4715

chb14 C4-P4 �2, �6 0.9900 0.3617 0.9992 0.3614

chb15 T7-P7 �5, �7 0.9629 0.8628 0.9714 0.8381

chb16 C4-P4 �2, �4 0.9847 0.1754 0.9893 0.1736

chb17 CZ-PZ �3, �4 0.9727 0.8794 0.9808 0.8625

chb18 P8-O2 �6, �7 0.9561 0.7041 0.9671 0.6809

chb19 P8-O2 �3, �4 0.9826 0.8831 0.9899 0.8742

chb20 C3-P3 �2, �4 0.9860 0.7570 0.9920 0.7509

chb21 CZ-PZ �1, �3 0.9819 0.8029 0.9882 0.7935

chb22 F3-C3 �4, �5 0.9896 0.9155 0.9937 0.9097

chb23 T7-P7 �4, �5 0.9791 0.8863 0.9826 0.8709

chb24 FZ-CZ �2, �4 0.9704 0.7917 0.9757 0.7724

Average 0.9680 0.7200 0.9811 0.7069
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features [9], i.e., line length, nonlinear energy, variance, 
power, and maximum, in terms of the area under ROC 
curve (AUC). Also, the accuracy, the sensitivity and the 
specificity obtained from patient-dependent epileptic sei-
zure classification using SVM are compared. The line 
length f1, nonlinear energy f2, variance f3, power f4, and 
maximum f5 are, respectively, defined as follows [9]:

(7)f1 =

N−1
∑

n=1

∣

∣x[n− 1] − x[n]
∣

∣

(8)f2 =
1

N − 2

N−2
∑

n=1

x2[n] − x[n− 1]x[n+ 1]

(9)f3 =
1

N

N−1
∑

n=0

(x[n] − x̄)2

(10)f4 =
1

N

N−1
∑

n=0

x2[n]

(11)f5 = max(x[n])

where N denotes the length of EEG signal x[n] and x̄ 
denotes the mean of x[n].

3 � Results

3.1 � Characteristics of wavelet‑based features

Means and standard deviations of all wavelet-based 
features, i.e., �1, �2, �3, �4, �5, �6, �7, and �8, of both 
SZ and NS epochs for each case are summarized in 
Table  2. The characteristics of wavelet-based features 
vary corresponding to cases and also subbands. In gen-
eral, wavelet-based features �i of SZ epochs tend to be 
higher than those of NS epochs. From the results of 
two-sample t-tests (p-value of 0.0001), it is suggested 
that for all cases there is at least one wavelet-based 
feature that associates with the significant difference 
between the means of corresponding wavelet-based 
features of both SZ and NS epochs. The means of 
any wavelet-based feature, i.e., �1, �2, �3, �4, �5, �6, �7,  
and �8, of SZ epochs are significantly different from 
those of NS epochs in 13 cases (chb01, chb03, chb05, 
chb07, chb08, chb09, chb11, chb17, chb18, chb21, 

Table 4   Performance on 
patient-dependent epileptic 
seizure classification using 3 
wavelet-based features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se ×Sp

chb01 FT9-FT10 �2, �3, �5 0.9790 0.8923 0.9833 0.8774

chb02 F3-C3 �2, �4, �5 0.9760 0.9195 0.9787 0.9000

chb03 T7-FT9 �3, �4, �5 0.9796 0.8757 0.9838 0.8615

chb04 C4-P4 �2, �3, �5 0.9471 0.4025 0.9879 0.3976

chb05 FP1-F7 �4, �5, �6 0.9785 0.7448 0.9962 0.7420

chb06 F8-T8 �1, �2, �3 0.9924 0.4167 0.9983 0.4160

chb07 FP1-F3 �1, �2, �3 0.9449 0.5787 0.9813 0.5679

chb08 FZ-CZ �4, �5, �6 0.9508 0.7351 0.9807 0.7210

chb09 F7-T7 �2, �3, �4 0.9964 0.9660 0.9980 0.9641

chb10 F7-T7 �3, �4, �5 0.9814 0.6075 0.9998 0.6074

chb11 FT9-FT10 �2, �3, �4 0.8851 0.4795 0.9979 0.4785

chb12 C4-P4 �1, �3, �4 0.9687 0.4139 0.9992 0.4136

chb13 FZ-CZ �2, �5, �6 0.8738 0.4776 0.8892 0.4247

chb14 CZ-PZ �1, �2, �3 0.9807 0.3191 0.9904 0.3161

chb15 T7-P7 �5, �7, �8 0.9571 0.7797 0.9722 0.7579

chb16 F4-C4 �1, �3, �4 0.9937 0.1930 0.9983 0.1927

chb17 CZ-PZ �2, �3, �4 0.9679 0.9246 0.9717 0.8984

chb18 C4-P4 �2, �3, �6 0.9652 0.5655 0.9826 0.5557

chb19 P8-O2 �2, �3, �4 0.9822 0.8312 0.9933 0.8256

chb20 C3-P3 �1, �2, �3 0.9875 0.7450 0.9938 0.7404

chb21 CZ-PZ �1, �2, �5 0.9844 0.8029 0.9908 0.7955

chb22 F3-C3 �2, �4, �5 0.9907 0.8803 0.9969 0.8775

chb23 T7-P7 �4, �5, �6 0.9818 0.8462 0.9870 0.8351

chb24 FZ-CZ �2, �3, �4 0.9734 0.7829 0.9791 0.7665

Average 0.9674 0.6742 0.9846 0.6742
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chb22, chb23, and chb24). On the contrary, for the 
case chb06, there is a significant difference between 
the means of only wavelet-based feature �4 of both SZ 
and NS epochs.

All wavelet-based features of all SZ and NS epochs 
obtained from all subjects are compared in box plots 
shown in Fig. 1. This obviously shows the tendency of 
higher values of wavelet-based features of SZ epochs 
compared to those of NS epochs. In addition, Figs.  2 
and 3, respectively, compare all wavelet-based fea-
tures of all SZ and NS epochs obtained from the case 
chb09 posing the best performance on epileptic seizure 
classification and the case chb16 posing the worst per-
formance on epileptic seizure classification. Figure  2 
shows that wavelet-based features of SZ epochs are 
substantially higher than those of NS epochs in the case 
chb09. On the other hand, even though wavelet-based 
features of SZ epochs tend to be higher than those of 
NS epochs in the case chb16, wavelet-based features of 
SZ epochs are in the spans of wavelet-based features of 
NS epochs.

3.2 � Performance of patient‑dependent epileptic seizure 
classification

The performances on patient-dependent epileptic seizure 
classification using the feature vectors composing of 2, 
3, 4, 5, 6, and 7 wavelet-based features of scalp EEG 
epochs corresponding to the first epileptic seizure event 
as the training data set are shown in Tables 3, 4, 5, 6, 7, 
and 8, respectively. The EEG channels and the wavelet-
based features that provide the best performance on cor-
responding epileptic seizure classification are individu-
ally reported for each case. Remark that the EEG channel 
slightly changes from case to case. The performance on 
epileptic seizure classification tends to decrease as the 
number of wavelet-based features used as the feature vec-
tor increases. The wavelet-based features providing the 
best performance on epileptic seizure classification also 
vary from case to case.

The best overall performance on patient-dependent epi-
leptic seizure classification is obtained using the feature 
vector composing of 2 wavelet-based features. There are 19 

Table 5   Performance on 
patient-dependent epileptic 
seizure classification using 4 
wavelet-based features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FT9-FT10 �1, �2, �3, �4 0.9824 0.7333 0.9948 0.7295

chb02 F3-C3 �3, �4, �5, �8 0.9754 0.7931 0.9843 0.7807

chb03 T7-FT9 �1, �2, �3, �4 0.9678 0.7781 0.9755 0.7590

chb04 FZ-CZ �3, �4, �5, �7 0.9400 0.2477 0.9919 0.2457

chb05 FZ-CZ �1, �2, �3, �4 0.9659 0.6207 0.9920 0.6157

chb06 T7-FT9 �1, �2, �3, �4 0.9910 0.3750 0.9974 0.3740

chb07 FP1-F3 �1, �2, �3, �4 0.9341 0.4638 0.9809 0.4550

chb08 T8-P8 �2, �4, �5, �6 0.9462 0.6878 0.9820 0.6755

chb09 C3-P3 �2, �3, �4, �5 0.9940 0.9078 0.9985 0.9064

chb10 F7-T7 �2, �3, �4, �5 0.9711 0.3850 0.9999 0.3850

chb11 FT9-FT10 �2, �3, �4, �6 0.8664 0.3936 0.9979 0.3927

chb12 C4-P4 �1, �2, �3, �4 0.9691 0.4214 0.9992 0.4211

chb13 FZ-CZ �2, �3, �5, �6 0.8925 0.3945 0.9119 0.3597

chb14 C4-P4 �1, �2, �3, �6 0.9886 0.2128 0.9999 0.2127

chb15 T7-P7 �4, �5, �6, �7 0.9402 0.5653 0.9721 0.5495

chb16 F4-C4 �1, �2, �3, �4 0.9944 0.1579 0.9992 0.1578

chb17 CZ-PZ �2, �3, �4, �7 0.9671 0.8241 0.9795 0.8072

chb18 CZ-PZ �2, �3, �5, �6 0.9534 0.5094 0.9728 0.4955

chb19 FP2-F4 �1, �2, �3, �4 0.9822 0.7727 0.9976 0.7709

chb20 F3-C3 �1, �2, �3, �5 0.9883 0.6295 0.9977 0.6280

chb21 CZ-PZ �1, �2, �4, �5 0.9807 0.7956 0.9872 0.7854

chb22 FZ-CZ �1, �2, �4, �5 0.9899 0.8732 0.9965 0.8701

chb23 P3-O1 �2, �3, �5, �6 0.9833 0.8161 0.9897 0.8076

chb24 FZ-CZ �1, �2, �3, �4 0.9824 0.6491 0.9923 0.6441

Average 0.9644 0.5836 0.9871 0.5762
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cases that the feature vector composing of 2 wavelet-based 
features provides the best performance on epileptic seizure 
classification. The best performance on patient-dependent 
epileptic seizure classification is obtained using the feature 
vector composing of 3 wavelet-based features for the cases 
chb10, chb16, chb17, and chb21. The feature vector com-
posing of 4 wavelet-based features is required to obtain the 
best performance on patient-dependent epileptic seizure 
classification for the case chb12. The best performances on 
patient-dependent epileptic seizure classification for each 
case are summarized in Table 9.

The best performance on patient-dependent epileptic 
seizure classification is obtained at the case chb09 which 
corresponds to the accuracy of 0.9978, the sensitivity of 
0.9806, and the specificity of 0.9987 using the wavelet-
based features �2 and �4 as the feature vector. The worst 
performance on patient-dependent epileptic seizure classi-
fication is obtained at the case chb16 which corresponds to 
the accuracy of 0.9937, the sensitivity of 0.1930, and the 
specificity of 0.9983 using the wavelet-based features �1, �3 
and �4 as the feature vector. The distributions of wavelet-
based features of both SZ and NS epochs corresponding to 
each epileptic seizure event of cases chb09 and chb16 are 

compared in box plots shown in Figs. 4 and 5, respectively. 
These obviously give a justification for the corresponding 
performances. The wavelet-based features of SZ and NS 
epochs in the case chb09 slightly vary from one epileptic 
seizure event to another for all four epileptic seizure events. 
There are, however, considerable variations on wavelet-
based features of SZ and NS epochs within ten epileptic 
seizure events for the case chb16. Furthermore, in the case 
of chb16 the range of wavelet-based features of NS epochs 
is over that of wavelet-based features of SZ epochs. This 
makes such epileptic seizure classification unfeasible.

3.3 � Performance evaluation using tenfold 
cross‑validation

Using the same corresponding EEG channels and wavelet-
based features providing the best performance reported in 
Table  3, the results of tenfold cross-validation on patient-
dependent epileptic seizure classification are summarized 
in Table  10. In general, the accuracy and the specificity 
of patient-dependent epileptic seizure classification are 
remarkably high. Both accuracy and specificity are higher 
than 0.90 for all cases. The highest and lowest accuracies 

Table 6   Performance on 
patient-dependent epileptic 
seizure classification using 5 
wavelet-based features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FT9-FT10 �1, �2, �3, �4, �5 0.9760 0.5487 0.9972 0.5472

chb02 FZ-CZ �1, �2, �3, �4, �5 0.9770 0.7011 0.9905 0.6945

chb03 T7-FT9 �1, �2, �3, �4, �5 0.9784 0.6775 0.9906 0.6712

chb04 FZ-CZ �3, �4, �5, �7, �8 0.9369 0.1176 0.9984 0.1175

chb05 FZ-CZ �1, �2, �3, �4, �5 0.9625 0.5333 0.9950 0.5306

chb06 T8-P8 �1, �2, �3, �4, �5 0.9888 0.2583 0.9962 0.2574

chb07 FP1-F3 �1, �2, �3, �4, �5 0.9306 0.3191 0.9915 0.3164

chb08 T8-P8 �2, �3, �4, �5, �6 0.9423 0.6297 0.9856 0.6206

chb09 F4-C4 �1, �2, �3, �4, �5 0.9857 0.7476 0.9982 0.7462

chb10 F7-T7 �2, �3, �4, �5, �6 0.9640 0.2300 1.0000 0.2300

chb11 FT9-FT10 �1, �2, �3, �4, �5 0.8427 0.2795 0.9993 0.2793

chb12 C4-P4 �1, �2, �3, �4, �7 0.9584 0.2073 0.9996 0.2073

chb13 FZ-CZ �2, �3, �4, �5, �6 0.9095 0.3348 0.9318 0.3119

chb14 FZ-CZ �1, �2, �3, �5, �7 0.9869 0.1418 0.9993 0.1417

chb15 C3-P3 �1, �2, �3, �4, �5 0.9110 0.3855 0.9556 0.3684

chb16 F4-C4 �1, �2, �3, �4, �6 0.9947 0.0877 0.9999 0.0877

chb17 CZ-PZ �2, �3, �4, �5, �7 0.9631 0.6784 0.9878 0.6701

chb18 CZ-PZ �2, �3, �4, �5, �6 0.9633 0.4120 0.9873 0.4067

chb19 FP2-F4 �1, �2, �3, �4, �5 0.9634 0.4675 1.0000 0.4675

chb20 F3-C3 �1, �2, �3, �4, �5 0.9861 0.4741 0.9996 0.4739

chb21 CZ-PZ �1, �2, �3, �4, �5 0.9802 0.7372 0.9887 0.7289

chb22 FZ-CZ �1, �2, �3, �4, �5 0.9892 0.8310 0.9980 0.8294

chb23 P3-O1 �1, �2, �3, �5, �6 0.9806 0.7391 0.9898 0.7316

chb24 FZ-CZ �1, �2, �3, �4, �5 0.9791 0.3487 0.9978 0.3479

Average 0.9604 0.4537 0.9907 0.4493
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are, respectively, 0.9959 and 0.9281 while the highest and 
lowest specificities are, respectively, 0.9997 and 0.9910. On 
the contrary, the wide range of sensitivity is obtained. The 
best and worst sensitivities are 0.9295 and 0.0174, respec-
tively. The performance on patient-dependent epileptic sei-
zure classification evaluated using tenfold cross-validation 
is in general lower than those using the wavelet-based fea-
tures of scalp EEG epochs corresponding to the first epilep-
tic seizure event as the training data set. The better perfor-
mance on patient-dependent epileptic seizure classification 
evaluated using tenfold cross-validation is achieved in the 
cases chb04, chb10, chb11, chb14, and chb22. 

The results of tenfold cross-validation on the patient-
independent epileptic seizure classification correspond-
ing to each pair of wavelet-based features are summa-
rized in Table 11. The same EEG channels providing the 
best performance for all cases reported in Table  3 are 
used. The highest product of sensitivity and specificity is 
0.2004 that is obtained from the patient-independent epi-
leptic seizure classification using the wavelet-based fea-
tures �1 and �5 as the feature vector. The corresponding 

accuracy, sensitivity, and specificity are 0.9579, 0.2011, 
and 0.9965, respectively. On the other hand, the worst 
performance on the patient-independent epileptic seizure 
classification is obtained using the wavelet-based fea-
tures �7 and �8 as the feature vector with the accuracy, 
sensitivity, and specificity of 0.9518, 0.0259, and 0.9990, 
respectively.

3.4 � Comparison of performance on patient‑dependent 
epileptic seizure classification

The areas under ROC curve obtained from using the 
wavelet-based features and the time-domain features are 
compared in Table  12. The maximum area under ROC 
curve for each case is written in bold. In general, the 
wavelet-based features provide better performance on 
epileptic seizure classification compared to the time-
domain features. The wavelet-based features, i.e., �3, �4 , 
�5, and �6, provide the best classification performance 
regarding to the maximum area under ROC curve in 18 
cases while the time-domain features, i.e., f2, f4, and f5 

Table 7   Performance on 
patient-dependent epileptic 
seizure classification using 6 
wavelet-based features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FZ-CZ �1, �2, �3, �4, �5, �6 0.9675 0.3974 0.9958 0.3958

chb02 F7-T7 �1, �2, �3, �4, �5, �6 0.9712 0.3793 1.0000 0.3793

chb03 T7-FT9 �1, �2, �3, �4, �5, �6 0.9744 0.4320 0.9964 0.4304

chb04 T7-FT9 �1, �2, �3, �4, �5, �7 0.9337 0.0650 0.9988 0.0649

chb05 FZ-CZ �1, �2, �3, �4, �5, �6 0.9536 0.3586 0.9986 0.3581

chb06 T8-P8 �1, �2, �3, �4, �5, �6 0.9899 0.1250 0.9987 0.1248

chb07 FP1-F3 �1, �2, �3, �4, �5, �6 0.9171 0.1319 0.9953 0.1313

chb08 FZ-CZ �1, �2, �3, �4, �5, �6 0.9294 0.5662 0.9798 0.5548

chb09 F4-C4 �1, �2, �3, �4, �5, �6 0.9717 0.4466 0.9992 0.4463

chb10 C3-P3 �1, �2, �3, �4, �5, �6 0.9587 0.1600 0.9979 0.1597

chb11 FZ-CZ �1, �2, �3, �4, �5, �6 0.8173 0.1654 0.9986 0.1651

chb12 F4-C4 �1, �2, �3, �4, �5, �7 0.9513 0.0883 0.9987 0.0882

chb13 FZ-CZ �2, �3, �4, �5, �6, �7 0.9421 0.1620 0.9724 0.1576

chb14 FZ-CZ �1, �2, �3, �4, �5, �7 0.9865 0.0922 0.9996 0.0922

chb15 P7-O1 �2, �3, �4, �5, �6, �7 0.9380 0.2603 0.9956 0.2591

chb16 F4-C4 �1, �2, �3, �4, �6, �8 0.9945 0.0351 1.0000 0.0351

chb17 CZ-PZ �2, �3, �4, �5, �6, �7 0.9410 0.3869 0.9891 0.3827

chb18 CZ-PZ �2, �3, �4, �5, �6, �7 0.9658 0.2772 0.9958 0.2760

chb19 F7-T7 �1, �2, �3, �4, �5, �6 0.9433 0.1818 0.9995 0.1817

chb20 F3-C3 �1, �2, �3, �4, �5, �6 0.9800 0.2271 0.9998 0.2270

chb21 CZ-PZ �1, �2, �3, �4, �5, �6 0.9802 0.6423 0.9921 0.6372

chb22 FZ-CZ �1, �2, �3, �4, �5, �8 0.9773 0.5775 0.9996 0.5772

chb23 P4-O2 �1, �2, �3, �4, �5, �6 0.9595 0.6421 0.9717 0.6239

chb24 FZ-CZ �1, �2, �3, �4, �5, �6 0.9766 0.2018 0.9997 0.2017

Average 0.9550 0.2918 0.9947 0.2896
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provide the best classification in the other 6 cases. The 
wavelet-based features �4 and �5 are the wavelet-based 
features providing the best classification performance 
among all eight wavelet-based features. The nonlinear 
energy, i.e., f2, is the time-domain feature providing 
the best classification performance among all five time-
domain features.

Table  13 shows the best performance on patient-
dependent epileptic seizure classification using the time-
domain features and SVM. The best performance on 
patient-dependent epileptic seizure classification can be 
achieved using the feature vector composing of 2, 3, and 
4 time-domain features for 13, 7, and 4 cases, respec-
tively. The best performance is obtained at the case 
chb09 using the line length, the nonlinear energy, the 
variance, and the maximum as the feature vector while 
the worst performance is obtained at the case chb16 
using the line length and the variance as the feature vec-
tor. In general, the wavelet-based features provide the 
better performance for epileptic seizure classification 
than the time-domain features. The better performance 
on patient-dependent epileptic seizure classification can 
be obtained using the wavelet-based features in 19 cases.

4 � Discussion

From the computational results, it is shown that, in general, 
the wavelet-based features of scalp EEG epochs associated 
with epileptic seizure event and non-seizure period, i.e., 
pre-ictal and post-ictal states, are considerably different 
from each other corresponding to the same case. Further-
more, this suggests that at any spectral subband the power 
of scalp EEG epochs associated with epileptic seizure event 
is higher than those of scalp EEG epochs associated with 
non-seizure period. Such differences between the wavelet-
based features lead to an excellent epileptic seizure classi-
fication. The average accuracy, sensitivity, and specificity 
of patient-dependent epileptic seizure classification are, 
respectively, 0.9680, 0.7200, and 0.9811. This performance 
is comparable with the computational results of the auto-
mated patient-dependent epileptic seizure classification [7] 
where the corresponding average sensitivity and specificity 
are 89.01 and 94.71%. However, a larger number of quanti-
tative features were applied in Ref. [7]. The best accuracy, 
sensitivity, and specificity of patient-dependent epilep-
tic seizure classification are 0.9978, 0.9806, and 0.9998, 
respectively.

Table 8   Performance on 
patient-dependent epileptic 
seizure classification using 7 
wavelet-based features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FZ-CZ �1, �2, �3, �4, �5, �6, �7 0.9598 0.1513 0.9999 0.1513

chb02 P3-O1 �1, �2, �3, �4, �5, �6, �7 0.9599 0.1609 0.9989 0.1607

chb03 T7-FT9 �1, �2, �3, �4, �5, �6, �7 0.9660 0.1361 0.9996 0.1360

chb04 C3-P3 �1, �2, �3, �4, �5, �6, �7 0.9313 0.0217 0.9995 0.0217

chb05 FZ-CZ �1, �2, �3, �4, �5, �6, �8 0.9388 0.1356 0.9997 0.1356

chb06 T8-P8 �1, �2, �3, �4, �5, �6, �8 0.9904 0.0583 0.9999 0.0583

chb07 FP1-F3 �1, �2, �3, �4, �5, �6, �7 0.9113 0.0426 0.9979 0.0425

chb08 CZ-PZ �1, �2, �3, �4, �5, �6, �7 0.9181 0.4135 0.9880 0.4086

chb09 T7-FT9 �1, �2, �3, �4, �5, �6, �7 0.9589 0.1748 1.0000 0.1748

chb10 F3-C3 �1, �2, �3, �4, �5, �6, �7 0.9529 0.0900 0.9952 0.0896

chb11 FZ-CZ �2, �3, �4, �5, �6, �7, �8 0.7858 0.0154 1.0000 0.0154

chb12 F4-C4 �1, �2, �3, �4, �5, �6, �7 0.9487 0.0329 0.9989 0.0329

chb13 FZ-CZ �1, �2, �3, �4, �5, �6, �7 0.9517 0.0768 0.9857 0.0757

chb14 C3-P3 �1, �2, �3, �4, �5, �6, �7 0.9860 0.0284 1.0000 0.0284

chb15 P7-O1 �1, �2, �3, �4, �5, �6, �7 0.9298 0.1258 0.9982 0.1255

chb16 FP2-F8 �1, �2, �3, �4, �5, �6, �8 0.9944 0.0175 1.0000 0.0175

chb17 F3-C3 �1, �2, �3, �4, �5, �6, �7 0.9262 0.1307 0.9952 0.1300

chb18 FZ-CZ �1, �2, �3, �4, �5, �6, �7 0.9503 0.1199 0.9865 0.1182

chb19 F8-T8 �1, �2, �3, �4, �5, �6, �7 0.9335 0.0325 1.0000 0.0325

chb20 CZ-PZ �1, �2, �3, �4, �5, �6, �7 0.9756 0.0558 0.9998 0.0558

chb21 CZ-PZ �1, �2, �3, �4, �5, �6, �7 0.9757 0.4015 0.9959 0.3998

chb22 FZ-CZ �1, �2, �3, �4, �5, �6, �7 0.9597 0.2465 0.9996 0.2464

chb23 P4-O2 �1, �2, �3, �4, �5, �6, �8 0.9659 0.3612 0.9890 0.3572

chb24 FZ-CZ �1, �2, �3, �4, �5, �6, �7 0.9727 0.0570 1.0000 0.0570

Average 0.9476 0.1286 0.9970 0.1280
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A variety of wavelet-based features of scalp EEG epochs 
are incorporated in the feature vectors used to obtained 
the best performance on patient-dependent epileptic sei-
zure classification for corresponding cases. The number 
of wavelet-based features of scalp EEG epochs used to 
obtained the best performance on patient-dependent epi-
leptic seizure classification also varies among cases. Two 
wavelet-based features of scalp EEG epochs are required to 
obtain the best patient-dependent epileptic seizure classifi-
cation in most cases, i.e., 19 cases out of 24. The wavelet-
based features �4, �2, and �5 are the wavelet-based features 
of scalp EEG epochs that are mostly used as feature vectors 
to obtain the best performance on patient-dependent epilep-
tic seizure classification. These wavelet-based features, i.e., 
�2, �4, and �5 correspond to the 32–64, 8–16, and 4–8 Hz 
subbands of scalp EEG epochs, respectively. The wavelet-
based feature �8 which corresponds to the 0–1 Hz subband 
of scalp EEG epochs is not associated with the best perfor-
mance on patient-dependent epileptic seizure classification 
of any cases.

The best performance on patient-dependent epilep-
tic seizure classification using the wavelet-based features 
of scalp EEG epochs corresponding to the first epilep-
tic seizure event as the training data set is achieved with 
the accuracy of 0.9978, the sensitivity of 0.9806, and the 
specificity of 0.9987. The accuracy, sensitivity, and speci-
ficity of patient-dependent epileptic seizure classification 
using the wavelet-based features of scalp EEG epochs cor-
responding to the first epileptic seizure event as the train-
ing data set are, respectively, 0.9937, 0.1930, and 0.9983 
for the worst performance. The wavelet-based features 
and the time-domain features provides both best and worst 
performances on patient-dependent epileptic seizure clas-
sification for the same cases. Superior performance of the 
wavelet-based features for epileptic seizure classification 
suggests that the distinctive characteristics of epileptic sei-
zure manifest in some specific spectral bands of EEG sig-
nals rather than the whole bandwidth of EEG signals.

In the case with best performance on epileptic seizure 
classification, the consistent characteristics of scalp EEG 

Table 9   Best performance on 
patient-dependent epileptic 
seizure classification

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FT9-FT10 �2, �5 0.9752 0.9436 0.9767 0.9216

chb02 P7-O1 �2, �4 0.9915 0.9080 0.9955 0.9040

chb03 T7-FT9 �4, �5 0.9802 0.9083 0.9831 0.8929

chb04 C4-P4 �2, �5 0.9523 0.4985 0.9863 0.4916

chb05 P8-O2 �5, �6 0.9856 0.8966 0.9923 0.8897

chb06 F8-T8 �1, �3 0.9924 0.4417 0.9980 0.4408

chb07 FP1-F3 �2, �3 0.9522 0.7106 0.9763 0.6938

chb08 FZ-CZ �4, �5, �6 0.9508 0.7351 0.9807 0.7210

chb09 C3-P3 �2, �4 0.9978 0.9806 0.9987 0.9793

chb10 F7-T7 �4, �5 0.9898 0.7875 0.9998 0.7873

chb11 F7-T7 �3, �4 0.9071 0.6513 0.9783 0.6371

chb12 C4-P4 �1, �2, �3, �4 0.9691 0.4214 0.9992 0.4211

chb13 FZ-CZ �2, �6 0.8425 0.5522 0.8538 0.4715

chb14 C4-P4 �2, �6 0.9900 0.3617 0.9992 0.3614

chb15 T7-P7 �5, �7 0.9629 0.8628 0.9714 0.8381

chb16 F4-C4 �1, �3, �4 0.9937 0.1930 0.9983 0.1927

chb17 CZ-PZ �2, �3, �4 0.9679 0.9246 0.9717 0.8984

chb18 P8-O2 �6, �7 0.9561 0.7041 0.9671 0.6809

chb19 P8-O2 �3, �4 0.9826 0.8831 0.9899 0.8742

chb20 C3-P3 �2, �4 0.9860 0.7570 0.9920 0.7509

chb21 CZ-PZ �1, �2, �5 0.9844 0.8029 0.9908 0.7955

chb22 F3-C3 �4, �5 0.9896 0.9155 0.9937 0.9097

chb23 T7-P7 �4, �5 0.9791 0.8863 0.9826 0.8709

chb24 FZ-CZ �2, �4 0.9704 0.7917 0.9757 0.7724

Average 0.9687 0.7299 0.9813 0.7165
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epochs associated with epileptic seizure event and non-sei-
zure periods are observed as their corresponding wavelet-
based features are particularly steady among various epilep-
tic seizure events. Furthermore, the durations of epileptic 
seizure events are sufficiently long. The average duration 
of 4 epileptic seizure events is 69  s. On the contrary, the 
characteristics of scalp EEG epochs associated with epi-
leptic seizure event and non-seizure periods relatively vary 
from one epileptic seizure event to another in the case of 
worst performance on epileptic seizure classification. The 
durations of epileptic seizure events are also exceptionally 
brief. The longest and shortest durations of epileptic sei-
zure events are 14 and 6 s, respectively. This leads to a very 
small number of scalp EEG epochs associated with epilep-
tic seizure event applied to the classification.

When the tenfold cross-validation is applied, the per-
formance on patient-dependent epileptic seizure clas-
sification tends to decrease. In most cases, i.e., 19 cases 

out of 24, the performance on patient-dependent epilep-
tic seizure classification using tenfold cross-validations 
is lower than those using the wavelet-based features of 
scalp EEG epochs corresponding to the first epileptic 
seizure event. This suggests that the wavelet-based fea-
tures of scalp EEG epochs obtained from a single event, 
i.e., around the first epileptic seizure event, may not well 
represent the whole classes due to the variation of char-
acteristics of scalp EEG epochs associated with epileptic 
seizure event and non-seizure period from one epileptic 
seizure event to another. The performance on patient-
independent epileptic seizure classification is relatively 
low compared to the performance on patient-dependent 
epileptic seizure classification. The variation of charac-
teristics of scalp EEG epochs associated with epileptic 

Table 10   Performance on patient-dependent epileptic seizure classi-
fication using tenfold cross-validation

Subject Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 0.9941 0.9081 0.9981 0.9064

chb02 0.9917 0.8628 0.9987 0.8617

chb03 0.9808 0.6057 0.9963 0.6034

chb04 0.9758 0.7165 0.9925 0.7112

chb05 0.9693 0.6405 0.9955 0.6376

chb06 0.9927 0.3576 0.9991 0.3572

chb07 0.9655 0.6343 0.9934 0.6301

chb08 0.9281 0.4116 0.9975 0.4105

chb09 0.9959 0.9295 0.9992 0.9288

chb10 0.9907 0.8001 0.9993 0.7996

chb11 0.9795 0.9247 0.9910 0.9164

chb12 0.9592 0.2566 0.9973 0.2559

chb13 0.9640 0.0622 0.9981 0.0621

chb14 0.9920 0.4604 0.9993 0.4601

chb15 0.9590 0.5457 0.9949 0.5429

chb16 0.9942 0.0174 0.9997 0.0174

chb17 0.9809 0.7995 0.9949 0.7954

chb18 0.9621 0.2649 0.9938 0.2633

chb19 0.9814 0.7758 0.9967 0.7733

chb20 0.9910 0.6695 0.9997 0.6692

chb21 0.9886 0.7917 0.9957 0.7883

chb22 0.9938 0.9293 0.9975 0.9269

chb23 0.9884 0.8138 0.9962 0.8107

chb24 0.9904 0.6755 0.9994 0.6751

Average 0.9796 0.6189 0.9968 0.6168

Table 11   Performance on patient-independent epileptic seizure clas-
sification using tenfold cross-validation

Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

�1, �2 0.9523 0.0439 0.9987 0.0438

�1, �3 0.9554 0.1592 0.9960 0.1585

�1, �4 0.9570 0.1714 0.9971 0.1709

�1, �5 0.9579 0.2011 0.9965 0.2004

�1, �6 0.9564 0.1631 0.9969 0.1625

�1, �7 0.9532 0.0764 0.9980 0.0763

�1, �8 0.9525 0.0586 0.9982 0.0585

�2, �3 0.9542 0.1050 0.9976 0.1047

�2, �4 0.9561 0.1531 0.9970 0.1527

�2, �5 0.9564 0.1626 0.9969 0.1621

�2, �6 0.9556 0.1410 0.9972 0.1406

�2, �7 0.9533 0.0766 0.9980 0.0764

�2, �8 0.9524 0.0505 0.9984 0.0504

�3, �4 0.9551 0.1266 0.9974 0.1262

�3, �5 0.9564 0.1587 0.9971 0.1582

�3, �6 0.9555 0.1327 0.9975 0.1324

�3, �7 0.9544 0.1028 0.9979 0.1025

�3, �8 0.9526 0.0593 0.9982 0.0592

�4, �5 0.9558 0.1389 0.9975 0.1385

�4, �6 0.9560 0.1437 0.9975 0.1433

�4, �7 0.9552 0.1278 0.9974 0.1275

�4, �8 0.9532 0.0912 0.9972 0.0909

�5, �6 0.9558 0.1384 0.9976 0.1380

�5, �7 0.9552 0.1295 0.9974 0.1292

�5, �8 0.9553 0.1285 0.9975 0.1282

�6, �7 0.9543 0.1060 0.9976 0.1058

�6, �8 0.9539 0.0975 0.9976 0.0973

�7, �8 0.9518 0.0259 0.9990 0.0258
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seizure event and non-seizure period among cases or 
subjects is the primary factor of decreasing classifica-
tion performance. The best performance on patient-inde-
pendent is achieved using the wavelet-based features �1 
and �5 which correspond to the 64–128 and 4–8 Hz sub-
bands of scalp EEGs. The 64–128 Hz subband of EEGs is 

associated with high-frequency oscillations, i.e., gamma 
(30–80 Hz) and ripple (80–250 Hz) oscillations [23]. 
There is evidence that high-frequency oscillations, in par-
ticular, gamma and ripple oscillations, in scalp EEGs are 
clinically correlated with the seizure onset zone [2, 23].

Table 12   Area under ROC 
curve of patient-dependent 
epileptic seizure classification

Case Wavelet-based feature Time-domain feature

�1 �2 �3 �4 �5 �6 �7 �8 f1 f2 f3 f4 f5

chb01 0.882 0.904 0.823 0.868 0.880 0.861 0.823 0.800 0.893 0.921 0.876 0.874 0.874

chb02 0.609 0.435 0.547 0.640 0.737 0.743 0.666 0.609 0.611 0.602 0.605 0.613 0.593

chb03 0.866 0.881 0.889 0.893 0.901 0.858 0.815 0.805 0.880 0.885 0.874 0.872 0.861

chb04 0.840 0.894 0.923 0.950 0.972 0.944 0.864 0.793 0.891 0.900 0.921 0.915 0.904

chb05 0.816 0.851 0.902 0.945 0.926 0.872 0.814 0.821 0.907 0.918 0.916 0.917 0.907

chb06 0.636 0.677 0.707 0.749 0.720 0.705 0.728 0.704 0.719 0.754 0.768 0.762 0.775

chb07 0.934 0.939 0.968 0.971 0.942 0.928 0.905 0.867 0.984 0.988 0.930 0.926 0.957

chb08 0.691 0.708 0.813 0.874 0.915 0.936 0.882 0.880 0.889 0.887 0.912 0.910 0.882

chb09 0.981 0.989 0.991 0.993 0.989 0.957 0.887 0.861 0.977 0.986 0.983 0.983 0.987

chb10 0.849 0.885 0.954 0.986 0.983 0.967 0.825 0.815 0.913 0.932 0.976 0.975 0.974

chb11 0.742 0.826 0.920 0.969 0.978 0.978 0.949 0.914 0.897 0.893 0.978 0.978 0.955

chb12 0.660 0.682 0.713 0.741 0.646 0.583 0.558 0.556 0.711 0.717 0.646 0.644 0.650

chb13 0.521 0.500 0.585 0.672 0.793 0.871 0.783 0.681 0.584 0.594 0.847 0.844 0.733

chb14 0.785 0.640 0.773 0.917 0.947 0.938 0.888 0.783 0.725 0.766 0.884 0.881 0.876

chb15 0.708 0.826 0.889 0.907 0.895 0.801 0.686 0.682 0.834 0.872 0.856 0.853 0.856

chb16 0.709 0.794 0.883 0.871 0.799 0.728 0.669 0.737 0.830 0.833 0.804 0.799 0.758

chb17 0.792 0.839 0.883 0.945 0.940 0.923 0.842 0.777 0.808 0.847 0.918 0.915 0.904

chb18 0.774 0.791 0.829 0.872 0.892 0.890 0.853 0.818 0.846 0.838 0.867 0.868 0.836

chb19 0.808 0.822 0.821 0.844 0.854 0.814 0.753 0.768 0.798 0.801 0.859 0.859 0.852

chb20 0.839 0.834 0.841 0.850 0.727 0.712 0.694 0.724 0.855 0.866 0.813 0.813 0.812

chb21 0.797 0.953 0.979 0.963 0.954 0.872 0.877 0.835 0.981 0.983 0.956 0.953 0.960

chb22 0.848 0.905 0.978 0.991 0.990 0.984 0.939 0.904 0.948 0.971 0.989 0.989 0.954

chb23 0.938 0.930 0.927 0.957 0.978 0.974 0.963 0.934 0.940 0.937 0.978 0.977 0.959

chb24 0.751 0.798 0.815 0.818 0.802 0.802 0.800 0.809 0.795 0.800 0.807 0.808 0.803
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Table 13   Best performance 
on patient-dependent epileptic 
seizure classification using 
time-domain features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FT9-FT10 f1, f2, f3 0.9634 0.8923 0.9669 0.8628

chb02 P7-O1 f1, f2, f3 0.9679 0.7816 0.9770 0.7637

chb03 T7-FT9 f3, f5 0.9298 0.7426 0.9374 0.6961

chb04 C4-P4 f1, f3, f4, f5 0.9169 0.3870 0.9566 0.3702

chb05 P8-O2 f1, f2 0.9600 0.9701 0.9593 0.9306

chb06 F8-T8 f1, f2 0.9939 0.4500 0.9995 0.4498

chb07 FP1-F3 f2, f5 0.9688 0.8170 0.9839 0.8039

chb08 FZ-CZ f1, f3, f4 0.9365 0.6946 0.9700 0.6738

chb09 C3-P3 f1, f2, f3, f5 0.9855 0.9903 0.9852 0.9757

chb10 F7-T7 f3, f4 0.9821 0.9100 0.9856 0.8969

chb11 F7-T7 f2, f3, f4 0.8466 0.3115 0.9954 0.3101

chb12 C4-P4 f1, f4 0.9512 0.4162 0.9806 0.4081

chb13 FZ-CZ f1, f2, f3, f5 0.9317 0.2601 0.9578 0.2491

chb14 C4-P4 f3, f4, f5 0.9876 0.4043 0.9961 0.4027

chb15 T7-P7 f3, f5 0.8177 0.9579 0.8058 0.7718

chb16 F4-C4 f1, f3 0.9943 0.0702 0.9996 0.0701

chb17 CZ-PZ f3, f5 0.9306 0.5779 0.9612 0.5555

chb18 P8-O2 f2, f3, f4 0.9419 0.6367 0.9552 0.6082

chb19 P8-O2 f2, f3, f5 0.9639 0.7208 0.9818 0.7077

chb20 C3-P3 f2, f5 0.9848 0.7052 0.9921 0.6996

chb21 CZ-PZ f2, f4 0.9804 0.7226 0.9895 0.7150

chb22 F3-C3 f1, f2 0.9761 0.8310 0.9843 0.8179

chb23 T7-P7 f1, f3, f4, f5 0.9683 0.8863 0.9714 0.8609

chb24 FZ-CZ f1, f5 0.9605 0.7873 0.9656 0.7602

Average 0.9517 0.6635 0.9691 0.6400

Fig. 1   Comparison between the 
wavelet-based features of scalp 
EEG epochs associated with 
non-seizure periods and those 
associated with epileptic seizure 
events of all subjects
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Fig. 2   Comparison between the 
wavelet-based features of scalp 
EEG epochs associated with 
non-seizure periods and those 
associated with epileptic seizure 
events of case chb09
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Fig. 3   Comparison between the 
wavelet-based features of scalp 
EEG epochs associated with 
non-seizure periods and those 
associated with epileptic seizure 
events of case chb16

SZ  NS
class

2

4

6

8

10

12

λ
1

SZ  NS
class

4

6

8

10

12

14

λ
2

SZ  NS
class

6

8

10

12

14

16

λ
3

SZ  NS
class

8

10

12

14

16

18

λ
4

SZ  NS
class

8

10

12

14

16

18

λ
5

SZ  NS
class

10

15

20

λ
6

SZ  NS
class

10

15

20

λ
7

SZ  NS
class

5

10

15

20

λ
8



1759Med Biol Eng Comput (2017) 55:1743–1761	

1 3

Fig. 4   Comparison of the 
wavelet-based features of SZ 
and NS epochs of case chb09 
corresponding to each epileptic 
seizure event
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5 � Conclusions

The computational results suggest that the wavelet-based 
features obtained from the logarithm of variance of detail 
and approximation coefficients are a promising quantita-
tive feature for epileptic seizure classification. Accom-
panied with SVM, an excellent performance on patient-
dependent epileptic seizure classification can be achieved 

using wavelet-based features of a single channel of scalp 
EEG. Three key factors having an effect on the perfor-
mance of epileptic seizure classification are consistency 
of features/patterns of epileptic seizure activity (epilepti-
form activity), duration of epileptic seizures, and amount 
of training data. In cases whose characteristics of scalp 
EEGs associated with epileptic seizure activity and non-
seizure period are consistent, only two wavelet-based 

Fig. 5   Comparison of the 
wavelet-based features of SZ 
and NS epochs of case chb16 
corresponding to each epileptic 
seizure event
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features of a single channel of scalp EEGs are required to 
achieve an excellent epileptic seizure classification. The 
performance on epileptic seizure classification can, how-
ever, be further improved by refining relevant parameters. 
This will be studied in future works. Also, the epileptic 
seizure classification can be potentially applied for real-
time (online) epileptic seizure detection and monitoring 
system.
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