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method also shows real-time performance, addressing the 
physician’s requirements in a radiotherapy environment.

Keywords Head and neck cancer segmentation · Random 
walks · PET imaging · Biological target volume

1 Introduction

Recent advances in radiotherapy have improved the clinical 
effectiveness of radiation treatment planning (RTP) deliver-
ing a high radiation dose to the target and maintaining a low 
radiation dose to nearby critical organs. However, hardware 
precision in the radiation dose delivery is greater than the 
software precision in target volume delineation. Accurate 
target volume definition is essential for escalating the radia-
tion dose without increasing normal tissue injury especially 
in head and neck cancer (HNC). Computed tomography 
(CT) is considered the reference modality for target vol-
ume delineation in HNC, although cancers and the sur-
rounding soft tissues show similar density. CT imaging 
may not show the viable extension of cancers and may not 
localize isolated positive lymph nodes [1, 2]. To improve 
these results and assist the radiation oncologist in RTP, 
positron emission tomography (PET) has been introduced 
to the radiotherapy field. PET is a non-invasive functional 
imaging technique giving complementary information with 
respect to anatomical imaging and providing an in vivo 
measurement of the cancer’s biological processes. Moreo-
ver, metabolic changes are often faster and more indicative 
of the therapy effects than morphological changes, provid-
ing a more rapid method to detect the treatment response 
[3, 4]. Among several PET radiotracers derived from iso-
topes, the glucose analogue 18F-fluoro-2-deoxy-d-glucose 
(FDG) is widely used in the evaluation process of several 
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neoplastic pathologies. FDG uptake increases in high met-
abolic rate tissues, such as cancers. FDG PET is capable 
of identifying the location of many primary cancers and 
metastases, offering the opportunity to radically modify a 
patient’s treatment or a RTP [5].

PET images have a lower spatial resolution than CT 
or MR (Magnetic Resonance) images. Anatomical imag-
ing techniques are still needed to localize and charac-
terize abnormal regions. PET high contrast images and 
anatomical high spatial resolution images can be fused 
in multimodal images: current generation PET/CT and, 
more recently, PET/MRI systems are able to differentiate 
between a normal and an abnormal tissue, even using meta-
bolic information. The diagnostic accuracy of the com-
bined systems has proven to be higher than each individual 
technique, with their complementary features. In radiother-
apy, it is possible to delineate the biological tumor volume 
(BTV) on PET images inside or outside the anatomical 
gross tumor volume (GTV), defined by CT or MR images. 
As result, the BTV can be used for enhanced RTP in order 
to treat the cancer region more precisely [6]. On the other 
hand, PET segmentation is a critical task due to its lack of 
consistency in a cancer contour, its low image resolution, 
its relatively high level of noise, and the FDG uptake het-
erogeneity within a lesion. For the above reasons, the BTV 
has great size variability, since it depends on the algorithm 
used to delineate the PET images.

In the literature, various approaches have been presented 
[7–12]. The choice of a standard method is a very challeng-
ing and open issue [13, 14], since accurate lesion segmen-
tation in PET imaging is essential for an accurate quanti-
fication of prognosis assessment and therapy response. 
Visual delineation is usually widely used because it is 
easily applicable but potentially inaccurate for its window 
level settings dependence and its intra- and inter-operator 
variability. An objective, robust, fast, accurate, opera-
tor, and scanner-independent segmentation method is thus 
mandatory to properly use the information provided by 
molecular imaging.

In a previous publication, a segmentation method based 
on random walks on graphs (RW) had been used on phan-
tom studies to assess its accuracy with excellent results 
[15]. Unfortunately, in clinical practice with real patients, 
our previous method often fails because cancers in PET 
imaging now have complex shapes, such as lesions with 
bifurcations, and, unlike phantom spheres, images show 
inhomogeneous uptake regions. Figure 1 shows a bifur-
cated PET/CT cancer in an oncological patient with HNC: 
The volume of a metabolic lesion may evolve splitting it 
into several sub-lesions, merging them in a single lesion, or 
both. Thus, a complex shape requires an accurate and effi-
cient segmentation method capable of following the lesion 
in its whole volume and shape.

In this study, an enhanced RW algorithm is proposed. 
Unlike standard RW algorithm, the proposed enhanced 
algorithm includes a k-means clustering technique to select 
the target seeds along the whole cancer volume, resulting 
in a precise delineation of complex lesions. The achieved 
results are more accurate than the results produced by the 
standard RW algorithm. The above feature improves the 
BTV delineation accuracy in a RTP as well as the calcu-
lation of the total lesion glycolysis (TLG) and its frac-
tional change, which is needed in the clinical practice for 
a treatment response evaluation [16]. Unlike the original 
RW method, an adaptive probability threshold has also 
been included to differentiate between a target and a back-
ground region. The adaptive probability threshold takes 
into account the intensity changes between adjacent PET 
slices along the metabolic volume, resulting in an operator-
independent algorithm.

2  Methods

2.1  Phantom studies

National Electrical Manufacturers Association International 
Electrotechnical Commission (NEMA IEC) body phantom 
was used to estimate the accuracy of the PET segmenta-
tion algorithms. The phantom is composed of an elliptical 
cylinder (D1 = 24 cm, D2 = 30 cm, h = 21 cm) with six 
spheres of different diameters (d1 = 10 mm, d2 = 13 mm, 
d3 = 17 mm, d4 = 22 mm, d5 = 26 mm, d6 = 37 mm) 

Fig. 1  A PET lesion that evolves splitting into two parts and merging 
in a single part along its volume
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placed at 5.5 cm from the center of the phantom. Spheres 
and background were filled with FDG. Actual sphere and 
background radioactivity concentrations were measured 
using a dose calibrator system (Dose calibrator PET Dose, 
Comecer). Background radioactivity concentration ranged 
from 2 kBq/ml to 8 kBq/ml at the time of acquisition. The 
ratio between measured sphere and background radioac-
tivity concentrations (S/B) ranged from 2 to 11 for 4 inde-
pendent experiments. The proposed segmentation method 
was assessed by matching the sphere delineation with the 
ground truth in the CT images.

2.2  Clinical studies

The clinical feasibility of the proposed segmentation algo-
rithm was assessed in oncological PET studies. Eighteen 
patients affected by HNC and subjected to diagnostic PET/
CT scan before radiotherapy treatments were selected. The 
institutional Medical Ethics Review Board approved the 
study protocol, and all subjects signed a written informed 
consent form. Patients fasted for 12 h before the PET exam-
ination, and the FDG was administered. The PET/CT onco-
logical protocol began 60 min after the FDG administration. 
Patients breathed normally during the PET and CT exami-
nations, and scanning was executed from the top of the skull 
to the middle of the thigh with the arms along the body. Two 
nuclear medicine experts of diagnostic and staging purposes 
reported these studies. The active tumor volume was manu-
ally defined by drawing a 2D outline slice by slice: BTV 
included the cancer volume with an intense tracer uptake 
with respect to background FDG activity level. The study 
is not a clinical trial but an observational study that did not 
influence the management of oncological patients.

2.3  Data acquisition

The acquisition of phantom experiments and clinical stud-
ies was performed using the Discovery 690 scanner with 
time of flight by General Electric Medical Systems. For 
each bed position, the PET image volume consisted of 
256 × 256 × 47 voxels of 2.73 × 2.73 × 3.27 mm3 size, 
while the CT volume consisted of 512 × 512 × 47 voxels 
of 1.36 × 1.36 × 3.75 mm3 size. The phantom and patient 
protocols included a SCOUT scan at 40 mA, a CT scan at 
140 keV and 150 mA (10 s), and 3D PET scans (2.5 min 
per bed position). Phantoms were acquired in two bed posi-
tions. PET images were reconstructed by a 3D ordered sub-
set expectation maximization (OSEM) algorithm.

2.4  The random walk algorithm

Graph-based methods are used to perform segmentation of 
images. The graph cut algorithm [17] is a computationally 

expensive algorithm, and it has no exact solution. In addi-
tion, it may return very small regions for images with low 
contrast or which are noisy. To solve this problem, known 
as “small cut”, many seed points must be placed. The RW 
algorithm was developed by Grady [18] and was extended 
for image segmentation [19]. Despite both of them being 
graph-based methods, they are actually quite different. 
Rather than considering the segmentation as a max-flow/
min-cut problem, RW treats the segmentation as the solu-
tion of a linear system with an exact solution. In addition, 
RW is less susceptible to “small cut” behaviors than graph 
cut ones and is more efficient in terms of handling ambigu-
ities among object boundaries. The PET image is converted 
into a graph where some voxels are known and others are 
unknown. The aim is to assign a label to unknown nodes. 
This is done by finding the minimum cost/energy among all 
possible scenarios in the graph to provide an optimal seg-
mentation. The RW problem has the same solution as the 
combinatorial Dirichlet problem [18]. A threshold of 50 % 
is chosen to discriminate the foreground from the back-
ground so that a voxel binary mask can be created:

•	 target node value = 1 if its probability ≥ 50 %
•	 background node value = 0 if its probability < 50 %.

This threshold implies that any voxel with less than a 
50 % chance of being in the foreground is rejected.

The weights wij between nodes, necessary for the walk 
moving on the graph, are imposed by a Gaussian-like 
function:

where both gi and gj are the intensities of the voxels i and 
j, respectively; β is a free parameter depending on the user.

2.4.1  The random walk algorithm in PET imaging

The Gaussian weighting function for the PET image has 
been defined as:

to incorporate metabolic information in the RW algorithm. 
The SUV is the standardized uptake value (SUV), the most 
common semi-quantitative parameter used to estimate FDG 
accumulation within a lesion in clinical practice. The SUV 
normalizes the voxel activity considering acquisition time, 
administered activity, and patient’s weight. Hence, the PET 
image is converted into a lattice where the SUV of each 
voxel is mapped to wij value in accordance with Eq. 2. Due 
to the partial volume effect (PVE), the separation of tar-
get and background voxels is very difficult. To reduce this 

(1)wij = exp
(

−β
(

gi − gj
)2
)

(2)wij = exp
(

−β
(

SUVi − SUVj

)2
)
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effect, voxels of similar intensity have been grouped with 
the probability likelihood for each cluster (target and back-
ground) to the original RW algorithm as proposed in [20]. 
Fuzzy c-means algorithm is used to identify the target and 
background clusters.

2.5  The enhanced version of the random walk 
algorithm

The RW method is very sensitive to the choice of β factor 
in the Gaussian-like weighting function in Eq. 2. β influ-
ences how quickly the probability decreases with increas-
ing intensity differences: A high β value reduces the weight 
of walker, which weakens the connection between the adja-
cent voxels and underestimates the foreground volume. 
Vice versa, a low β value increases the weight, which over-
estimates the target volume. In [21], the authors improved 
RW robustness in PET imaging, but they did not deal with 
the dependence of this parameter. In [20], the authors take 
into account this limitation using the Euclidean distance 
between adjacent nodes. Nevertheless, the authors do not 
consider the issue of complex lesions, which may split into 
several parts or merge into a single part or both of these, 
like HNC in which the Euclidean distance might not be an 
optimal solution. The Euclidean distance does not provide 
any information regarding the number of hot areas in the 
bifurcated lesion, like the one shown in Fig. 1. The pro-
posed approach provides an enhanced version of the origi-
nal RW method to automatically detect foreground/back-
ground seeds including k-means clustering to make the 
BTV delineation process feasible in complex and hetero-
geneous lesions, like bifurcated ones. K-means is implic-
itly based on Euclidean distances and, in addition, is able 
to follow the evolution of the target in the whole volume 
identifying centroids of hot regions.

In addition, the proposed approach automatically com-
putes the probability threshold for each slice to discrimi-
nate target voxels from background ones to obtain the final 
cancer segmentation. In the original RW, the final binary 
delineation is obtained using a fixed threshold value of 
50 %. In the proposed method, the adaptive probability 
threshold of each slice is computed separately, taking into 
account the intensity gradient and contrast changes of the 
metabolic lesion over the volume. Finally, in phantom stud-
ies emulating clinical conditions, the RW with β = 1 pro-
vides higher Dice similarity coefficients (DSC) than other 
β values (0.5, 0.7, 0.9, and 2). Under the proposed context, 
the β factor is set to 1, as also proposed in [20], and the 
weights between nodes, necessary for the walk moving on 
the graph, are based just on SUVs (Eq. 2). The proposed 
algorithm retains all the properties of the original RW 
method and, in addition, uses an adaptive parameter to have 
a more robust performance.

2.5.1  The K‑RW algorithm: the RW algorithm 
with K‑means

An automatic user-friendly method to detect background 
and foreground seed points is proposed. The user draws 
a line on the coronal PET image along the target, and the 
axial slice (slicemax) with maximum SUV (SUVmax) is auto-
matically identified and showed to the user that draws a 
new line along the lesion. This approach allows the cancer 
to be properly delineated, excluding false positives (nor-
mal structures like the brain, heart, bladder, and kidneys 
that normally have high FDG uptake). The algorithm can 
be broken down into two main steps: the pre-segmenta-
tion step to automatically detect the RW seeds and the 
segmentation step to delineate the final metabolic cancer. 
The initial target seeds are the voxels corresponding to the 
line drawn by the user (target seed line). The delineation 
method is achieved by the following steps:

1. The target seeds with a SUV less than 30 % (optimal 
threshold identified in phantom experiments, see “3.1 
Trials and Results on Phantoms” section) of the SUV-

max are removed to avoid any necrotic or background 
area.

2. The 8-neighborhood (north, south, west, east, and the 
4 diagonal directions) of the voxel with SUVmax are 
explored to detect background seeds. The neighbor 
with a value less than 30 % of the SUVmax is identified. 
Those 8 voxels are marked as background seeds.

3. The RW delineation performs a “rough” pre-segmen-
tation by utilizing the target seed line and the 8 back-
ground seeds. The probability threshold to discriminate 
target from background voxels is fixed at 50 %: Any 
voxel with less than a 50 % chance of being in the fore-
ground is rejected.

4. The k-means algorithm is used to automatically select 
k-cluster centers within the pre-segmented lesion. In a 
complex volume, a lesion can be divided into two or 
more areas with different hot peaks. This algorithm 
follows the evolution of the target in the whole vol-
ume, identifying centroids of hot regions. In the event 
of a homogenous target (such as a sphere in phantom 
studies), the algorithm returns a single centroid. The 
k value is automatically inferred; a more accurate 
description is proposed in the next Sect. 

5. The centroids (one or more) and the voxels within the 
pre-segmented lesion with a SUV greater than 90 % 
(optimal threshold identified in phantom experiments, 
see “3.1 Trials and Results on Phantoms” section) of 
SUVmax are identified as new target seeds.

6. The RW algorithm performs the segmentation by uti-
lizing the seeds identified in step 2 (background seeds) 
and 5 (target seeds).
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7. For the first slice (slicemax), the user can manually 
change the probability threshold, set by default to 
50 %, to discriminate target from background voxels in 
order to select the value that optimizes the segmenta-
tion task: The probability threshold chosen by the user 
in the slicemax remains fixed for the whole volume.

This process is repeated for all the slices to obtain the 
whole lesion volume, and it is performed in parallel for 
slices above and below the first one. In particular, the seeds 
are propagated in the subsequent slices until no segmenta-
tion or abnormal increment of target seeds is verified. An 
overview of the proposed seed localization method is out-
lined in Fig. 2.

2.5.1.1 K‑means clustering for target seed detection The 
input of the k-means algorithm is the matrix containing the 
pre-segmented lesion in step A). It returns the coordinates 
of the k centroids of hot regions, where k is the number of 
clusters with which the data are segmented.

The k value is automatically inferred:

•	 k = 2 for the target seed line containing voxels with 
SUV greater than 30 % of the SUVmax. This check per-
mits the exclusion of necrotic or background area. The 
two clusters represent cancer and background regions.

•	 k = n+1 for the start target seed line containing seeds 
with SUV less than 30 % of the SUVmax. These vox-
els belong to the background or necrotic region: The 
seed line passes from one “hot” region to another “hot” 
region (Fig. 3). k = n + 1 indicates the n “hot” regions 
corresponding to the segment number of the target seed 
line after the thresholding step and the background 
region (various background regions correspond to a sin-
gle region).

2.5.2  The AK‑RW algorithm: the K‑RW algorithm 
with adaptive probability threshold

A further extension of the K-RW method to automati-
cally change the probability threshold for each slice to dis-
criminate foreground from background voxels is proposed 
to take into account the intensity gradient and contrast 
changes of the lesion over the whole target volume.

The algorithm is the same as the previous one except 
for step 7 where the probability threshold is automati-
cally inferred by the system for each slice (the probability 
threshold changes during volume delineation). The AK-RW 
method flowchart is shown in Fig. 4.

Fig. 2  Pre-segmentation and 
segmentation steps in the slice-

max are shown in (a–c). The user 
draws a red line on the lesion 
(a). Then, the RW algorithm 
performs a rough pre-segmen-
tation step [green region of 
interest in (b)] to automatically 
detect the seeds used to perform 
the final segmentation step (c)

Fig. 3  Target seed line: Voxels with SUV greater than 30 % of the 
SUVmean belong to the lesion (green segments). Voxels below the 
threshold belong to the background (blue segment). In this case, k = 3 
(2 “hot” regions and the background region)
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The probabilistic output of K-RW segmentation is pro-
cessed to obtain an adaptive threshold value (P) by the fol-
lowing steps:

1. Calculating the mean (M) of the probability values 
inside a large pre-segmented lesion obtained by using 
a default probability threshold of 80 % (optimal thresh-
old identified in phantom experiments, see “3.1 Trials 
and Results on Phantoms” section).

Identification of two groups of voxels:

•	 Voxels with a probability < M.
•	 Voxels with a probability ≥ M.
•	 Calculating the probability means (P1 and P2) of the 

two groups.
•	 The adaptive threshold value is then calculated as P = ½ 

(P1 + P2).

This method follows the whole lesion volume, taking 
into account the gradient of intensity and contrast changes 
of the lesion in different PET slices.

2.6  Evaluation metrics

The segmentation performance of the proposed methods is 
evaluated by making a volumetric comparison with man-
ual BTV segmentation using the DSC, median Hausdorff 
distance (HD), and true positive and false positive volume 
fractions (TPVF and FPVF). The DSC measures the spatial 
overlap between the manual and the automated segmenta-
tion volume: A DSC value equal to one indicates a perfect 

match between the two volumetric segmentations, while 
a DSC whose value is zero indicates no overlap. HD is a 
shape dissimilarity metric measuring the most mismatched 
boundary voxels between automatic and manual BTV: A 
small median of HD values means an accurate segmenta-
tion, while a large median of HD values means no accu-
racy. TPVF concerns the fraction of the total amount of tis-
sue inside the target lesion (sensitivity), and FPVF denotes 
the amount of tissue falsely identified (specificity = 100 
- FPVF) [22]. A perfect segmentation algorithm would 
be 100 % sensitive (segmenting all voxels from the target 
voxels) and 100 % specific (not segmenting any from the 
background voxels). The average time employed to deline-
ate targets is recorded to evaluate algorithm performance.

The inter-operator agreements between the two radia-
tion oncologist segmentations are analyzed by DSC overlap 
ratios. The patient studies are used to assess the applicabil-
ity of the proposed algorithms in a clinical environment.

2.7  Comparison against other methods

The performance of the proposed methods (K-RW and 
AK-RW) is compared to the PET image segmentation 
methods commonly used in the clinical environment. In 
particular, K-RW and AK-RW algorithms, the original RW 
method, thresholding method (40 %), and region growing 
method [23, 24] have been implemented. For this purpose, 
a software package to provide a segmentation task tool 
has been implemented on the MATLAB R2014 simula-
tion environment, running on a general purpose PC with a 
3.00 GHz Intel R CoreTM i5-2320 processor, 4 GB mem-
ory, and 64-bit Windows 7 Professional OS.

Fig. 4  AK-RW method flow-
chart
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3  Results

3.1  Trials and results on phantoms

The delineation method accuracy was assessed using 
spheres of known volumes.

In Eq. 2, β = 1 provided the highest DSCs among all the 
tested β-values (0.5, 0.7, 0.9, 1, and 2).

30 % and 90 % are the SUVmax threshold values 
required to identify the background and target seeds (see 
Sect. 2.5.1) that minimize the differences between CT 
and PET volumes using DSC measure. The threshold val-
ues ranged from 10 % to 40 % and from 70 % to 95 % for 
background and target seeds, respectively, with a step size 
of 5 % in both cases. In the same way, the adaptive prob-
ability threshold value of 80 % (see Sect. 2.5.2) produced 
the highest DSC (threshold range: 10 % ÷ 95 %, step size 
of 5 %).

Figure 5 shows the mean DSC values in four independ-
ent phantom experiments carried out at different S/B: 2–3 
for the phantom “a”, 3–5 for the phantom “b”, 5–6 for the 
phantom “c”, and 6–7 for the phantom “d”.

The K-RW method showed a DSC range from 
83.51 % (phantom “d”) up to 99.86 % (phantom 
“a”) for the spheres with a diameter less than 17 mm 
(DSC = 92.95 ± 5.90 %), and from 87.71 % (phantom 
“a”) up to 99.43 % (phantom “d”) for the spheres with 
a diameter exceeding 17 mm (DSC = 96.17 ± 3.48 %). 
Considering all spheres, phantom “b” had the best mean 
DSC (97.33 ± 1.87 %) and phantom “a” the worst one 
(93.29 ± 5.44 %). HD ranged from 1.27 mm (phan-
tom “c”) up to 2.71 mm (phantom “b”) for the smaller 
spheres (HD = 1.72 ± 0.28 mm), and from 0.1 mm 
(phantom “a”) up to 2.73 mm (phantom “b”) for the 
larger spheres (HD = 0.8 ± 0.13 mm). The mean TPVF 
was 93.18 ± 5.73 % for phantom “a”, 98.70 ± 3.20 % 

for phantom “b”, 95.85 ± 4.28 % for phantom “c”, 
96.81 ± 3.71 % for phantom “d”.

The AK-RW method showed a DSC range from 80.92 % 
(phantom “c”) up to 99.98 % (phantom “b”) for the smaller 
spheres (DSC = 89.55 ± 7.16 %), and from 93.42 % 
(phantom “a”) up to 99.39 % (phantom “b”) for the larger 
spheres (DSC = 97.32 ± 1.73 %). Considering all spheres, 
phantom “b” had the best mean DSC (97.23 ± 3.56 %) and 
phantom “a” the worst one (93.45 ± 4.77 %). HD ranged 
from 1.35 mm (phantom “c”) up to 2.81 mm (phantom “b”) 
for the smaller spheres (HD = 1.81 ± 0.19 mm), and from 
0.1 mm (phantom “a”) up to 2.73 mm (phantom “b”) for 
the larger spheres (HD = 0.9 ± 0.11 mm). The mean TPVF 
was 93.08 ± 9.66 % for phantom “a”, 98.37 ± 2.13 % 
for phantom “b”, 97.30 ± 1.11 % for phantom “c”, and 
98.74 ± 2.32 % for phantom “d”.

The mean specificity (100 – FPVF) was ~ 100 % for all 
experiments and algorithms.

High DSC and TPVF, and low HD and FPVF values 
confirm the accuracy of the K-RW and AK-RW methods. 
The AK-RW algorithm is slightly less accurate than K-RW. 
This finding had been foreseen because K-RW is a semi-
supervised algorithm: The user can choose the best of the 
probability threshold values to properly delineate the PET 
spheres. However, user-independent techniques achieving 
a good segmentation, such as AK-RW method, are crucial 
in a clinical environment. In addition, the AK-RW method 
follows the whole lesion volume, taking into account the 
changes in both intensity gradient and contrast of the PET 
lesion in different slices. This is a key feature in clinical 
studies.

An analysis of the time performance showed that both 
algorithms are fast: The segmentation time for larger 
spheres was around 4 s. Obviously, in K-RW delinea-
tion, the time needed for the user choice of the probability 
threshold was excluded.

Fig. 5  Mean DSC obtained from NEMA IEC body phantoms. Phantoms have a measured S/B of 2–3 for phantom “a”, 3–5 for phantom “b”, 
5–6 for phantom “c”, and 6–7 for phantom “d”
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3.2  Trials and results on patient studies

Manual delineation was obtained by averaging the segmen-
tations performed by two nuclear medicine physicians with 
an inter-observer agreement of 86.51 ± 3.65 %.

Figure 6 reports the quantitative comparison between 
semi-automatic and manual segmentation. FPVF is very 
low for all algorithms since there are a lot fewer target vox-
els than background ones; a single PET slice consists of 
65,536 voxels while the largest lesion is less than 180 vox-
els in a single PET slice. Results based on the DSC, HD, 
and TPVF values show that the K-RW and AK-RW algo-
rithms outperform the best algorithms taken into account 
for comparison.

In addition, region growing and RW methods often 
failed to properly delineate bifurcated lesions: Fig. 7 shows 
the segmentation task of two lesions with a complex shape 

that was obtained using the different methods. In particu-
lar, the figure shows the PET slice where the target lesion 
splits into two regions. In both examples, AK-RW (cyan) 
and K-RW (magenta) methods correctly delineate the 
bifurcated lesions while region growing and RW methods 
fail to delineate the bifurcation. The threshold (yellow) 
method correctly delineates the first bifurcated lesion, but 
it requires an accurate VOI (volume of interest) definition 
by the user to enclose the lesion volume and to restrict 
the delineation bounds. In this way, false positives are 
removed, but the segmentation time increases consider-
ing the need to delineate the VOI. However, the proposed 
methods are able to follow the bifurcation by identifying 
the centroids of hot regions slice after slice; also qualitative 
assessment indicates that AK-RW and K-RW methods are 
better than other approaches to properly follow the whole 
lesion volume. The volumes of two segmented lesions are 

Fig. 6  Results based on 40 lesions in 18 patients, for each segmentation algorithm, are shown

Fig. 7  Segmentation examples of two bifurcated lesions (A and B 
rows) are shown. AK-RW method (cyan in the first column), K-RW 
method (magenta in the second column), RW method (black in the 

third column), region growing method (red in the fourth column), and 
threshold method (yellow in the fifth column) are overlaid with man-
ual segmentation (blue in all columns)
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shown in Fig. 8: The AK-RW algorithm is efficient to prop-
erly follow the whole cancer volume.

4  Discussion

Qualitative visual interpretation of PET studies is the 
most commonly used method in clinical environment. The 
manual segmentation method depends on the experience 
of the nuclear physician, limiting the measurement accu-
racy. Due to the dependency of both operator experience 
and display window level settings, the process is time-con-
suming and affected by inter- and intra-observer variabil-
ity. To reduce these issues, several automatic methods have 
been presented in literature, although few clinical studies 
are available, and there is no consensus for proper BTV 
determination.

In radiotherapy, CT imaging is considered the standard 
approach for target volume delineation in HNC. On the 
other hand, CT imaging does not show cancer biological 
features. For this reason, PET has been introduced to assist 
radiation oncologists in clinical routine.

In phantom studies, the CT region matches the related 
PET region since the radiotracer is contained in the CT 
visible sphere. This is not confirmed in patient studies due 
their complexity and variability. Head and neck lesions 
may have different PET margins when compared to ana-
tomical margins [15]. The metabolic volume cannot match 
the cancer anatomic extension, showing different and addi-
tional information, like for CT invisible metastases and 
cancer extensions [25, 26]. It is not appropriate to consider 
a one-to-one relationship between anatomical and func-
tional images. In addition, misregistration between the two 
series can occur due to a patient’s motion artifacts [27]. The 
assumption of identical boundary in PET and CT images is 
questionable with special reference to the HNC region [25–
27]. For these reasons, we have independently extracted the 
BTV from anatomical imaging, although many studies use 

co-registered CT images information to identify features 
and distinguish a lesion from the background and, conse-
quently, for PET image segmentation [21, 28, 29]. Finally, 
a whole automatic detection method cannot be imple-
mented to identify oncological lesions in whole-body PET 
scans, since healthy organs like the brain, heart, bladder, 
and kidneys normally have a high FDG uptake. As a result, 
user interaction is mandatory.

In this study, we optimized the performance of an exist-
ing semi-automatic segmentation algorithm based on 
Grady’s RW formulation [18]. The key strategies include a 
k-means clustering algorithm to obtain refined target seed 
locations within pre-segmented lesions and a strategy to 
adaptively select the optimum threshold value to be applied 
on the RW probabilistic output, in order to obtain the final 
cancer segmentation.

Initially, the RW algorithm with an embedded k-means 
algorithm to identify hot region centroids has been pro-
posed to obtain optimized segmentation results with com-
plex lesions (see Fig. 1). Unlike the fixed 50 % threshold 
value of the original RW method, the user can manually 
change the probability value to discriminate between target 
and background voxels in order to select the value optimiz-
ing the segmentation results. We call this method “K-RW”.

Subsequently, an extension of the K-RW method has 
been developed to adaptively determine the probability 
threshold for discriminating between cancer and back-
ground voxels. We call this method “Adaptive K-RW” 
(AK-RW). The two methods are able to deal with PET 
image segmentation, speeding-up considerably when com-
pared with the time needed for manual segmentation.

The accuracy of the proposed methods is optimal in 
phantom studies: High DSC and TPVF values, and low 
HD and FPVF values confirm the robustness and the accu-
racy of the two methods. A DSC rate greater than 90 % is 
almost always observed in the larger spheres. A reduced 
accuracy can occur for small lesions; this is compatible 
with the large errors in the volume estimation reported for 

Fig. 8  3D segmentation exam-
ples using AK-RW algorithm 
are shown



906 Med Biol Eng Comput (2017) 55:897–908

1 3

small cancer volume [30]. The PVE for smaller objects 
is one of the most important factors impacting the quali-
tative and the quantitative accuracy in PET imaging [31]. 
The images are blurred due to the limited spatial resolution 
of PET scanners and small lesions appear larger. For this 
reason, the method described in [20] has been used in the 
proposed approach.

The AK-RW method is slightly less accurate than 
the supervised K-RW method, but this is to be expected 
because of the automatic selection of probability thresh-
old value. However, AK-RW achieves good segmentation 
results with the benefit of requiring a lower user interac-
tion effort and lower levels of the user’s specialist knowl-
edge than the first method. In addition, AK-RW does not 
depend on the choice of the probability threshold value to 
discriminate between target and background regions. The 
development of user-independent techniques capable of 
performing a good segmentation step is crucial in a clinical 
environment.

Clinical studies show that the proposed methods provide 
better results in minimizing the difference between manual 
and automated segmentation than the other state-of-the-art 
methods. K-RW and AK-RW methods are able to deal with 
complex volume delineation, unlike the other ones that 
have shown an acceptable delineation under specific condi-
tions, such as homogeneous uptake concentration. Never-
theless, lesions in PET studies can have complex and bifur-
cated shapes and inhomogeneous uptake concentration. In 
these cases, literature methods fail in BTV delineation. The 
proposed study takes into account these issues to prevent 
potential disease progression, in accordance with the accu-
racy required in the radiotherapy environment.

5  Conclusions

An enhanced RW algorithm embedding both a k-means 
clustering algorithm and an adaptive probability thresh-
old (AK-RW) has been described in this paper. The 
new AK-RW maintains all the properties of the original 
RW algorithm, but it is capable of selecting refined tar-
get seed locations for initializing the RW algorithm. 
AK-RW is also able to deal with intensity gradient and 
contrast changes of complex, bifurcated and inhomogene-
ous lesions over the whole target volume. The proposed 
method is very powerful in terms of PET image segmen-
tation accuracy and time performance. It may be used as a 
Medical Decision Support System to enhance the current 
daily methodology performed by healthcare operators in 
radiotherapy treatments.
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