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1  Introduction

Some of the people with neurological disease suffer from 
troubles in walking, speaking, and writing because they 
lose fine motor control. People with these kinds of diseases 
such as amyotrophic lateral sclerosis (ALS), locked-in syn-
drome, Lou Gehrig’s disease, and high spinal cord injury 
lack control of their voluntary muscles. Thus, they are una-
ble to do even simple tasks by themselves. Therefore, they 
cannot communicate with the environment and sometimes 
they are excluded from society because they are considered 
heavy burden [22, 24, 25]. Brain–computer interface (BCI) 
technology can be incorporated into medical treatments on 
those patients and enhance their quality of life. The mind 
intention of handicapped people can be detected when he 
performs actual or imagined movement by analyzing his/
her brain signals only [9, 24] and converted into commands 
for sending messages or controlling home devices, which 
provides a higher quality of life for both disabled users and 
their family. Due to the safety concern of relevant tech-
niques, noninvasive EEG-based BCI is widely used toward 
these assistive purposes, such as forward word spellers [16, 
19], wheelchair control [7], and video games [21]. In addi-
tion, noninvasive BCIs may be useful for evaluating brain 
activity of severely paralyzed patients to predict the effi-
cacy of invasive brain–machine interface [6].

EEG signals with several physiological mechanisms, 
such as motor imagery (MI) [2, 18], steady-state visual-
evoked potential (SSVEP) [14, 26], and P300 [13], have 
been investigated by BCI researches. Compared with 
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SSVEP- or P300-based BCIs, MI methods may have 
higher potentiality because they are independent to an 
external stimulus, which allows achieving asynchronous 
control and communication.

For MI EEG signal processing, the traditional com-
mon spatial pattern (CSP) method, which can be inter-
preted in both mathematics and physiology, was rec-
ognized as an effective method for feature extraction. 
However, the traditional CSP method is more suitable 
for two-class MI EEG data classification. Furthermore, 
it is sensitive to noise and not suitable for small training 
sets [8]. In order to handle the four-class classification, 
the traditional CSP method was extended by computing 
common spatial pattern for each class against all oth-
ers [5]. In addition, several approaches to improve CSP 
methods were proposed to address the issue of select-
ing optimal time frequency bands for the CSP algo-
rithm. For example, regularization terms were added as 
prior knowledge in regularized CSP (R-CSP) methods 
[11, 15]. By adding a probabilistic counterpart of CSP, 
the probabilistic CSP (P-CSP) infers spatial patterns by 
two linear Gaussian generative models which shared the 
basis matrix [10]. Filter bank common spatial pattern 
(FBCSP) method cutting a broad frequency band into 
small non-overlapping filters was proposed for an MI 
EEG-based BCI [1].However, FBCSP method is com-
plex to compute subject-specific frequency bands.

This paper proposes a mathematical paradigm con-
sisting of “one versus one” (OVO) and “one versus 
rest” (OVR) strategies to the traditional CSP for four-
class motor imagery classification. Ten common spa-
tial patterns are calculated, and their feature vectors are 
extracted. An HSVM algorithm is designed to coordi-
nate with the feature vectors. The proposed algorithm is 
applied on real EEG data of nine human subjects to dis-
tinguish among four motor imagery tasks. The sensori-
motor cortex is the region of the cerebral cortex involved 
in the planning, control, and execution of voluntary 
movements. This cortex is responsible on motor imagery 
tasks; therefore, it is a critical component of sending 
commands and receiving feedbacks to/from muscles. 
Figure 1 shows the different regions of the sensorimotor 
cortex which were considered in this study when placing 
electrodes.

The rest of the paper is organized as follows. In 
Sect.  2, experimental tests are described and all steps 
of the proposed algorithm are described in detail. In 
Sect.  3, results of motor imagery classification are pre-
sented. Advantages and disadvantages of the proposed 
algorithm in different scenarios are discussed in Sect. 4.

2 � Method

2.1 � EEG dataset

The dataset used in this study was taken from BCI com-
petition IV-II-a [3]. It includes four motor imagery tasks: 
imagination of the left hand, right hand, both feet, and 
tongue movements of nine subjects. As shown in Fig. 2a, 
EEG signals were recorded from 22 Ag/AgCl electrodes 
and 3 monopolar electrooculogram (EOG) channels (with 
left mastoid serving as reference) with sampling frequency 
at 250 Hz, and band-pass filtered between 0.5 and 100 Hz. 
Power line interference was filtered by an additional 50-Hz 
notch filter. Timing scheme of the paradigm is shown in 
Fig. 2b. More detailed information about the EEG experi-
ment can be found in [3].

The EEG data are comprised of two sessions which were 
recorded on different days to take into consideration the 
non-stationary nature of EEG data. Each session has 6 runs 
separated by short breaks. There are 48 trials (12 per pos-
sible class) in each run. Thus, each session is composed of 
288 trials in total. For data analysis, each trial was sepa-
rated and extracted by its category of motor imagery task. 
Then, 72 valid trials for each task were achieved. Then, 72 
available trials for each task were achieved. Fivefold cross-
validation was applied to counteract over-fitting. In fivefold 
cross-validation, the original sample (72 trials) is randomly 
partitioned into five subsamples. Of the five subsamples, 
four subsamples are used as training data; the remain-
ing single subsample (14 trials) is retained as the valida-
tion data for testing the model. For four imaginary tasks, 

Fig. 1   Different regions of the sensorimotor cortex. The brain area 
highlighted in pink in the figure controls different body parts. The 
navy blue circle (top of the head) limits the region controlling feet 
and legs. The pale blue circle (center of the head) limits the region 
controlling hands. Face and tongue are controlled by the small orange 
circled region near the bottom of the cortex (located just above ears) 
(color figure online)
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56 trials were included in test dataset. The cross-validation 
process is then repeated five times, with each of the five 
subsamples used exactly once as the validation data.

2.2 � Preprocess

Motor imagery could cause event-related desynchroniza-
tion (ERD) [5] and the ipsilateral hemisphere event-related 
synchronization (ERS) in the contra lateral hemisphere 
(see Fig.  1). Therefore, the μ rhythms (8–12  Hz) and β 
rhythms (14–30  Hz) of EEG signals in the related corti-
cal are as would increase or decrease their amplitude and 
spectrum power. In addition, high-frequency component 
in EEG signals was usually nebulous, so the raw EEG sig-
nals were filtered by band-pass filter (3–34 Hz). Five-level 
wavelet package decomposition was applied to analyze 
the filtered EEG signals (3–34 Hz). The fifth level decom-
posed components 
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where fin is 32 Hz. As shown in Fig. 3, the amplitudes of 
average reconstructed EEG signals in the band of [25, 34] 
Hz were very low and almost no change was recorded dur-
ing motor imagery. Thus, only the frequency bands falling 
in [3, 24] Hz were selected and used in feature selection.

2.3 � Common spatial patterns with OVO and OVR 
strategies

Common spatial pattern (CSP) [12] was proposed, for 
two-class classification for EEG-based BCIs. For the four-
class classification problem considered in this study, OVO 
and OVR strategies were applied to adjust CSP for feature 
selection.

First of all, we labeled imagination of the left hand, right 
hand, both feet, and tongue as classes 1, 2, 3, and 4, respec-
tively. As shown in Fig. 4a, OVO strategy selects any two 
classes to form a pair to apply the traditional CSP method. 
By this way, a four-class classification problem is trans-
formed into a six two-class classification problem.

Let Xi with i ∊ {1, 2} denote the reconstructed EEG sig-
nal of class i. The dimension of Xi is T × N in each trial, 
where N and T denote the number of channels and the 
number of samples in time series for each channel, respec-
tively. Note that the number of samples can be variable 
with respect to different subjects.

The covariance of one trial for class I is

(1)Ci =
XiX

T
i

trace(XiX
T
i )
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Fig. 2   Experimental paradigms. a Electrode positions; b timing scheme of the BCI paradigm
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where Xi
T denotes the transpose of Xi and the trace is 

defined to be the sum of the elements on the main diagonal 
of a matrix. The spatial covariance Ci should be calculated 
by averaging over all trials of each group.

The composite spatial covariance C is:

Then, C can be factored as

where U0 is the matrix consisting of eigenvectors, and∧ is 
the diagonal matrix of eigenvalues. ∧ is defined so that the 
eigenvalues were sorted in descending order.

The whitening transformation is

Then, C1 and C2 are whitened as

S1 and S2 share common eigenvectors. Then, S1 and S2 
can be factored as

Then, the sum of ∧1 and ∧2 would be identity matrix

which means the largest eigenvalue in S1 corresponded 
to the smallest eigenvalue in S2, because the sum of them 
keeps constant 1. The eigenvectors in B will be used for 
classification of the two classes. The optimal feature vec-
tors would be given for discriminating two populations of 
EEG when whitened EEG signals are projected to the first 
and the last eigenvectors. The projection matrix is

(2)C = C1 + C2

(3)C = U0 ∧ UT
0

(4)P = ∧−1/2UT
0

(5)S1 = PC1P
T

(6)S2 = PC2P
T

(7)S1 = B ∧1 B
T

(8)S2 = B ∧2 B
T

(9)∧1 +∧2 = I

The projection (mapping) of a trial is given as

The rows of W12 can be considered as EEG source dis-
tribution vectors and the columns of W12 are the common 
spatial patterns. By decomposing the whitened EEG signals 
according to Eq.  (11), the features for classification could 
be achieved. In this way, for each class of the imagined 
movement, only the variances of a small set of signals are 
needed for the classifier training.

In OVR strategy (Fig. 4b), one class was defined as tar-
get class, and the other three classes were combined as the 
opposite class. The covariance of each trial and whitening 
transformation were calculated as the traditional CSP does. 
However, the common spatial pattern was computed differ-
ently as

Through whitening transformation, C1r was transformed 
to S1r and could be described as

In the phase of diagonalization, S1r can be factored as

Then, the sum of ∧1 and ∧1r is

The projection matrix can be deduced as

The mapping of a trial is

(10)W12 = BTP

(11)Z12 = W12X

(12)C = C1 + C1r

(13)where C1r = C2 + C3 + C4

(14)S1r = P1rC1rP
T
1r

(15)S1r = B1r ∧1r B
T
1r

(16)∧1 +∧1r = I

(17)W1 = BT
1rP1r

(18)Z1 = W1X

Fig. 4   Common spatial pattern 
strategies combined in this 
study: a OVO strategy; b OVR 
strategy w1 Not 
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The feature vectors fi could be computed as follows:

where VARi denotes the variance matrix of the best pro-
jection of EEG signal Z1, which is computed by common 
spatial filters. For OVO and OVR strategies, combined 
feature vectors are finally defined as

where f12, f13, f14, f23, f24, f34 denote the EEG feature vec-
tors corresponding to OVO strategy, which are used to 
train OVO classifiers, while f1,  f2,  f3,  f4 denote the EEG 
feature vectors for OVR classifiers corresponding to OVR 
strategy.

2.4 � Hierarchical support vector machine

In this study, the traditional C-support vector machine 
(SVM) approach was used for supervisory classification 
[4, 23]. The basic idea of SVM is to map the input x onto 
a high-dimensional feature space (z = φ(x)) and look for 
the optimal decision hyperplane, which separates the data 
points into different classes with a maximum margin.

The decision hyperplane was defined as

where w is the normal vector and b is the bias of the separa-
tion hyperplane. The decision hyperplane can be found by 
solving the following optimizing problem.

where xi is the i-th input sample, yi is the class label 
value of xi, l is the number of input samples, ζi is the 
slack variable that allows an example to be in the margin 
(0 ≤ ζi ≤ 1,also called a margin error) or to be misclassi-
fied (ζi > 1), and C is a penalty factor to be chosen by the 
user, a larger C corresponding to assigning a higher pen-
alty to errors.

Eq.  (21) can be solved by its dual problem using 
Lagrange optimization.

The solution can be calculated by

(19)fi = log

(

VARi
∑

i=1 VARi

)

(20)f = [f12, f13, f14, f23, f24, f34, f1, f2, f3, f4]

(21)w · z − b = 0

(22)
min

1

2
�w�2 + C

l
∑
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ζi

s.t yi[w · zi − b] ≥ 1− ζi, (ζi ≥ 0), i = 1, 2, 3, . . . l

(23)

max

l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

yiyjαiαjK(xi, xj)

s.t

l
∑

i=1

yiαi = 0, 0 ≤ αi ≤ C

where αi is the Lagrange multiplier from the QP problem, 
Ns is the number of support vectors, and K(xi, xj) is the ker-
nel function.

Furthermore, radial basis kernel function, which was 
applied to deal with the nonlinear characteristics of EEG sig-
nal, can be described as

where g is the kernel parameter which denotes the gamma dis-
tribution of the transformed data. The penalty factor C controls 
the degree of punishment for right or wrong classification. The 
kernel parameter g and penalty factor C are adjusted to search 
for optimal separation hyperplane. Therefore, g and C play an 
important role in improving the correct rate and classification 
efficiency of the SVM. In this study, the grid search method 
was used to optimize g and C. To avoid over-fitting, tenfold 
cross-validation is used for training classifiers.

The hierarchical support vector machine paradigm is 
designed to optimize classification, as shown in Fig. 5. Four 
OVR and six OVO support vector machine classifiers are 
employed in the first layer and the second layer, respectively.

After preprocessing, EEG feature signals were given in 
input to the first-layer support vector machine which con-
tains four OVR support vector machines. For OVR sup-
port vector machine, the classification result in OVR sup-
port vector machine maybe the “Class One” and the “Class 
Rest.” We defined the result “Class One” as a valid classi-
fication result because the result “Class Rest” means three 
possible classes. Note that the valid result here does not 
mean this result is a correct result.

In this manner, possible results can be achieved as 
shown in Table 1. The possible results can be categorized 
into three cases:

Case 1 Only one OVR support vector machine gets valid 
results and other three get invalid results (“class rest”).

Case 2 Any two OVR support vector machines get valid 
result, and the other two get invalid results.

Case 3 Any other situations which are different to Case 
1 and Case 2.

For Case 1, the valid result is considered as the final 
classification result, and the trial would be labeled. The 
accuracy value in first layer was calculated among these 
labeled trials achieved in first layer. Otherwise, the unla-
beled trials are sent to the second layer. The accuracy value 
in second layer was calculated among the unlabeled trials 
achieved in first layer.

For Case 2, the EEG feature signals are entered into only 
one corresponding classifier according to two valid results. 

(24)w =

Ns
∑

i=1

yiαiφ(xi)

(25)K(xi, xj) = exp(−g
∥

∥xi − xj
∥

∥

2
), g > 0
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For example, Class 1 and Class 2 are the possible classes in 
the first layer, this trial would be sent to the classifier only 
for Class 1 and Class 2. The classification result is the final 
result and the trial is labeled.

For Case 3, the EEG feature signals are entered into 
the six OVO support vector machine classifiers. The pos-
sible result is shown in Table 2. The vote rule was adopted. 
For situation 1, “Class one” appeared three times in OVO 
support vector machine classifiers. So this result was final 
result. Since in  situation 2, “Class one” or others results 
just appear two times, the final result cannot be achieved. 
The classification of this trial was failed and counted as 
incorrect classification.

The final corrected rate (or fraction of correctly clas-
sified trials) was calculated as the proportion of the num-
ber of correctly labeled trials (after first- and second-layer 
SVM) divided by the total test number 280 (fivefold clas-
sification, 56 test trials per fold).

3 � Experimental results

A test dataset containing 56 trials is considered for validat-
ing the proposed hierarchical support vector machine clas-
sifiers. The final classification results were 64.4 ± 16.7 and 
69.16 ± 16.0% for sessions 1 and 2, respectively. The EEG 
data of sessions 1 and 2 were analyzed.

Classification results in the first layer are shown 
in Table  3, where the number of trials achieved valid 

Fig. 5   Flowchart of the classi-
fication process performed with 
the proposed HSVM algorithm
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Table 1   Possible result in first-layer classifiers

Results Classifier

Left hand 
versus others

Right hand 
versus others

Both feet 
versus others

Tongue ver-
sus others

Case 1 1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

Case 2 1 2 0 0

1 0 3 0

1 0 0 4

0 2 3 0

0 2 0 4

0 0 3 4

Case 3 1 2 3 0

1 2 3 4

1 2 0 4

1 0 3 4

0 2 3 4

0 0 0 0
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results and correct results are 27.4 ±  7.8 and 19.4 ±  9.4 
(mean  ±  standard deviation), respectively. The average 
accuracy of the first layer is 67.5 ± 17.7% in total. The larg-
est number of valid results and correct results is 35.0 ± 5.3 
for subject 2 and 30.2 ± 4.1 for subject 3, respectively. The 
best accuracy, 88.3%, was achieved for subject 3.

Table  4 shows the classification results in the second 
layer, where the “rest” results denote the trials being clas-
sified as “rest classes.” The average number of “rest” tri-
als and correct trials is 27.4 ± 7.8 and 19.4 ± 9.4, respec-
tively. The average accuracy is 67.5  ±  17.7%. In the 
second layer, subject 1 got 41.8 ±  1.3 “rest” trials, and 
28.8 ± 1.6 correctly classified trials. The best accuracy is 
75.4% for subject 7.

To calculate the total classification accuracy shown 
in Fig.  6, the numbers of correct results achieved in first 
layer (Table 3) and in second layer (Table 4) are added and 
divided by the total number of test dataset. The best accu-
racy is 82.1 ±  3.3% for subject 3. The average accuracy 
through the total 9 subjects is 64.4 ±  16.7%. A two-way 
ANOVA is then applied to analyze classification accuracy 
for the 9 subjects, and significant differences are observed 
(F8,44 = 34.53, p = 1.30 × 10−13). It can be seen that accu-
racy for subjects 4, 5, and 6 is lower than for the other sub-
jects. There is no significant difference between subject 2, 
subject 3, subject 7, subject 8, and subject 9.

The classification results obtained in this study are 
compared with the literature [4, 10]. The final accuracy 
64.4 ± 16.7% obtained in this paper for the worst session 

Table 2   Possible results 
of Case 3 in second-layer 
classifiers

Result Classifier

Classifier 1_2 Classifier 1_3 Classifier 1_4 Classifier 2_3 Classifier 2_4 Classifier 3_4

Situation 1 1 1 1 3 2 3

Situation 2 1 1 4 2 2 4

Table 3   Classification results in the first layer

Bold values represent the optimal result

Subject First layer

Valid result
(mean ± SD)

Correct result
(mean ± SD)

Accuracy (%)

S1 14.2 ± 1.3 9.6 ± 0.9 67.6

S2 35.0 ± 5.3 26.0 ± 5.1 74.3

S3 34.2 ± 5.7 30.2 ± 4.1 88.3

S4 21.2 ± 3.5 10.6 ± 4.1 50.0

S5 22.6 ± 5.0 9.6 ± 2.6 42.4

S6 20.2 ± 4.1 8.8 ± 3.7 43.6

S7 32.4 ± 2.3 25.4 ± 5.7 78.4

S8 33.0 ± 2.1 27.8 ± 1.9 84.2

S9 34.0 ± 2.2 26.8 ± 2.0 78.8

Average 27.4 ± 7.8 19.4 ± 9.4 67.5 ± 17.7

Table 4   Classification results in the second layer

Bold values represent the optimal result

Subject Second layer

Rest trial
(mean ± SD)

Correct result
(mean ± SD)

Accuracy (%)

S1 41.8 ± 1.3 28.8 ± 1.6 68.9

S2 21.0 ± 5.3 14.0 ± 2.9 66.7

S3 21.8 ± 5.7 15.8 ± 5.1 72.5

S4 34.8 ± 3.5 15.6 ± 1.1 44.8

S5 33.4 ± 5.0 13.6 ± 2.7 40.7

S6 35.8 ± 4.1 13.8 ± 3.3 38.5

S7 23.6 ± 3.3 17.8 ± 3.3 75.4

S8 23.0 ± 2.1 16.6 ± 2.7 72.2

S9 22.0 ± 2.3 13.8 ± 1.3 62.7

Average 28.6 ± 7.8 16.6 ± 4.8 60.3 ± 14.7

Subject 2 4 6 8 9
0
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Fig. 6   Final classification accuracy achieved by the proposed 
approach
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(session 1) is however higher than 61.9 ± 17.7% (standard 
OVR-CSP method) and 62.6 ± 18.7% (filter bank method).

4 � Discussion and conclusions

In this paper, two common spatial pattern strategies and 
hierarchical support vector machine method were proposed 
to process four-class motor imagery data. EEG signals 
were preprocessed, and the features were extracted through 
10 common spatial patterns (four OVR-CSPs and six OVO-
CSPs). Then, these EEG features were given in input to the 
hierarchical support vector machines.

Table  5 compares the performance of the proposed 
method with the directed acyclic graph (DAG) SVM 
method. Computations were carried out on a Lenovo 
computer (CPU 3.3  GHz). It can be seen that process-
ing time in training phase and test phase is longer than 
for DAG SVM. However, processing time of test phase 
remains short enough for real-time applications. Further-
more, the proposed method is more accurate than DAG 
SVM.

Classification results demonstrated that the average 
classification accuracy 67.5 ± 17.7% in the first layer was 
higher than the 60.3 ± 14.7% accuracy achieved in the sec-
ond layer. The classification process implemented in the 
proposed method is divided into two layers. One trial can 
be labeled in the first layer or in the second layer. The num-
ber of labeled results in the first OVR SVM layer reveals 
larger differences between one class and the other three 
classes in EEG signals. The number of labeled results in 
the first layer also correlated with the average accuracy 
in the first layer (correlation coefficient 0.73) and final 
results (correlation coefficient 0.67). Higher classification 
accuracy in first layer is the reason why proposed method 

is better than traditional SVM methods, like DAG SVM 
method.

The average achieved for the 9 subjects was 
64.4 ± 16.7%, better than its counterpart for the traditional 
OVR-CSP method and filter bank method. These results 
prove that the proposed method is effective for four-class 
EEG imagery classification problems.

Testing performance of paralyzed patients in noninva-
sive BCIs might be useful for evaluating their brain activity 
to predict the efficacy of invasive clinical brain–machine 
interface such as for the five subjects who in this study got 
an average classification accuracy higher than 70%, hence 
satisfying the requirement criterion for real-time binary 
BCI [17, 20]. In addition, the final classification result 
(Fig. 6) showed that classification accuracy of six subjects 
was about and above 70% with chance level of 25% (since 
there are 4 classes motor imagery, the expected agree-
ment of each class is 1/4, i.e., 25%), which suggested the 
proposed method is suitable for clinical and non-clinical 
applications.

In the near future, we are going to use our proposed 
algorithm in real-time motor imagery-based BCI to demon-
strate its robustness and efficiency.
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