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then shared between different persons. This allows some 
kind of Plug&Play interaction. Furthermore, by model-
ling rest/idle periods with the confidence indicator, it is 
possible to detect active control periods and separate them 
from “background activity”: this is capital for real-time, 
self-paced operation. Finally, the indicator also allows 
to dynamically choose the most appropriate observation 
window length, improving system’s responsiveness and 
user’s comfort. Good results are achieved under such 
operating conditions, achieving, for instance, a false posi-
tive rate of 0.16 min−1, which outperform current litera-
ture findings.

Keywords  Brain–Computer Interface (BCI) · Steady-state 
visual evoked potentials (SSVEP) · Active and Assisted 
Living (AAL)

1  Introduction

Brain–Computer Interface (BCI) is an alternative, aug-
mentative communication channel that aims at providing 
the user, possibly lacking voluntary muscle control, with 
an interaction path based on the interpretation of his brain 
activity. BCI has been used to support communication [19, 
48, 50], and effective, non-invasive solutions have been 
developed, featuring high accuracy and interaction speed. 
Other applications include, for example, control of mobile 
robots [3], orthosis [35] and artificial limbs [17], electrical 
wheelchair [7], functional electrical stimulation system for 
motor recovery [12], and many others. In general, such sys-
tems are designed for frequent and intense interaction with 
the user: they usually exploit expensive hardware setups 
and often require to involve the user in demanding training/
calibration procedures.

Abstract  Brain–Computer Interfaces (BCI) rely on the 
interpretation of brain activity to provide people with dis-
abilities with an alternative/augmentative interaction path. 
In light of this, BCI could be considered as enabling tech-
nology in many fields, including Active and Assisted Liv-
ing (AAL) systems control. Interaction barriers could be 
removed indeed, enabling user with severe motor impair-
ments to gain control over a wide range of AAL features. 
In this paper, a cost-effective BCI solution, targeted (but 
not limited) to AAL system control is presented. A cus-
tom hardware module is briefly reviewed, while signal 
processing techniques are covered in more depth. Steady-
state visual evoked potentials (SSVEP) are exploited in 
this work as operating BCI protocol. In contrast with most 
common SSVEP-BCI approaches, we propose the defini-
tion of a prediction confidence indicator, which is shown 
to improve overall classification accuracy. The confidence 
indicator is derived without any subject-specific approach 
and is stable across users: it can thus be defined once and 
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A promising application of BCI technology is the con-
trol of Active and Assisted Living (AAL) systems [27, 
30], designed to make the home environment smarter and 
to support the user in accomplishing daily living activity 
tasks. AAL systems have been shown to provide effective 
solutions for promoting active ageing and independent liv-
ing [4, 14]. However, interacting with AAL systems could 
be extremely difficult, or even not possible at all, for people 
affected by severe motor impairments (and thus not able to 
control conventional interfaces); BCI could therefore pro-
vide a technological bridge to enable users with impair-
ments to gain full access to AAL services.

Design of BCI solutions aimed at AAL control should 
take into account the different aspects with respect to other 
contexts. First of all, interactions with the AAL system 
(e.g. activating an appliance) are usually limited in number 
and sparse in time; instead, other BCI applications, such 
as spelling or controlling an electrical wheelchair, usually 
feature a frequent and almost continuous input stream. This 
implies frequent events and, therefore, puts tight constraints 
in terms of low command latency. AAL-focused solutions, 
instead, do not require such strict constraints in terms of 
speed, allowing to focus more on robustness and accuracy.

Likewise, accessibility and affordability are major con-
cerns here: “Plug&Play” approaches, requiring neither an 
initial calibration phase, nor a special user training, are 
preferred over complex and demanding deployment pro-
cedures. Such basic differences (with respect to more con-
ventional BCI application) justifies the customization of a 
BCI-service better suiting the needs. Hence, a custom BCI 
framework, named Brain.me, has been developed, aiming 
at providing a complete solution focusing on accessibility, 
compactness and cost reduction.

Brain.me exploits electroencephalographic (EEG) sig-
nals: among many brain imaging techniques, such as 

functional magnetic resonance imaging (fMRI [1, 44]) or 
near infrared spectroscopy (NIRS [9, 42, 43]), EEG offered 
us the best overall tradeoff between compactness, spatio-
temporal resolution and costs [41].

The system is composed of three main units:

1.	 an analog front end (AFE) unit (Fig. 1), for the acquisi-
tion of the EEG signal;

2.	 a digital signal processing unit, implementing feature 
extraction and classification;

3.	 an output/feedback unit for display and implementa-
tion of active controls.

This paper describes the Brain.me platform, focusing 
mostly at the development of core BCI algorithms and 
steady SSVEP (steady-state visual evoked potentials) pro-
cessing methods. The software platform runs on standard 
PC architectures; nevertheless, since cost effectiveness and 
portability are major factors in the targeted AAL context, 
all software and hardware components were conceived 
aiming at embedded systems implementation as well. Also, 
great effort was put in delivering a Plug&Play service: 
the user should be able to control the BCI as soon as he 
wears the electrode cap, without performing any system 
calibration.

Major innovations thus come from both the hardware 
and the software components:

•	 A custom-made EEG module has been developed, 
which is shown to deliver performance comparable to 
commercial, high-grade EEG devices, at much lower 
costs.

•	 A signal processing methodology has been developed 
for increasing the robustness of the BCI in self-paced 
operation, through the introduction of a prediction con-
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Fig. 1   a A photo of the 16 channel analog front end (AFE) module. Dimensions: 130 × 100 mm, b a high-level module schematic
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fidence indicator. This allows to model rest and active 
control periods, and to discriminate between them. It 
is worth remarking that the definition of the confidence 
indicator is derived without any subject-specific train-
ing: being a stable feature across users, it can be defined 
once and then shared between different subjects, thus 
allowing some sort of Plug&Play interaction. Further-
more, we show that such indicator also allows to intro-
duce adaptation in the signal processing flow by dynam-
ically choosing the optimal length of the observed 
signal window: this improves the BCI responsiveness, 
as discussed later.

The approach is demonstrated in a real AAL scenario 
implementing the entire control chain: the brain.me plat-
form is exploited for real-time control of the CARDEA 
AAL system [4, 14], involving untrained users in elemen-
tary home control tasks and achieving remarkably low false 
positives rate, significantly improving over the literature 
findings.

2 � Methods

The overall system structure is illustrated in Fig.  2 and 
includes several modules, ranging from the EEG acquisi-
tion module to the home control section. Main modules are 
described in the following.

2.1 � Analog front end

Acquiring EEG signals is an inherently challenging task: 
signals have amplitude as low as a few μV, often corrupted 
by many noise sources, including electromagnetic or oth-
ers related to user’s activities [15]. This imposes tight con-
straints on the electrical specifications of the acquisition 
system: in typical BCI setups, high-end EEG equipment 
is used to overcome such problems. Such an approach, 
however, poorly suits the AAL application’s needs, due 

to high costs and potentially bulky equipment. Thus, a 
dedicated analog front end (AFE) circuit was realized 
[26, 28, 31], as shown in Fig. 1. It is based on a standard 
4-layer PCB (Printed circuit board) technology, designed 
to accommodate up to 16 input channels (Fig.  1b) within 
a 100 ×  130  mm form factor. The circuit was conceived 
for being battery-operated (4 × AA alkaline batteries), and 
power consumption is as low as 160 mW. In order to mini-
mize noise, special layout techniques were adopted, and 
dedicated low-noise components were selected, including 
precision voltage references, low-noise and low-dropout 
voltage regulators, and, finally, high resolution (24 bits) 
analog-to-digital converters (ADC, in this work, two paral-
leled Texas Instruments ADS1299 [22] chips). The adop-
tion of low-noise, low-gain ADC allows also to improve 
the input dynamic range of the device: the module is 
capable of handling up to ±188  mV differential signals. 
A right leg driver circuit [45] was implemented to reduce 
mains interference, and inputs are guarded against RF 
noise sources. Good noise performance is achieved, with a 
total 1.4 μVpp, referred-to-input (RTI) noise level (meas-
ured with electrode connectors short-circuited together). 
As shown in [31], such performance figures favourably 
compares against a commercial, state-of-the-art module 
(g.tec USBamp). Standard passive Ag/AgCl electrodes are 
used and held in place by a light head cap. Standard (DIN 
42802) safety connectors make the system compatible with 
other EEG devices. The device communicates over USB 
2.0 to the host computer at 12 Mbps, allowing to directly 
control the module via software. Hardware cost is in the 
order of a few hundred Euros, i.e. a fraction of commercial 
EEG devices featuring comparable specifications.

2.2 � Control software and home control unit

The control software is divided into two entities:

•	 An embedded part, implemented on an ARM® 
Cortex®-M4 platform. Main tasks of this unit are low-
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Fig. 2   Sketch of the Brain.me platform, featuring customized EEG acquisition unit, an output unit and a signal processing block
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level hardware management (initialization and proper 
power-up/operational sequencing), decoding of com-
mands, collection, and streaming of EEG data (and 
synch signals such as markers).

•	 A MATLAB-based part, hosted on a general purpose 
personal computer, which is also compatible with the 
Octave open-source framework. Nevertheless, this part 
was designed with portability and computational con-
straints in mind and is suitable for embedded implemen-
tations as well. In addition to ingestion and storage of 
incoming EEG data, this unit also takes care of stream-
ing such data to third parties’ receivers (for instance, the 
platform is compatible with the TOBI [33, 39] standard 
input interface), as well as invoking our signal process-
ing routines.

Figure  3 shows an example of interaction between the 
embedded and the PC-hosted control software in case an 
acquisition session is performed: both parts perform some 
initialization steps. Then, the MATLAB-based platform 
issues a command to start the acquisition, which is received 
and interpreted by the EEG module’s command parser. 
After an acknowledge message, the EEG modules streams 
all data collected by the ADCs, along with any other exter-
nal synch signal (such as markers). Meanwhile, the control 
unit acquires the data, saves and process them, and, option-
ally, streams to other receivers. Acquisition can be stopped 
by the host PC at any time and the EEG module returns in a 
waiting state by running the command parser.

Real-time data processing can be carried out concur-
rently: an epoch-based approach is adopted, in which algo-
rithms are executed on segments of data (e.g. 2 s chunks, 
possibly overlapping). Based on classification, control 
feedback actions are activated, as discussed below.

In order to allow for BCI interaction, home devices, 
such as appliances, motorized doors, windows, curtains are 
controlled by the CARDEA system, described in [4, 14]. 
CARDEA system is flexible and scalable and allows any 

compatible input device to achieve control over virtually 
any kind of peripheral device: this makes it particularly 
suitable for dealing with needs of people with disabilities. 
The Brain.me platform can be configured as a CARDEA-
compatible input device, and the BCI output can be easily 
linked to arbitrary system functions.

2.3 � Signal processing

2.3.1 � Paradigm choice

Several features in the brain activity can be used to this 
purpose: the voluntary modulation/control by the user of 
such features and their consequent interpretation is called a 
paradigm. Most diffused paradigms include:

•	 Slow Cortical Potentials (SCP), which are potential 
shifts in the EEG waves voluntarily induced by user, 
who can learn to control them through neurofeedback-
like approaches [16].

•	 Event Related Desynchronization (ERD) and ER Syn-
chronization (ERS) [20, 37, 38, 47]: this paradigm 
exploits the brain response arising when preparing (or 
just imagining) to start a movement. In such conditions, 
neurons tend to de-synchronize from their idle state, 
to be allocated to motor processing: this is reflected 
as a decrease in spectral energy in the μ and β bands 
(8–12 Hz and around 20 Hz, respectively). After ERD, 
a pattern with an increase in the energy band after the 
completion of the motor task can also be observed 
(ERS).

•	 P300 [6, 10, 18, 34, 40, 51]: when a rare target stimu-
lus is presented to the user during a sequence of repeti-
tive, non-target stimuli, a characteristic pattern can 
be observed in the EEG signals, approximately after 
300 ms from the target stimulus appearance.

•	 Steady-State Visual Evoked Potentials (SSVEP) [2, 8, 
11, 13, 17, 21, 29, 35, 48],: this paradigm exploits fea-

Fig. 3   Control software main 
tasks: (left) EEG module control 
firmware, (right) MATLAB-
based control software on the 
PC side



1343Med Biol Eng Comput (2017) 55:1339–1352	

1 3

tures elicited by the involuntary response to a continu-
ous, repetitive stimulus, such as a blinking LED (light-
emitting diode). Within a typical 4–40  Hz range, the 
blinking frequency induces a synchronous tone in the 
brain signal spectrum. By simultaneously presenting 
multiple visual stimuli, each one operating at a different 
frequency, the user’s brain response can be analysed to 
infer to which stimulus he was attending. This allows 
to implement a multiclass (i.e. target) selection mecha-
nism for the BCI. Furthermore, SSVEP is just a particu-
lar class of steady-state evoked potentials. Steady-state 
evoke potentials (SSEP) can also be elicited by means 
of, for example, vibrotactile stimulation [5]. SSVEP 
responses are largely exploited in applications where 
information transfer rate (ITR, defined in [25, 50]) max-
imization is of primary concern, e.g. in spellers.

Given the specific application aim, we hence selected the 
SSVEP paradigm for Brain.me operation. In fact, SSVEP 
responses are regarded as reliable features for BCIs, due 
to their higher SNR (Signal to Noise Ratio) [8]. Moreover, 
SSVEP detection and classification can be carried out with-
out any calibration data [13, 21, 29, 32, 48], paving the way 
for a “Plug&Play” user interaction.

2.3.2 � Classification

According to the selected SSVEP paradigm, user’s inten-
tion is expressed by selecting one between many differ-
ent visual flickering stimuli (each one with different fre-
quency). Classifying a SSVEP, thus, basically implies 
recognizing the hidden stimulus frequency.

Many algorithms exist for SSVEP classification, includ-
ing PSDA (power spectral density analysis), MEC (mini-
mum energy combination) [48], AMCC (average maximum 
contrast combination) [13], CCA (canonical correlation 
analysis) [21].

Power spectral density analysis methods rely on the esti-
mation of the spectral components of the EEG spectrum, 
usually via Welch’s modified periodgram [26]. In this case, 
the power spectrum of each EEG channel is estimated by 
means of a periodgram over a short interval (the signal is 
windowed, usually exploiting Hamming windows):

where N is the window length, Fs the sampling frequency, 
xn the nth sample. Then, averages are evaluated over a mov-
ing window (potentially with overlapping epochs) in order 
to lower the variance of the estimate. A search for peaks in 
the EEG spectrum can be performed subsequently, associ-
ated to SSVEP responses. Some heuristics can be added as 
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well, in order to improve the accuracy of the classification. 
An implementation example can be found in [26].

Another possibility is to directly model the SSVEP 
response as follows:

where yi(t) is the potential measured from a single elec-
trode, Ei(t) is a noise and nuisance signal, and the first term 
in the right-hand side is the model of a SSVEP response 
(ak and bk are coefficients from signal decomposition); this 
term corresponds to a stimulus frequency f (k = 1, …, Nh, 
where Nh is the number of considered harmonics). Extend-
ing to multiple (Nt) channels, Eq.  (2) can be re-written in 
matrix form: Y = X + E, where Y are the signals in the 
electrode space, E represents channel noise, X is the 
SSVEP model matrix (there is one such matrix per stimulus 
frequency):

To this purpose, we introduce a spatial filter, i.e. a fil-
ter that transforms the input waveforms from the electrode 
space Y (the original electrode readings) to a signal space 
S:

where W is a weight matrix, which is determined by opti-
mizing with respect to a given criterion. The number of 
channels in the signal space does not necessarily matches 
the number of channels in the electrode space.

For example, MEC determines such a weight matrix by 
minimizing the energy associated to noise Ỹ, estimated as 
follows:

In (5), the orthogonal projection is used to remove any 
potential SSVEP activity from the original signals. As 
anticipated, one then finds an optimal set of weights ŵ that 
minimizes the energy of the nuisance signals Ỹ: 

The set of optimal weights are found to be the eigenvec-
tors corresponding to the smallest eigenvalues of the of the 
matrix Ỹ

T
Ỹ.

AMCC algorithm follows a similar path but finds an 
optimal spatial filter ŵ which maximizes the following 
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generalized Rayleigh quotient between the signal and noise 
covariance matrices CY and C

Ỹ
 as in (7):

CCA is another method that has been largely used in 
SSVEP detection and classification, since it provides a 
bounded output value (i.e. the correlation coefficient), 
which makes it easy to perform relative comparisons. 
The present work builds on top of this method and devel-
ops a methodology for assessing its reliability for SSVEP 
classification.

CCA attempts to find optimal spatial filters that maxi-
mize the correlation between two sets of variables. In par-
ticular, they look for a pair of linear combinations (canoni-
cal variables, characterized by weight vectors wx, wy) for 
the two sets, such that the correlation between the two lin-
ear combinations xL = wx

TX and yL = wy
TY is maximized:

where X and Y are the input signal and the SSVEP tem-
plate, respectively. Then a second pair is found, uncorre-
lated with the first one and having the second highest cor-
relation. The process continues until the number of pairs of 
canonical variables equals the number of variables in the 
smallest set.

In the most standard approach [21], CCA is used to 
maximize the correlation between the input electrode wave-
forms and each of the SSVEP model matrices X. A basic 
classifier could then simply pick the largest correlation 
coefficient among the ones generated by the X matrices.

This work lays its bases on the CCA methodology and 
builds improvements on top of it to carry out online, self-
paced SSVEP classification. In fact, in [32], it was shown 
that CCA-based methods could outperform both MEC and 
AMCC in terms of computational efficiency. This is par-
ticularly appealing, envisioning a future embedded imple-
mentation of the whole platform.

2.4 � Confidence indicator

CCA (and all the methods presented in Sect. 2.4) is based 
on relative evaluations, i.e. it selects the most likely class 
by comparison within a set of known candidate frequen-
cies. On the one hand, this means that there is no need of 
calibration procedures, which makes CCA suitable for the 
“Plug&Play” aim. On the other hand, however, the basic 
classifier is still not suitable, as is, for online operation: 
there is no way to discriminate between epochs containing 

(7)ŵ = argmax
ŵ
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ŵTCỸ ŵ
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a SSVEP response (i.e. where the user wants to issue a 
command) and non-informative ones. This increases the 
risk of false positives and is potentially more critical when 
only sparse actual interactions are expected, as in the target 
AAL control application.

In this section, the notion of a prediction confidence 
indicator is introduced, which allows to improve the accu-
racy of the classification and, at the same time, makes it 
possible to build a model for discriminating between rest 
and active control phases.

In the literature, two approaches are followed to cope 
with the presence of idle periods:

•	 a threshold can be set on the maximum correlation coef-
ficient in order to be validated as output class;

•	 the last n class outputs are averaged and a class picked 
if the class average passes a given threshold.

However, if, on the one hand, setting a global threshold 
would allow to reject epochs with low correlation with the 
SSVEP model, on the other hand this would require setting 
user-specific thresholds. For example, in [17] thresholds 
are determined from the accuracy performance of CCA on 
the test set, each stimulation frequency being trained sepa-
rately. This requires a personalization for each user, which 
is not consistent with our approach.

Averaging (or “smoothing”) the classifier’s output is 
effective in reducing false positives, but much depends on 
the false positive rate the classifier produces: the more out-
puts are averaged, the lower the false positive rate is, but, 
on the other hand, the command latency is increased.

The novelty of our approach lies in finding a good param-
eter, common and stable across users, capable of indicating 
the confidence level of the classification [23, 24]. Whenever 
such parameter reflects poor confidence in the epoch classi-
fication, no classification is attempted at all; we call this no 
reliable decision state a neutral state. Furthermore, we refer 
to such features, useful to express classification reliability, 
as confidence indicators or d parameters. For convenience, 
we constrain such features in the [0–1] range, with d =  1 
representing the highest confidence. It is worth remarking 
that parameter d is not a probability (could become one, for 
example, by performing a logistic regression over it, but that 
would require training): instead, it relates to the actual dis-
criminability of a SSVEP (i.e. control vs. rest and discrimi-
nability between two target frequencies).

For the adopted CCA methodology, we define the d 
parameter as follows:

where ρf is the correlation coefficient yielded by CCA 
as described in Eq.  (8), Fstim is the set of possible stimuli 

(9)
d = max

f∈Fstim
|ρf| − max

f∈Fstim\{fmax}
|ρf|,
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frequencies and fmax the frequency associated to the larg-
est ρf. The next subsection shows that Eq.  (8) defines a 
good confidence indicator, which can be used to make 
relative comparisons between alternative hypothesis (target 
frequencies).

2.4.1 � Validation of the confidence indicator: offline dataset

First, to assess performance based on the exploitation of 
the confidence indicator introduced above, an offline test 
was performed. Four healthy volunteers (age 22–27), with 
normal or corrected to normal vision, with no previous BCI 
experience were involved (upon their informed consent sig-
nature). During the test, subjects were seated in a comforta-
ble armchair, at approximately 1 m from the flickering vis-
ual stimulus. They were repeatedly asked to stare for 6 s at 
one out of 4 possible visual flickering stimuli (at 16, 18, 20, 
22 Hz). The SSVEP responses were recorded from 6 scalp 
locations (namely position O1, O2, PO, P3, P4, CPz, refer-
ence electrode in Cz, according to the extended 10–20 elec-
trode mounting system), using standard 10  mm Ag/AgCl 
disk electrodes with conductive gel. EEG was acquired by 
the module introduced above, sampling inputs at 250 sam-
ples per second (SPS).

In order to show the advantage of using the d parameter 
(Eq.  9) for discriminating between alternative hypotheses 
(targets), let us consider a basic CCA classifier. Given an 
EEG epoch containing a SSVEP, it selects the frequency 
yielding the largest ρ, computed as per Eq. (8). Also, given 
the output choice, we compute the related d parameter as 
in Eq. (9). Then, we summarize such information by means 

of histograms, as shown in Fig.  4. Here, the outputs are 
partitioned by hits and errors (of the basic CCA classifier) 
and binned into uniform d parameter intervals. Distribu-
tions are normalized to the sample size. An ideal behaviour 
should associate all errors to lower values of d, with cor-
rect classification lying instead in the higher d range. Hav-
ing hits and errors grouped at opposite ends of the d range 
would make it easy to discriminate between reliable and 
unreliable classifications by means of an optimally cho-
sen threshold d*. In that case, if d > d*, a decision should 
be made by picking the frequency yielding the maximum 
value of Eq. (9). If d < d*, instead, the likelihood of mak-
ing a mistake is larger and no classification should be 
attempted. Summarizing, the following classification rule 
can be derived:

where ρf is the correlation coefficient as per Eq. (8), d is the 
d parameter defined in Eq. (9) and Fstim is the set of pos-
sible stimuli frequencies. A null output refers to the con-
dition where a classification cannot be performed reliably 
and is therefore inhibited.

In real data, though, such an ideal distribution is just 
approximated (as shown in Fig.  4): some overlap can be 
observed between hits and errors distribution with respect 
to d. Thus, different choices of the threshold value d* in 
Eq.  (10), result in different performance tradeoffs involv-
ing accuracy, data exploitation and system responsive-
ness. In fact, by increasing d*, the likelihood of wrong 

(10)fclass =
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|ρf| if d > d∗

null, otherwise
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classifications decreases. At same time, however, meaning-
ful information may be discarded (i.e. more epochs may get 
rejected, despite containing a SSVEP).

In order to quantitatively assess the impact of this choice 
on the considered offline dataset, we define the “neutrali-
zation rate” as the fraction of rejected epochs for a given 
value of d*. The definition of neutralization rate is consist-
ent for this dataset, since it only contains isolated EEG seg-
ments of SSVEP responses.

Figures 5 and 6 report ITR and accuracy, respectively, 
depending on the neutralization rate. In particular, ITR 
can be calculated as follows [8]:

where N is the number of classes (4 in this offline case), 
pn is the probability of the neutralization state, pe is the 
probability of error and Tw is the EEG segment length. 
ITR is, thus, a global performance indicator, which com-
bines accuracy and selection speed. Of course, ITR may 
decrease with increasing d* thresholds, due to the loss of 
information associated with more rejections of “uncer-
tain” epochs; however, in the target AAL application sce-
nario, accuracy is more relevant than speed itself. In par-
ticular, in order to get a more reliable controller, slower 
systems may be tolerated, trading speed for accuracy. 

(11)

ITR = (1− pn) ·

[

log2 (N)+ (1− pe) log2 (1− pe)

+pe log2

(

pe

N − 1

)]

·
60

Tw
,

Algorithm 1: self-paced SSVEP BCI pseudocode

EEG_window_length = default_size
EEG_window_len_increment = default_len_increment
output = null
while(EEG_data):

while(output==null and EEG_window_length<maximum_length):
EEG_window = EEG_data(last EEG_window_length seconds)
preprocess(EEG_window)
class_argmax, d_param = CCA(EEG_window)
if(d_param>d_star_threshold) then:

output = class_argmax
else:

output = null
EEG_window_length = EEG_window_length+EEG_window_len_increment

end if
end while
EEG_window_length = default_size
slide_forward(EEG_data)

end while

Figure 6 shows how accuracy distributes, with respect 
to neutralization rate, for different choices of the parame-
ter d* in Eq. (10). Each point in the scatter plots refers to 
a different value of the threshold d* and thus represents 
a different tradeoff between accuracy and data yield. As 
expected, by increasing d* the neutralization mechanism 
becomes more selective and a larger fraction of epochs 
is discarded. Eventually, a critical d* value is reached, 
beyond which all epochs are rejected and the above con-
siderations (in the absence of valid epochs) are no longer 
meaningful. Thus, the plots do not necessarily cover 
the complete d* range: this, however, has no practical 
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consequences, since the analysis is focused on finding 
practical d* values, compatible with system responsive-
ness and data exploitation constraints. In addition, the 
accuracy scatter plots can exhibit a non-monotonic trend, 
since the relative importance of errors located in the high-
d tail increases when fewer samples (i.e. the non-rejected) 
are available. As a guideline, given a target accuracy, the 
best threshold choice is the one that guarantees a lower 
percentage of rejected epochs. For comparison purposes, 
Fig. 6 also reports (solid grey line) the baseline accuracy 
that the CCA algorithm can achieve without any neutrali-
zation (without checking the d parameter condition in 
Eq.  10). As shown, neutralization consistently improves 
accuracy with respect to the reference case.

Finally, in order to suit the aimed “Plug&Play” vision, 
it is desirable that the threshold d* does not vary between 
subjects: we therefore characterized the method on the 
test population as a whole, instead of relying on a per-
user basis analysis.

We eventually found that a practical range for d* exists 
(typically around  0.1), which allows for a satisfactory 
tradeoff between error rejection and data exploitation.

2.4.2 � Dynamic window length choice and online 
implementation

The methodology introduced in previous section can also 
be exploited to adapt the signal processing flow, spe-
cifically by dynamically choosing the most appropriate 
observation window length.

In fact, in most cases, the window length is fixed and 
determined a priori. Processing is then carried out using 
a sliding window approach, characterized by a fixed 

window length and a fixed increment. The window length 
choice, in general, impacts both the classification per-
formance and the classification latency. Short windows 
result in reduced latency, but increase chances of epoch 
rejection; on the other hand, longer, conservative win-
dows are more likely to yield successful classifications, at 
the expense of increased latency. On the other hand, the 
time increment between consecutive windows determines 
the smoothness (i.e. continuous feedback perception) of 
the classifier. For instance, if the time increment between 
subsequent windows is set at 200  ms, an update rate of 
5 Hz is achieved, which is more than sufficient to be per-
ceived as responsive.

Having defined a prediction confidence indicator in 
Eq. (9), we can exploit it to dynamically determine the best 
observation window length. This novel approach, different 
from most common SSVEP processing, allows to break 
the a priori fixed trade-off between classification latency 
and accuracy; instead, the trade-off can dynamically vary, 
depending on the window length choice policy. For real-
time, self-paced operation, our strategy for determining the 
most appropriate EEG window length works as follows. At 
first, a given minimum-length EEG window is observed 
(e.g. 2 s); after a CCA step, if the prediction is considered 
reliable [according to (10)], the classification is performed. 
Otherwise, instead of outputting a null result, the window 
size is increased (we consider 1 s steps) and the same deci-
sion repeated. Eventually, the system should either output 
a valid classification or a null result when the maximum 
allowed window length is reached (5  s in our case). The 
procedure is reported as pseudocode in Algorithm 1.

It is even possible to accommodate for different 
thresholds, depending on the current window length. For 
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example, the d* threshold could decrease for increasing 
window length (shorter windows are more prone to error 
and could benefit from a more selective threshold). In gen-
eral, introducing this dynamic window choice mechanism 
may improve user comfort, by reducing time of attention to 
the visual stimuli. Finally, a smoothing stage that averages 
the last n classifications is added to further guard against 
false positive performance, at the cost of an increased 
latency. In the given example, averaging on 5 classification 
yields and extra latency of 1 s.

3 � Results

Based on the ideas described above, a self-paced, online 
BCI, exploiting a SSVEP paradigm was implemented 
and tested. In order to demonstrate the practicality of the 
approach in an AAL context, the full control chain was 
implemented: home actuators were actually controllable by 
the BCI user to complete tasks such as switching a light or 
controlling a motorized shutter.

The same electrode configuration and lab environment 
used in the offline test described above was adopted. In 
this case, a total of 10 healthy volunteers (age 24–61 years, 
3 females) participated in this study. None of them took 
part in the previous offline study, nor had any prior BCI-
control experience. This is consistent with our view of a 
Plug&Play approach, since no calibrating session is per-
formed: the parameters, determined in the offline study, 
were kept at the same value.

The AAL application scenario implies sporadic interac-
tions, so that two main BCI goals are defined: first, discern-
ing intentional control periods from longer “rest” phases and, 
then, correctly classifying intentional user choices. In order 
to assess the system immunity to false positive events, long 

idle periods were introduced, during which the subject does 
not make any intentional choice and is allowed to talk, shift 
its gaze elsewhere and, partially, move. Each user performed 
two runs, attempting 32 task completions in each run, which 
were equally distributed between 4 available choices (namely, 
16, 18, 20, 22 Hz, corresponding to the following AAL com-
mands: light on, light off, shutter closed, shutter open).

Table  1 reports the online experiment results (with 
mean and standard deviation), in terms of true positives, 
false negatives and false positive rate (TP, FN, FPR, 
respectively). The problem nominally involves 5 differ-
ent classes: 4 target frequencies plus the rest condition. 
A true positive in Table 1 is defined as the event in which 
the user focuses on a target and the BCI correctly detects 
and classifies it within 8 s. A false negative, similarly, is 
the event in which the user attempts to achieve control by 
focusing on a target and his/her attempt is not detected 
within 8  s (the user was asked to mark this event after 
he does not manage to issue a command). Finally, a false 
positive occurs when the BCI either detects a control 
attempt but predicts the wrong target or when the user 
was resting and a command is triggered (the user was 
asked to mark this event as well). False positives are rep-
resented in units of min−1 in order to better stress the low 
occurrence of errors per minute (conversely, a percent-
age may result confusing, since one should fix a priori 
the amount of rest and control periods). Finally, for simi-
lar reasons, only FPR, TP and FN are considered as key 
performance indicators: in our opinion, the presence of 
heterogeneous classes (target stimuli and a rest class) 
makes it difficult, or at least not very expressive, to define 
other quantities. In fact, TPs and FPs are expressed as 
user control events (which happen at a self-paced rate), 
whereas FPR attempts to capture errors in the BCI opera-
tion (target misclassifications or spurious activations).

Table 1   Performance of the 
online, self-paced experiment 
(4 classes + rest/no command 
class)

Subject False positive rate (min−1) True positives (%) False negatives (%)

1 0.094 89.1 10.9

2 0.202 96.9 3.1

3 0.037 96.9 3.1

4 0.094 89.1 10.9

5 0.261 100 0.0

6 0.077 92.2 7.8

7 0.071 92.2 7.8

8 0.100 90.6 9.4

9 0.489 100 0.0

10 0.142 96.9 3.1

Mean 0.16 94.4 5.6

SD 0.13 4.2 4.2

Mean (95% CI) (0.1–0.28) (92.0–96.9) (3.1–7.9)
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Good performance is achieved, especially in terms 
of FPR: on average, it is as low as, approximately, 
0.16  min−1, with a remarkable improvement over ref-
erence data reported in [36, 39]. It is worth remarking 
again that all results were obtained without any subject-
specific calibration, keeping all hyper-parameters (d* 
threshold  =  0.15, smoother averaging steps  =  5) con-
stant across all users. This is consistent with the aimed 
Plug&Play vision.

4 � Discussion

This work is focused on developing a robust methodol-
ogy for SSVEP processing. Practically dealing with the 
targeted application (namely, BCI-enabled AAL sys-
tem control) requires to address two issues: infrequent, 
asynchronous user interactions and the need for calibra-
tion-free operation. The former implies that the operat-
ing mode should be self-paced: the BCI must autono-
mously discern between periods during which the user 
is trying to achieve control (and, in that case, decode 
the intent) from others during which he/she is perform-
ing other tasks, including rest. The latter issue implies 
to find features and methodologies which do not depend 
significantly on the specific user. Another aspect worth 
considering, related to the choice of SSVEP as operating 
paradigm, comes from the need of exploiting some resid-
ual eye-moving ability; studies on independent, covert 
attention-based BCI are, however, being carried out [49]. 
Another possible drawback of SSVEP as BCI paradigm 
is that it is not an endogenous potential (i.e. similarly to 
P300, the user needs to be stimulated to elicit a specific 
response). In the long run, receiving flickering visual 
stimuli could result in user’s fatigue. This can be possi-
bly mitigated by combining SSVEP operation with other 
paradigms (e.g. motor imagery, SCP) or even by looking 
at other bio-potentials (e.g. EMG), exploiting such “sec-
ondary” paradigms for switching on and off the BCI, and 
thus minimizing unnecessary visual stimuli.

Our work stems from CCA-based SSVEP classifica-
tion algorithms and improves their accuracy and immunity 
to false positives by introducing the notion of a prediction 
confidence indicator (d parameter). This allows to model 
unreliable classification attempts and lays the bases for dis-
cerning user’s intentional control periods from rest ones 
(thereby addressing one of the previously mentioned issues). 
The methodology was firstly validated offline (Fig. 6), high-
lighting the benefits of rejecting uncertain epochs (accord-
ing to a comparison with a target d* value). Moreover, the 
d parameter can be used to dynamically scale the length of 
the observed EEG window, making the system more respon-
sive when enough evidence is present in the signals (and 

minimizing the necessary stimulus staring time, thereby 
improving user’s comfort). The whole system was then vali-
dated online in a self-paced scenario, keeping the same para-
metrization across all subject (in accordance with our sub-
ject-independent approach). Tests were performed to assess, 
in particular, immunity to false positives (i.e. target or rest-
period misclassification): results highlighted very good per-
formance, improving over reference works in the literature 
(e.g. [13, 21]).

A further proof-of-concept test was carried out in more 
challenging environmental conditions. The whole system 
(including controlled appliances) was demonstrated in the 
framework of an exhibition (Handimatica [29, 46]), during 
which 6 live demos (lasting approximately 30  min each) 
were carried out. A single, healthy subject (not involved in 
previous tests) controlled the system for more than 3 h in a 
harsh environment, featuring high ambient luminosity, mul-
tiple electro-magnetic interfering sources (including air con-
ditioning high-power electric motors), with people from the 
audience walking around and loud acoustic noise. During the 
duration of demo sessions, the subject was also free to speak 
and move, this possibly introducing artifacts. Despite such a 
challenging condition, the subject was able to successfully 
operate the BCI, with a measured average FPR as low as 
0.14 min−1 (i.e. yielding a false positive classification every 
7.14 min of use, on average). Such a spot check, of course, 
does not exhaustively characterize and qualify the proposed 
approach; nevertheless, the results are quite encouraging 
and point in the right direction for future deployment of the 
Brain.me system in real living environments (such as private 
or sheltered homes).

5 � Conclusions

In this paper, the development of the Brain.me platform is 
discussed. Brain.me is a low-cost solution for BCI interac-
tion, primarily aimed at (but not restricted to) AAL sys-
tem control. Such an application perspective poses quite 
peculiar constraints, which may differ from general pur-
pose BCI application. A complete control chain from EEG 
acquisition to AAL task activation was thus implemented 
and demonstrated: hardware and software modules were 
specifically developed, focusing at low cost, portability to 
embedded systems and calibration-less operation. A cus-
tom EEG acquisition module has been briefly introduced, 
which favourably compares with reference, widely used 
devices.

A neutralization technique was introduced for rejecting 
epochs associated to low classification confidence. Offline 
tests show how accuracy (which is mostly relevant to the 
specific target application) can be significantly improved 
by the proposed approach. Based on the same confidence 
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estimation, adaptive adjustment of EEG epochs duration 
has been suggested, aiming at improving the overall system 
responsiveness. This technique also allowed us to effec-
tively implement an online BCI system capable of discern-
ing user’s intentional control periods from rest ones.

The Brain.me platform has been exploited to imple-
ment a complete AAL control chain, including home 
devices actuators, and tested while working in online, self-
paced operation mode. Lab experiments yielded very good 
results: with reference to the literature data, a meaning-
ful improvement in FPR performance was demonstrated. 
Deployment of Brain.me system in harsher environments 
also showed good robustness and promising performance, 
thus moving towards effective BCI use as an alternative 
home control input channel.
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