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analyzed. The validation of our algorithm has done against 
the two manual expert tracings. The coefficient of correlation 
between the two manual tracings for LD was 0.98 (p < 0.0001) 
and 0.99 (p  <  0.0001), respectively. The precision of merit 
between the manual expert tracings and the automated system 
was 97.7 and 98.7%, respectively. The experimental analysis 
demonstrated superior performance of the proposed method 
over conventional approaches. Several statistical tests demon-
strated the stability and reliability of the automated system.

Keywords  Carotid artery · B-mode ultrasound · Lumen 
diameter · Curved vessels · Scale-space · Transformation

1  Introduction

A total of 17.5 million people died from cardiovascular dis-
eases (CVD) in 2012 representing 31% of all global deaths 

Abstract  Monitoring of cerebrovascular diseases via carotid 
ultrasound has started to become a routine. The measure-
ment of image-based lumen diameter (LD) or inter-adventitial 
diameter (IAD) is a promising approach for quantification of 
the degree of stenosis. The manual measurements of LD/IAD 
are not reliable, subjective and slow. The curvature associated 
with the vessels along with non-uniformity in the plaque growth 
poses further challenges. This study uses a novel and general-
ized approach for automated LD and IAD measurement based 
on a combination of spatial transformation and scale-space. In 
this iterative procedure, the scale-space is first used to get the 
lumen axis which is then used with spatial image transforma-
tion paradigm to get a transformed image. The scale-space is 
then reapplied to retrieve the lumen region and boundary in the 
transformed framework. Then, inverse transformation is applied 
to display the results in original image framework. Two hun-
dred and two patients’ left and right common carotid artery (404 
carotid images) B-mode ultrasound images were retrospectively 
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[58]. Arterial atherosclerosis is the primary reason for 
CVD. Figure  1 shows a representative illustration of ath-
erosclerosis in the common carotid artery (CCA). Lumen 
narrowing due to plaque growth is currently measured via 
imaging techniques such as computed tomography (CT), 
magnetic resonance imaging (MRI) or conventional angio-
gram [21]. Carotid arterial diameters can be determined 
by using noninvasive B-mode ultrasound. However, con-
sidering the volumes of data available from a sonographic 
examination, visual analysis may be difficult and prone to 
error. Therefore, an automated delineation and measure-
ment system would be valuable in standardizing quantita-
tive assessment of luminal characteristics [22, 25, 47, 48].

The common carotid artery intima-media thickness 
(IMT) is currently considered as an early surrogate bio-
marker for cardiovascular diseases [5, 26, 57]. However, 
in practice, the presence of ultrasound imaging artifacts 
and low image quality [25], speckle noise [30], acous-
tic shadowing [28], echolucency variations [20, 22] and 
curvature of the vessels [43] makes the automated detec-
tion of the boundary interfaces of the intima-media com-
plex (IMC) challenging [31]. Furthermore, evaluation of 
the IMT becomes harder with an increase in the age due 
to the increased presence of acoustic shadows (holes or 
echo dropouts) in the adventitia layer in older individu-
als [29, 59]. Automated carotid artery segmentation ena-
bles real-time measurements of diameters and can support 
the clinical evaluation of large databases. For example, 
the carotid arterial diameters have shown an associa-
tion with myocardial infarction (MI) [6, 14]. The main 
advantage of using automated carotid lumen diameter 

(LD) or inter-adventitial diameter (IAD) as an imaging 
biomarker is to ensure that the measurements are more 
reliable, accurate and reproducible [34]. Hence, LD and 
IAD together are considered to be a relevant biomarker 
for evaluating the risk of atherosclerosis disease and are 
thus useful in screening of vulnerable patients. Finally, 
the automatic segmentation technique can be applied to a 
time series in order to monitor the changes in the carotid 
LD over the cardiac cycle. This in turn will be helpful in 
computing the arterial wall stiffness, a risk indicator for 
cardiovascular disease [17].

Several approaches have been proposed in the literature 
for the segmentation of the carotid artery lumen contours. 
This includes deformable contours (snakes) [32], Hough’s 
transform [19], dynamic programming [46] and classifi-
cation-based strategies [34]. These approaches are sum-
marized along with a comparative study in the discussion 
section. Many of the existing techniques proposed so far 
are either manual or semiautomatic which requires manual 
intervention such as the selection of a region of interest 
(ROI) or locating an initial seed point. However, the man-
ual interventions are tedious and subjective. A few other 
automated studies have reported certain limitations in their 
techniques in the presence of atherosclerotic plaque [19]. 
Further, the region-based or boundary-based segmentation 
techniques developed so far are not fully able to handle the 
curvature associated with the carotid arteries. This moti-
vated us to introduce an iterative spatial transformation-
based technique for the segmentation of carotid artery.

This paper presents a fully automated algorithm for LD 
and IAD measurements in carotid arteries from B-mode 
ultrasound images. As in previous work [37], we use the 
assumption that the far wall of the CCA is the brightest 
region in the image in order to detect it. Further, we have 
assumed that the blood inside the lumen region has con-
stant density [17] and can be considered to have a homo-
geneous region. Our algorithm is comprised of two stages. 
The stage 1 (global system) constitutes scale-space-based 
segmentation to identify the lumen axis. The stage 2 is the 
local processing where a spatial transformation is applied 
to straighten the curved vessels. Lumen-intima (LI) borders 
are then extracted using the scale-space approach, and then, 
the inverse spatial transformation is applied to map these 
LI borders back on to the original image. Since our empiri-
cal formulation of past automated methods on carotid IMT 
accuracy measurements has been 95% [33, 35], we use the 
same criteria for establishing the benchmark for LD/IAD 
precision measurement.

The paper is organized as follows. Section  2 describes 
the proposed method. Section 3 presents the experimental 
results and performance evaluation. Discussions are pre-
sented in Sect. 4, and the conclusions are drawn in Sect. 5.

Carotid artery 

Plaque build-up in 
carotid artery 

Fig. 1   Illustration of atherosclerosis in the common carotid artery. 
The plaque buildup in the carotid artery causes the narrowing of the 
lumen, disturbing proper blood flow to the brain. As the narrowing 
worsens, pieces of plaque can break free (embolize) and block blood 
vessels that supply blood to the brain leading to stroke. The enlarged 
cross-sectional view of plaque buildup inside the carotid artery is 
shown on the right side
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2 � Methods

2.1 � Image database

Two hundred and two patients’ left and right common 
carotid artery (404 carotid images) B-mode ultrasound 
images were retrospectively analyzed (ethics approval with 
IRB was granted by Toho University, Japan) with mean 
age 69 ± 15.9 years. In this database of diabetic patients, 
there were 155 males (76.7%) and 47 females (23.3%) 
with a mean age of 67 and 75  years, respectively. These 
patients had a mean HbA1c of 6.28 ± 1.1 (mg/dl), glucose 
108 ±  31 (mg/dl), LDL cholesterol 101.27 ±  31.6 (mg/
dl), HDL cholesterol of 50.26  ±  14.8 (mg/dl) and total 
cholesterol of 175.04 ± 38 (mg/dl). The carotid ultrasound 
images were obtained using Toshiba scanner equipped with 
a 7.5-MHz linear array transducer by the same sonogra-
pher. These patients underwent both (a) B-mode carotid 
ultrasound using Toshiba scanner and (b) percutaneous cor-
onary interventions using IVUS Boston Scientific® scanner, 
Marlborough, MA, that used iMAP software. Stable angina 
pectoris was defined as class I or II angina unchanged for 
more than 2 months or a positive stress test result. No spe-
cial inclusion or exclusion criteria were adapted in select-
ing the 202 patients. The mean pixel resolution of the 
carotid B-mode scans was 0.05 ± 0.01 mm/pixel. The time 
period over which these data were acquired is from July 
2009 to December 2010.

The manual delineation of the lumen as well as adventi-
tia borders was done by two experienced neuroradiologists 
(one with 15 years of experience and second about 5 years 
of experience) using ImgTracer™ (AtheroPoint™, USA), 
a user-friendly commercial software [38]. The two experts 
selected 15–25 edge points proximal to the bulb in order 
to delineate the boundaries of the carotid artery. The num-
bers of points vary depending upon the length of the carotid 
artery. The observer had ability to zoom the image in the 
wall region for visualization of the wall region. The out-
put of the ImgTracer™ was the ordered set of traced (x, y) 
coordinates.

2.2 � Overview of automated lumen segmentation system

We modeled the LD/IAD segmentation system as a two-
stage process: a global system which can establish the 
region of interest (ROI) and a local system which can 
model the lumen and adventitial borders. The global sys-
tem combines the scale-space strategy embedded with 
pixel-classification approach. The power of scale-space can 
be used to tap the brightest intensity of the far (distal) wall 
of the common carotid artery, while the power of the pixel-
classification approach can be used to tap the constant 
blood density region of the artery. Thus, the global system 

is able to extract the approximate lumen region which can 
be used as a guidance zone for the refined local processing 
for estimating the lumen borders. Prior to the iterative uti-
lization of the scale-space recursive framework, the trans-
formation concept is built which ensures that the curved 
vessels are straightened for refined and very accurate meas-
urements for LD/IAD. This transformation framework uses 
lumen axis computed from the global system and then 
transformed using spatial transformation to ensure straight 
vessels.

Figure  2 shows the flow diagram of the automated 
system which works in an iterative manner. The preproc-
essing step includes automated cropping and denoising 
of the input image. Cropping helps in removing the text 
information from the image, while denoising reduces the 
effect of speckle which is usually present in ultrasound 
images [39]. After preprocessing, the image is fed to the 
global system which constitutes stage 1 of our algorithm. 
Scale-space-based strategy is employed at this stage in 
order to capture the bright edges of the adventitia wall 
which defines the region of interest (ROI). Here we used 
the assumption that the adventitia region is the bright-
est in an ultrasound image due to its high tissue density 
[13, 37]. The ROI covers region between the near and far 
media-adventitia (MA) walls which encloses the lumen 
region in it. Our second assumption is that the blood den-
sity to be constant over the lumen region and hence the 
intensity of pixels corresponding to this region must be 
constant [15]. This hypothesis allows us to use a pixel-
based classifier to extract the lumen region. The lumen 
axis is then approximated as the mean of the near and 
far LI borders. The ROI containing the lumen axis is the 
input to the stage 2 (local processing). The spatial image 
transformation makes the curved vessel straight by using 
the lumen axis. LI borders are then extracted again using 
the scale-space approach, and then, inverse image trans-
formation is applied to map these LI borders back on to 
the original image. The LD is measured as the mean dis-
tance between the near and far LI borders, and the IAD 
is measured as the distance between the near- and the 
far-wall MA interfaces. Both LD and IAD are measured 
using polyline distance metric (PDM) [53]. All opera-
tions were performed offline.

2.3 � Scale‑space‑based segmentation

Scale-space-based segmentation technique is employed 
in order to capture the bright edges of the adventitia wall. 
The adventitial edges were delineated in two steps. The 
second-order derivative of a 5  ×  5 Gaussian kernel [2, 
40] is computed and convoluted with the cropped image 
to enhance the edges corresponding to the near and far 
adventitia walls. The optimal size of Gaussian kernel is set 
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empirically. The standard deviation of Gaussian kernel (σ) 
must be chosen as the minimum MA wall thickness in pix-
els. Using the previous rationale, we have set the value of 
σ to 12 pixels in our experiments [33, 40]. Convolving an 
image with derivatives of the Gaussian kernel highlights 
features of the image with a size larger than the chosen 
scale σ [10].

We have used vertical spectral analysis of pixel col-
umns to trace the adventitial borders. The proximal and 
distal adventitial borders can be approximated as the 
bright dots (peaks) in the spectrum. These bright dots 
are well separated by the dark lumen region in between. 
Thus, by using the spectral analysis technique, the 
adventitial borders are delineated accurately. In spec-
tral analysis, rather than analyzing each column of the 
image pixels independently, we used a sliding window 
of size W × L = 2× 5 (in pixels) and estimated the 
mean intensity. This is to overcome any sudden spurious 
intensity in the spectrum. This is vital, as it will help 
in detecting the correct peaks in the spectrum under 
the scale-space paradigm. On increasing the width, the 
computation time will increase, but accuracy would not. 
By moving the aforementioned sliding window from 
bottom to top and from left to right, we were able to 
find the pair of peaks corresponding to MA borders. 
The peaks represent high-intensity value points with a 
pool of very small intensity values in between. The ROI 
is then defined as the region covered by these two MA 
borders.

Using the assumption of constant blood density, we 
choose a classifier which is suitable for soft tissue charac-
teristics, such as K-mean classifier. K-means classifier with 
three pre-defined classes is used at this stage for separating 
the lumen region. These three classes represent low-inten-
sity lumen region, medium-intensity plaque region and 
high-intensity wall region. The identified lumen region is 
then converted to binary form with white lumen region on 
a dark background. The holes in the resultant binary lumen 
were filled via connected component analysis [51] with a 
pixel connectivity of eight pixels.

The objective of including a denoising step in the overall 
pipeline is to reduce the speckle noise, thereby improving 
the accuracy of the system. Optimized Bayesian non-local 
means filter (OBNLM) [12] is used for this purpose. This 
edge-preserved smoothing approach will also help in patch-
ing the bleeding of the lumen region into the media region 
at some places along the lumen border. This bleeding oth-
erwise produces over-estimation when tracing the lumen 
borders using the classifier.

2.4 � Spatial transformation

The heart of the proposed system is a spatial transforma-
tion. The whole idea of introducing the spatial transfor-
mation is to improve the performance and stability of the 
system. To address this issue, we followed an approach 
presented in [62], where a spatial transformation is used to 
straighten the curved vessels for segmenting the contours of 

Fig. 2   Flow diagram of the 
automated lumen delineation 
system
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the intima-media complex in the carotid artery wall. Given 
an approximation of the lumen axis, the aim of the trans-
formation is to generate a sub-image in which the anatomi-
cal interfaces become nearly horizontal. The transformed 
image It is created by applying the spatial transformation T 
on the original IW sub-image, such that:

The transformation T consists of selecting L pixels above 
and below the lumen axis in IW. This approach can over-
come the limitations of the existing methods that require 
the image interfaces to be horizontal at the time of acquisi-
tion. The scale-space-based segmentation technique is then 
again applied to retrieve the lumen region and LD borders 
in the transformed framework. The inverse transformation 
is applied to obtain the LD borders back on to the original 
image. Figure 3 illustrates the flow of stage 2 in detail.

The transformation approach used in [62] is for segment-
ing the IMT of the carotid artery on a single wall. However, 
our measurements include both the arterial walls which 
are more challenging. There are three main reasons for 
this. First, the near-wall region is low contrast compared to 
the far-wall region [37]. Second, the curvature plays a role 
which poses a challenge for an accurate LD estimation pro-
cess. Third, the validation systems are tedious and expensive 
to produce, and this further requires increase in costs for 
tracings. Figure 4 illustrates the algorithmic steps of the pro-
posed technique on a single image having curvature. A visual 
comparison of the results of both the proposed and the sim-
ple scale-space-based techniques is given in the next section.

(1)It = T(Iw)

2.5 � Evaluation methodology

Two experts supported the manual delineation for comput-
ing the inter-observer variability. Statistical analyses were 
performed using MedCalc software [23]. The overall sys-
tem’s performance was computed using the first method of 
precision of merit (PoM1) in percentage as [26]:

where

LDAutoi
 is the measured automated lumen diameter and 

LDManuali
 is the measured manual lumen diameter of a 

particular image. N is the total number of images in the 
database.

This is a key feature that evaluated the automated traced 
diameter difference compared to the manual diameter 
difference. Similarly, the PoM1 for IAD measurements 
was computed by replacing LD with IAD in the above 
equation.

where

IADAutoi
 was the measured automated inter-adventitial 

diameter and IADManuali
 was the measured manual lumen 

inter-adventitial diameter of a particular image. N is the 
total number of images in the database.

Second method of precision of merit (PoM2) computa-
tion was using error difference between the automated and 
manual methods for each individual case. This is the PoM 
per image basis. This is mathematically expressed as [2]:

(2)

PoM1LD (%) = 100−

[(

∣

∣LDAuto − LDManual

∣

∣

LDManual

)

× 100

]

(3)LDAuto =
1

N

N
∑

i=1

LDAutoi

(4)LDManual =
1

N

N
∑

i=1

LDManuali

(5)

PoM1IAD (%) = 100−

[(

∣

∣IADAuto − IADManual

∣

∣

IADManual

)

× 100

]

(6)IADAuto =
1

N

N
∑

i=1

IADAutoi

(7)IADManual =
1

N

N
∑

i=1

IADManuali

Fig. 3   Flow diagram of the stage 2 of the automated lumen delinea-
tion system
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Similarly, for IAD measurement:

(8)

PoM2LD (%) = 100−







�

N

i=1

|(LDAutoi
−LDManuali

)|

LDManuali

N






× 100

(9)PoM2IAD (%) = 100−





�

N

i=1

|(IADAutoi
−IADManuali

)|

IADManuali

N



× 100

We also used different statistical measures for evalua-
tion of the performance of the automated system. We used 
regression plots to show the variability between manual 
tracings which is seen by the deviation from trend line. The 
Bland–Altman (BA) plot used the Bland–Altman method 
that demonstrated the level of agreement between two 
methods when measuring the same variable [4]. Friedman 
test is used for testing the difference between the sample 
medians [16, 24]. Further, two-sample Kolmogorov–
Smirnov (KS) test [24] was used to verify that the samples 

(a) (b) 

(c) (d) 

(e) (f)

(g) (h) 

Proximal wall  

Distal wall  Lumen axis  

Transformed ROI  Adventitial borders 

LD borders Binary lumen 

LD borders  LD borders 

Fig. 4   Illustrating the algorithmic steps on a single image having 
curvature. a Curved ROI, b lumen axis on ROI, c transformed ROI, 
d adventitial borders on the transformed ROI, e binary lumen from 

classifier, f LD borders on transformed ROI, g LD borders on inverse 
transformed ROI, h LD borders on original ROI
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follow the same distribution. Student’s t test was used for 
testing whether the (strong and highly significant) correla-
tion can be regarded as equality or not [7]. In all the above 
tests, p values <0.05 were considered statistically sig-
nificant unless otherwise specified. Cumulative frequency 
plots are shown to illustrate the error distributions. Box 
plots illustrate the median as a measure of central tendency. 
Dice similarity (DSC) and Jaccard index [3, 27] were com-
puted to find the similarity between two regions.

3 � Experimental results

3.1 � Automated carotid LD (Auto LD) measurements

Mean carotid Auto LD measured was 6.58  ±  2.15  mm, 
while the two manual tracings were 6.43  ±  2.10 and 
6.49 ±  2.14 mm, respectively. This indicates that there is 
no significant difference between the Auto LD measure-
ments and the corresponding manual tracings. The perfor-
mance evaluation of the Auto LD against the two manual 
tracings is summarized in Table 1.

3.2 � Automated carotid IAD (Auto IAD) measurements

Mean carotid Auto IAD measured was 7.80 ±  0.98  mm, 
which is close to the two manual tracings, 7.76 ± 0.99 and 
7.89 ±  1.00  mm, respectively. Performance of Auto IAD 
was validated against the two manual tracings and is sum-
marized in Table 2.

Figure 5 illustrates the carotid Auto LD borders against the 
manual borders for both simple scale-space-based technique 
and the proposed iterative approach. Here, the simple scale-
space-based technique means the same procedure excluding 
the spatial transformation-based iterative steps. This compari-
son is to demonstrate the improvement that the spatial trans-
formation step adds. The result of simple scale-space-based 
technique is given on the left side, and the result of proposed 
approach is given on the right. It can be observed that the 
proposed approach improves the performance of the lumen 
segmentation in curved vessels. We also want to share the 
fact that 40% images in our database have plaque in it and 
23% of them have jugular vein interference. The main crite-
ria adapted for selecting the images which have plaque in it 
are by visually assessing it on the basis of region covered by 
plaque in the intimal region. Further, we noticed that these 
extended regions were hyperechoic (having brighter contrast) 
compared to the remaining wall region [55, 56, 61]. We also 
validated our visual description by computing the LD values, 
and they came out of as low as 3.46 mm. Figure 6 illustrates 
the LD and IAD borders along with the manual tracings on 
two sample images to support this fact.

3.3 � Performance evaluation

Figure  6 compares the automated LD and IAD tracings 
against the two corresponding manual tracings on two sam-
ple images. Figure 6a, b shows the Auto LD against the two 
manual tracings, while Fig. 6c, d shows the corresponding 
Auto IAD against the two manual tracings.

Table 1   Auto LD against manual tracings

LD+ lumen diameter, PoM precision of merit

Auto LD performance against two observers (Manual-1 and Manual-2)

# images Auto LD+ 
(mm)

LD manual 
type

LD near-wall error 
(mm)

LD far-wall error (mm) Mean LD error (mm) PoM1 (%) PoM2 (%)

404 6.58 ± 2.15 Manual-1 0.25 ± 0.18 0.21 ± 0.18 0.27 ± 0.25 97.7 95.1

Manual-2 0.22 ± 0.15 0.16 ± 0.11 0.25 ± 0.24 98.7 95.9

Table 2   Auto IAD against manual tracings

IAD+ Inter-Adventitial Diameter

* PoM precision of merit

Auto IAD performance against two observers (Manual-1 and Manual-2)

# images Auto IAD+ 
(mm)

IAD manual 
type

IAD near-wall error 
(mm)

IAD far-wall error 
(mm)

Mean IAD error 
(mm)

PoM1* (%) PoM2*(%)

404 7.80 ± 0.98 Manual-1 0.20 ± 0.17 0.26 ± 0.15 0.23 ± 0.23 97.6 97.1

Manual-2 0.23 ± 0.18 0.23 ± 0.18 0.24 ± 0.24 98.1 97.3



1422	 Med Biol Eng Comput (2017) 55:1415–1434

1 3

3.3.1 � Inter‑observer variability

Inter-observer differences were estimated by calculat-
ing the correlation coefficient (CC) between the meas-
urements on the same subject. The correlation coefficient 
(CC) between carotid Auto LD and the two manual trac-
ings was 0.98 (p < 0.0001) and 0.99 (p < 0.0001), respec-
tively. The scatter diagrams of Auto LD with respect to the 
two manual tracings are given in Fig. 7a, b. These diagrams 
show the closeness of the automated measurements with 

the manual one. The Bland–Altman plots of Auto LD with 
respect to the two manual tracings are given in Fig. 7c, d. 
Using two-sample KS test, the null hypothesis that the data 
samples are drawn from the same distribution is retained 
(p =  0.7533, p =  0.9659). Similarly,  based on the result 
of paired t test (p < 0.0001, p < 0.0003), the null hypoth-
esis is that the means of Auto LD and manual tracings are 
equal  cannot be retained. As a consequence, the relation 
between carotid Auto LD and two manual tracings cannot 
be regarded as equality (see Table 5 in “Appendix”).

(a)

(b) 

(c) 

(d) 

Reader 

Reader 

Reader 

Reader 

Reader 

Auto SS 

Auto SS 

Auto SST 

Auto SST 

Auto SS Auto SST 

Reader 

Reader 

Auto SS Auto SST 

Reader 

Fig. 5   Carotid Auto LD borders compared against the manual trac-
ings on the grayscale images of four patients for both simple scale-
space and transformation-based iterative methods. Carotid Auto LD 
borders are shown in solid white, while manual LD borders are shown 

in dashed white (Auto SS—Automated Simple scale-space, Auto 
SST—Automated scale-space with Transformation, Reader—Manual 
Reader)
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The correlation coefficient (CC) between carotid Auto IAD 
and the two manual tracings was 0.93 (p < 0.0001) and 0.94 
(p < 0.0001), respectively. The scatter diagrams of Auto IAD 
with respect to the two manual tracings are given in Fig. 8a, 
b, respectively. The Bland–Altman plots of Auto IAD with 
respect to the two manual tracings are given in Fig.  8c, d, 
respectively. Using two-sample KS test, the null hypothesis 
that the data samples are drawn from the same distribution 
is retained (p = 0.9659, p = 0.4104). Similarly, based on the 
result of paired t test (p < 0.0093, p < 0.0001), the null hypoth-
esis is that the means of Auto IAD and the two manual tracing 
are equal cannot be retained. As a consequence, the relation 
between carotid Auto IAD and the two manual tracings cannot 
be regarded as equality (see Table 6 in “Appendix”).

3.3.2 � Friedman test

The Friedman test is a nonparametric test for testing the 
difference between several related samples. The null 
hypothesis for the Friedman test is that there are no dif-
ferences between the sample medians. If the calculated p 
value is less than the selected significance level, then the 
null hypothesis will get rejected and it can be concluded 
that at least 2 of the sample medians are significantly dif-
ferent from each other. The detailed analysis of Friedman 
test is given in the “Appendix” (Tables 7, 8). It is observed 

that the null hypothesis got rejected for both LD and IAD 
samples with a very low p value (p  <  0.00001). Further 
analysis has carried out after dividing the entire population 
into 10 equal parts (percentiles) based on mean absolute 
bias with respect to the manual tracings. It is observed that 
in the case of LD, the null hypothesis retained at the 50th 
percentile (with 50% of population) (p = 0.463). However, 
in the case of IAD, the null hypothesis got rejected even 
with 10% of the population.

This can be justified in the following way. With a large 
set of data (404 images) in hand, there is always a fair 
chance that, at least in a few cases, either of the manual or 
the auto-measurement goes wrong. This will reflect in the 
result of Friedman test which may not produce a high p 
value in this case. There are many factors which influence 
the measurement variability such as the presence of speckle 
noise and poor contrast on some images. Thus, there can be 
some pairs of values (Auto and Manual) which significantly 
differ. Another important point in this regard is that the con-
sistency (regularity) should be maintained for the Friedman 
test in order to retain the null hypothesis. Here the consist-
ency means the distribution of errors (or bias) of auto-meas-
urement compared to manual as well as between the manual 
measurements. The signed error distribution for individual 
measurements can be seen directly from the Bland–Alt-
man plots in Figs. 7 and 8 which is not in equal proportion 

Fig. 6   Carotid Auto LD/IAD 
borders drawn on the grayscale 
images of patients having 
jugular vein interference (a) 
and thick plaque can be seen in 
(b). a Carotid Auto LD borders 
(solid white) versus Manual-1 
LD borders (dashed white); b 
Auto LD borders (solid white) 
versus Manual-2 LD borders 
(dashed white); c Auto IAD 
borders (solid black) versus 
Manual-1 IAD borders (dashed 
black); d Auto IAD borders 
(solid black) versus Manual-2 
IAD borders (dashed black)

 (a) (b)

(d)(c)

Auto, LD Borders (solid) 
Auto, LD Borders (solid) 

Manual-1, LD Borders (dashed) Manual-1, LD Borders (dashed) 

Manual-1, IAD Borders (dashed) 

Auto, IAD Borders (solid) 

Manual-1, IAD Borders (dashed) 

Auto, IAD Borders (solid) 
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in both positive and negative directions. There are several 
reasons for this such as the observer’s training (novice vs. 
experienced). We cannot always expect the observer’s trac-
ings to be perfect because of lack of proper training.

There are some studies in the literature which used 
Friedman test to show the difference between the sample 
medians [8, 60]. These studies reported a low p value for 
the Friedman test. Further, the test is shown to be very 
sensitive to the regularity in the observations. If one of 
the readers consistently underestimates or overestimates 
the variable, irrespective of the magnitude of bias between 
them, the Friedman test rejects the null hypothesis. Along 
the same lines, our strategy has obtained consistent results 
for the Friedman test.

3.3.3 � Cumulative frequency plots of signed and unsigned 
LD/IAD errors

Cumulative frequency plots of unsigned and signed Auto 
LD errors against manual tracings are given in Fig. 9a, b. 
The unsigned cumulative frequency plot shows the total 
number of measurements with less than a particular error 
value irrespective of the sign (positive or negative). From 

Fig. 9, it can be seen that above 90% of the LD measure-
ments are within 1 mm error compared to the manual trac-
ings. Similarly above 90% of the IAD measurements were 
taken with <0.5 mm error with respect to the two manual 
tracings. Further, it can be seen that the maximum error 
value not exceeds 2 mm in any of the cases. Figure 9c, d 
shows the cumulative frequency error plots for IAD.

3.3.4 � Box plot analysis of Auto LD versus two manual 
tracings

Figure  10 shows box plots that illustrate the median as a 
measure of central tendency. As can be seen from the fig-
ure, there is little difference in the median values of Auto 
LD and manual LD tracings. The median is 6.21 mm for 
Auto LD and 6.16 mm for both manual LD tracings. Simi-
larly, the median is 7.60 mm for both Auto IAD and Man-
ual IAD tracings.

3.3.5 � Dice similarity and Jaccard index

Two similarity coefficients, namely Dice similarity and Jac-
card index, have been computed between automatically and 
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Fig. 7   Scatter diagrams showing the correlation between a carotid Auto LD and manual-1, LD, b carotid Auto LD and manual-2, LD. Bland–
Altman plots between c carotid Auto LD and manual-1, LD, d carotid Auto LD and manual-2, LD
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manually extracted binary lumen regions (LR). Similarly, 
these similarity coefficients have been computed for binary 
inter-adventitial regions (IAR) and are given in Table 3. If 
both regions are equal, then the dice similarity or Jaccard 
index will be 100%.

4 � Discussion

The objective of this work was the development of 
a fully automated system that is able to segment the 
carotid lumen and inter-adventitial borders accurately 
from B-mode ultrasound images. The automated sys-
tem has been designed as a two-stage process. Stage 1 
is the global system which combines scale-space and 
pixel-classification approach for the identification of 
lumen axis, whereas the stage 2 is designed as a local 
processing system where we used spatial transforma-
tion combined with iterative scale-space-based procedure 
to identify the lumen interfaces. Our automated system 
gives accurate segmentation results for both near and far 
LI borders, irrespective of the presence of LD, which 
are normal, moderately low and medium low represent-
ing varying plaque thicknesses. The main advantage of 
this strategy is that it prevents interference of vessel-like 
structures such as jugular vein and other muscles whose 

interfering intensities can affect the automated process. 
Further, we use a non-local mean-based denoising [12] to 
provide robustness to our system. The heart of the system 
is its ability to handle the curved vessels. This is due to 
the fact that spatial transformation was embedded in the 
scale-space framework in stage II of the system. Another 
secondary advantage of our system is that no matter 
how irregular the plaque is or how bright (hyperechoic) 
or less bright (hypoechoic) the plaque is, it circumvents 
these challenges to estimate the LD/IAD automatically. 
Finally, we demonstrated the comparison of the auto-
mated system (without and without spatial transforma-
tion) against the two manual expert tracings and showed 
the stability of the system.

A detailed overview and comparison of algorithms pro-
posed so far for the carotid lumen segmentation is given 
in Table 4. Although similar works have been reported in 
the literature, a direct comparison to previously published 
results is not easy since different authors may have evalu-
ated their algorithm on different image databases using 
different performance metrics [11, 19, 34, 46]. Second, as 
discussed below, some of the other methods make use of 
semi-automated techniques rather than fully automated and 
most of them are not measuring the LD and IAD. Hence, 
we have not included the performance criteria for these 
techniques in Table 4.

Fig. 8   Scatter diagrams show-
ing the correlation between a 
carotid Auto IAD and manual-1, 
IAD, b carotid Auto IAD and 
manual-2, IAD. Bland–Altman 
plots between c carotid Auto 
IAD and manual-1, IAD, d 
carotid Auto IAD and manual-2, 
IAD
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4.1 � Brief survey and benchmarking

We selected the most recent research articles while bench-
marking our proposed method against the previous pub-
lished literature which can be seen in Table  4. Since we 
have considered only the recent publications, we suggest 
the readers to look into some of the older publications by 
Golemati et  al. [19] and Cinthio et  al. [11] which were 
based on Hough transform and threshold-based criteria. 
Further, we suggest readers to check on previous literature 
review in [35, 41, 42]. A combination of model-based line 
fitting approach was attempted by Molinari et al. [34]. This 
automated technique adapted an integrated approach for the 
automated tracing of CCA. The main components of this 
approach included geometric feature extraction, line fitting 
and classification. This produced the tracings of the proxi-
mal and distal adventitia layers. The system was not fully 
geared for LD measurement, but does, however, suggest 
computer vision-based model for automated segmentation 
of the lumen region. Further, the study highlights that the 

model faces challenge if the carotid walls are very close to 
jugular vein.

Rocha et al. [44] proposed a semiautomatic technique to 
segment the CCA in ultrasound images. The segmentation of 
the far and near adventitia boundaries adapted a RANSAC 
and cubic splines model on 50 longitudinal B-mode images. 
Further, Rocha et al. [45] applied a fuzzy classification-based 
approach for the automated segmentation of carotid arter-
ies to detect the lumen axis. The edges corresponding to the 
intima and adventitia boundaries were detected and classi-
fied by extracting various features of the carotid wall inter-
faces and integrating it into a fuzzy score map. The results 
were validated using manual tracings. Even though there was 
an attempt to segment the CCA, there were no results on LD 
measurement. In continuation, Rocha et  al. [46] attempted 
an automated detection of lumen axis in CCA based on 
dynamic programming. This method was validated on a total 
of 199 US scans. Even though the study reported a success 
rate of 99.5%, the near wall was not detected, and hence, the 
study did not report results on LD measurement.

Fig. 9   Cumulative frequency 
analysis for Auto LD errors 
against manual tracings. 
a Unsigned LD error wrt 
Manual-1 (shown in dashed line 
with empty circles) and Man-
ual-2 (shown in dotted line with 
filled circles); b signed LD error 
wrt Manual-1 (shown in dashed 
line with empty circles) and 
Manual-2 (shown in dotted line 
with filled circles). c Unsigned 
IAD error wrt Manual-1 (shown 
in dashed line with empty 
circles) and Manual-2 (shown in 
dotted line with filled circles); d 
Signed IAD error wrt Manual-1 
(shown in dashed line with 
empty circles) and Manual-2 
(shown in dotted line with filled 
circles)
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The deformable model consisting of parametric and 
geometric snakes has dominated the imaging industry [54] 
and its applications [33, 36, 38, 52]. Using these founda-
tional strategies, two authors prominently did parametric 
and geometric snakes for lumen segmentation. Loizou 
et  al. [32] showed a snake-based segmentation approach 
for automatic segmentation of the carotid lumen on 50 
longitudinal US images and measured the LD. The study 
reported an automated mean LD of 5.77  ±  0.99  mm 
against 5.59  ±  0.84  mm for manual tracings. The CC 

between the automated and the manual measurement was 
0.63 (p  =  0.001). The segmentation of carotid lumen 
region has been carried out by Santos et al. [49] based on 
Chan-Vese level set segmentation model. An anisotropic 
diffusion filter was applied for speckle removal followed 
by detection of the carotid artery using morphologic oper-
ator. Threshold-based region detection was based on the 
hypoechogenic (bright) characteristics of the lumen. The 
Chan-Vese model required an initialization of the wall 
contours. LD/IAD measurements were not reported in this 
study.

Sifakis et al. [50] proposed a fully automated real-time 
algorithm for carotid artery localization. This technique 
exploited basic statistics along with anatomical knowledge 
of the carotid artery. A statistics-based procedure was used 
for the identification of individual lumen center points. 
Then, a subset of the resulting lumen center points, desig-
nated as the “backbone,” is further processed to accurately 
estimate the CCA lumen position. A procedure based on 
threefold cross-validation was performed to validate the 
algorithm. The study did not discuss the LD measurement. 

Fig. 10   Box plot analysis of 
a Auto LD against Manual-1 
LD and Manual-2 LD, b Auto 
IAD against Manual-1 IAD and 
Manual-2 IAD

(a)

(b)

Auto LD  Manual-1 LD Manual-2 LD 
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Table 3   Dice similarity and Jaccard index

Auto vs. Manual-1 (%) Auto vs. Manual-2 (%)

Binary LR

 Dice similarity 93.9 94.2

 Jaccard index 88.6 89.1

Binary IAR

 Dice similarity 95.1 94.8

 Jaccard index 91.0 90.6
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This algorithm failed in the following cases: (a) non-uni-
form luminal intensity caused by high speckle content, (b) 
an abruptly curved arterial shape (e.g., due to a relatively 
large plaque) and (c) presence of a mimicking structure 
covering a significant part of the entire image width.

Recently, Carvalho et  al. [9] proposed a method for 
lumen segmentation which included motion estima-
tion from image sequences and image registration. The 
method is fully automatic, provided that the image con-
tains just a single branch of the carotid artery. Further, 

Table 4   An overview and comparison of the 2D carotid lumen segmentation techniques

ACC accuracy, MD mean difference, CR coefficient of repeatability, CV coefficient of variation, CC coefficient of correlation, PoM precision of 
merit, NA not available

# References Method Auto/Semi-auto # subjects # images Longitudinal vs. 
transverse view

LD measurement Performance of 
LD measurement 
(against manual 
tracings)

1 Molinari et al. 
[34]

Geometric feature 
extraction, line 
fitting and clas-
sification

Auto 130 200 Longitudinal No NA

2 Loizou et al. [32] Snake-based 
segmentation 
approach

Auto 20 20 Longitudinal Yes CC = 0.63 
(p = 0.001)

3 Santos et al. [49] Chan-Vese level 
set segmenta-
tion

Auto NA 11 Longitudinal No NA

4 Rocha et al. [46] Gaussian filtering 
and dynamic 
programming

Auto 25 199 Longitudinal No NA

5 Sifakis et al. [50] Combination 
of anatomical 
knowledge and 
statistic

Auto 100 2149 Longitudinal No NA

6 Carvalho et al. 
[9]

Intensity joint 
histogram clas-
sification and 
graph-based 
segmentation

Auto 17 21 Longitudinal No NA

7 Araki et al. [1] Region-based 
strategy using 
a classification 
framework

Auto 252 704 Longitudinal Yes PoM: 97.4% 
and 98.0%@
CC:0.91 and 0.92 
(p < 0.0001)

Boundary-based 
strategy that 
using the level 
set framework.

Auto 252 704 Longitudinal Yes PoM: 95.3% 
and 94.0%@
CC:0.86 and 0.85 
(p < 0.0001)

8 Proposed method Spatial transfor-
mation, spectral 
analysis and 
pixel classifica-
tion

Auto 202 404 Longitudinal Yes MD: 0.27 ± 0.25 
and 
0.25 ± 0.24 mm

PoM: 97.7 and 
98.7%

CC:0.98 
(p < 0.0001)and 
0.99 (p < 0.0001)
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the method quantifies carotid lumen geometry in subjects 
with atherosclerotic plaque from simultaneously acquired 
B-mode US and contrast-enhanced ultrasound (CEUS) 
image sequences. In order to compensate for the motion 
in the B-mode US and CEUS image sequence, the method 
averaged image intensities pixelwise over the complete 
sequence. This leads to a single integrated image which is 
used in the automated lumen segmentation process.

The work by Araki et al. [1] developed a model which 
combines the scale-space paradigm with the pixel-classifi-
cation paradigm as global and local models, respectively. 
They benchmarked their approach against a boundary-
based approach where the global shape is extracted first 
followed by lumen edge capturing using a level set para-
digm. The method proposed in our current study is an 
improved version of the study presented in [1]. The pro-
posed method here is different in its iterative procedure 
with the inclusion of a spatial transformation to handle the 
curved vessels, thereby adding robustness to the system. 
Further, the current study measures both LD and IAD. This 
is important since both LD and IAD together can become 
a relevant marker to evaluate the atherosclerosis disease 
unlike LD alone. We showed a significant improvement 
in CC values as depicted in Fig. 5. We benchmarked our 
LD measurement results as shown in Table 4 by compar-
ing our strategy against [1] by using the same patient pool. 
Unlike other existing techniques, the proposed system has 
only one parameter σ which was set to 12 pixels (approxi-
mate size of minimum MA wall thickness in pixels). This 
σ needs to change only if there is a significant variation in 
the resolution of the image dataset. Hence, the proposed 
system can be easily adapted to a real-time clinical envi-
ronment. We believe that it can support LD and IAD meas-
urements in clinical practice and can be adapted for stroke 
monitoring.

4.2 � Clinical interpretation

We believe that the LD and the IAD together might repre-
sent a biomarker of stroke risk. In patients with significantly 
high volume of plaque which causes luminal narrowing, 
LD will be smaller. Hence, LD is inversely related to ste-
nosis severity. As a result, as LD decreases, it seems reason-
able to believe that there may be a resultant increased risk 
of ischemic stroke. However, the plaque growth causes the 
adventitia region to bulge up according to the Glagov phe-
nomenon [18], which causes the IAD to increase. This adap-
tive response is directly linked to the atherosclerotic pro-
cess. Because of this positive remodeling, the relationship 

between LD and IAD is important to consider and together 
may be useful imaging biomarkers for stroke risk stratifica-
tion. Future clinical investigations are warranted to further 
test the value of LD and IAD in stroke risk assessment in 
junction with the automated ultrasound measurement tech-
nologies that we and others have proposed.

4.3 � Strengths and weakness

Utilizing our hypothesis on adventitia brightness, a fully 
automated method is used for measurement of the LD and 
IAD with a Gaussian derivative filter to trace the edges. In 
doing so, many challenges were addressed such as limits 
of resolution, data size, structural variations and inherent 
speckle noise in ultrasound scanning. To the best of our 
knowledge, this study is the first fully automated meas-
urement method for LD and IAD which combines spatial 
transformation with iterative scale-space paradigm. How-
ever, we believe that multiresolution technique can be 
adapted to improve the automated system. More valida-
tion needs to be done on other ethnic groups from different 
countries. One future scope is to acquire temporal images 
from each patient to look at the cardiac cycle variations 
affecting the diameter estimations.

Our lumen region segmentation model is based on the 
assumption that the blood density is constant. It is very 
unlikely that this assumption can be disqualified. But 
there can be cases in which there is no blood in the arterial 
region during the image acquisition. This can be due to sev-
eral reasons such (1) as blockage of the artery causing no 
blood in the other side of the stenosis or (2) non-uniform 
pumping of the blood from the heart to brain. In cases like 
these, there can be multiple grayscale contrasts. Such chal-
lenges can be considered by modeling it as a multi-class 
problem. Then, these multiple classes can be merged using 
the region-growing methods [55, 56].

5 � Conclusions

We have developed a fully automated system for the 
accurate segmentation of carotid lumen and adventitial 
borders. The system uses iterative scale-space strategy 
embedded with spatial transformation. Stage one was a 
global processing system based on scale-space embedded 
with classifier to extract the region of interest. The spatial 
transformation was designed during the local processing 
to delineate the lumen and adventitial borders while han-
dling the curved vessels which are otherwise difficult to 
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compute using conventional methods. We validated our 
system against the two expert readers and demonstrated 
high correlations, accuracies and stability tests. Even 
though the current results are very promising, more multi-
center evaluations need to be performed for establishing 
the automated lumen and IADs for adaption in clinical 
settings.
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Appendix

See Tables 5, 6, 7 and 8.

Table 5   T test for Auto LD 
versus manual tracings

Auto LD vs. Manual-1 LD Auto LD vs. Manual-2 
LD

Mean difference −0.1508 −0.0851

Standard error 0.0205 0.0173

95% CI −0.1912 to −0.1104 −0.1192 to −0.0511

Test statistic, t −7.333 −4.920

Degrees of freedom 403 403

Two-tailed probability, p p < 0.0001 p < 0.0003

Table 6   T test for Auto IAD 
versus manual tracings

Auto IAD vs. Manual-1 IAD Auto IAD vs. Manual-2 IAD

Mean difference −0.0432 0.0851

Standard error 0.0165 0.0173

95% CI −0.0756 to −0.0107 0.0510–0.1192

Test statistic, t −2.615 4.914

Degrees of freedom 403 403

Two-tailed probability, p p < 0.0093 p < 0.0001

Table 7   Friedman test for Auto LD versus manual tracings

Auto LD Manual-1 LD Manual-2 LD

Median 6.350 6.265 6.245

25th percentile 4.889 4.718 4.801

75th percentile 7.970 7.776 7.770

Test statistic, F 29.8710

Degrees of freedom-1 2

Degrees of freedom-2 806

Two-tailed probability, p p < 0.0001

Table 8   Friedman test for Auto IAD versus manual tracings

Auto LD Manual-1 LD Manual-2 LD

Median 7.752 7.719 7.838

25th percentile 7.126 7.084 7.181

75th percentile 8.333 8.322 8.438

Test statistic, F 131.0569

Degrees of freedom-1 2

Degrees of freedom-2 806

Two-tailed probability, p p < 0.0001
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