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1 Introduction

Pulmonary hypertension (PH) is a pathophysiological condi-
tion defined as an increase in mean pulmonary artery pressure 
(PAP) above 25 mmHg at rest as assessed by right heart cath-
eterization [12]. In an observational study, the prevalence of 
PH in an unselected population was found to be of at least 326 
cases/100,000 [57]. Untreated or inadequately treated PH is 
fatal as it ultimately leads to right ventricular heart failure [12].

After initiation of PH therapy, the follow-up of the 
patient’s health status is often limited to punctual invasive 
measurements at the clinic at intervals of months [12, 33], 
which makes the anticipation of worsening conditions com-
plex between clinic visits. In perioperative settings, PH is a 
major cause of risks and complications [13]. The benefits 
and safety of invasive procedures (pulmonary artery cath-
eterization) have raised serious concerns due to the lack of 
evidence showing any decrease in morbidity and mortality 
following their use [16]. The need for a safer solution for 
the clinical management of patients with PH is thus strong. 
An optimal PAP monitoring modality should be noninva-
sive (free of any risks or complications, and thus compati-
ble with frequent measurements) and unsupervised (able to 
operate without supervision of a medical doctor) [1]. Such 
a modality does not currently exist.

In the present study, we propose and investigate the 
potential of a novel noninvasive, continuous and unsuper-
vised PAP monitoring approach based on the pulse wave 
velocity (PWV) principle and the use of electrical imped-
ance tomography (EIT).

1.1  The pulse wave velocity principle

The PWV is the velocity at which a pressure wave trav-
els along the wall of an artery by expanding it. The PWV 
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principle states that this velocity will be higher if said 
artery is stiffer [62]. It follows that PWV and blood pres-
sure are intrinsically linked as arterial stiffness induces 
rises in both PWV and blood pressure [62]:

The arrows simply indicate how each parameter relates to 
the others, but do not necessarily imply linearity (the rela-
tionship between blood pressure and PWV is typically 
nonlinear [37]). This physiological principle is the basis of 
numerous noninvasive systemic blood pressure monitor-
ing devices, as PWV can easily be measured noninvasively 
in the systemic circulation from superficial arteries [54]. 
However, as the pulmonary circulation has no superficial 
arteries, the noninvasive monitoring of the PWV in the 
lungs—and therefore the noninvasive monitoring of the 
PAP via the PWV principle—remains a challenge.

1.2  Noninvasive monitoring of the pulmonary PWV

EIT is a safe, low-cost and noninvasive monitoring technique 
that reconstructs the likely distribution of intrathoracic imped-
ance from measurements performed with a belt of electrodes 
attached around the thorax [20]. In the lungs, impedance is 
predominantly affected by respiratory activity: Cardiovascu-
lar-related impedance changes, associated with the pulsatility 
of the pulmonary arteries, are of much smaller amplitude [11]. 
The functional analysis of these pulsatile changes in pulmo-
nary impedance is hypothesized to allow extracting param-
eters related to the pulmonary PWV, and thus information 
about the underlying PAP [56]. This is precisely the approach 
targeted in the present study, as further detailed hereafter.

Let us consider the ejection of blood by the right ven-
tricle starting with the opening of the pulmonary valve at 
time t = 0. The resulting pressure pulse propagates at a 
certain velocity (the PWV) to the various branches of the 
pulmonary arterial tree. At any downstream arterial site x , 
the passage of the pressure pulse distends the arterial wall 
(Fig. 1a) with a pressure p(x, t) (Fig. 1b). The local disten-
sion of the arterial wall induced by p(x, t) induces a local 
variation in electrical conductivity σ(x, t) (Fig. 1c). Conse-
quently, p(x, t) and σ(x, t) are inherently synchronous, as 
the former induces the latter. Therefore, p(x, t) and σ(x, t) 
are expected to have identical pulse transit times (PTT), 
i.e., the time required by the pressure pulse to reach loca-
tion x in the arterial tree (see dashed line in Fig. 1b, c). 
The PTT being, by definition, inversely proportional to the 
PWV, we hypothesize that tracking changes in pulmonary 
PWV, and therefore in PAP (PWV principle), can be done 
by tracking changes in the PTT of σ(x, t) assessed by EIT:

Arterial Stiffness ր ⇒
Blood Pressure ր

Pulse Wave Velocity ր
.

PAP ր⇐⇒ PWV ր⇐⇒ EIT-derived PTT ց .

1.3  Previous work and study goal

The use of EIT for monitoring patients with PH has previ-
ously been proposed by the group of Smit et al. [53]. They 
observed a decreased maximal pulmonary systolic imped-
ance change (�Zsys) in patients suffering from advanced 
stages of idiopathic pulmonary arterial hypertension. �Zsys 
was hypothesized to represent pulmonary perfusion and 
its decrease to originate mostly from the reduction of the 
vascular bed. However, the physiological link between the 
amplitude information of the pulmonary impedance change 
and the PAP remains to this day unclear, as �Zsys may not 
unequivocally be representative of perfusion [5, 18]. Con-
versely, the timing information of the pulmonary imped-
ance change has a direct physiological link to the PAP 
through the PWV principle.

We have previously demonstrated the feasibility of this 
PWV-based approach experimentally for blood pressure 
monitoring in the systemic circulation [55]. In the present 
study, we investigate its feasibility for the pulmonary circu-
lation using simulations on a 4D bio-impedance model of 
the human thorax.

2  Methods

We test our approach on a model as this offers several 
advantages over clinical data: (1) We can easily simulate 
various PAP-affecting pathological conditions, in particular 
different types of PH, thus avoiding protocol- or pathology-
specific results that could arise from clinical data; (2) we 
can freely induce PAP variations, be they small or large; 
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Fig. 1  a At each cardiac cycle, the wall of the artery is distended 
by the passage of a pressure pulse. b The pressure exerted by blood 
at a given location x along the wall is described by p(x, t). c The 
small change in blood volume induced by this distension creates a 
small increase in electrical conductivity σ(x, t). Both waveforms 
(p(x, t) and σ(x, t)) being inherently synchronous, their timing infor-
mation—namely their PTT—is identical
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(3) we do not depend on reference hemodynamic vari-
ables measured in clinical settings, which can be difficult 
to obtain (e.g., pulmonary PWV) or affected by transient 
hemodynamics (e.g., PAP) [46].

2.1  Thoracic bio‑impedance model

2.1.1  Main components and functionalities

The 4D thoracic bio-impedance model aims at simulating 
the changes in conductivity occurring inside the thorax over 
the course of a cardiac cycle. Only conductivity changes 
associated with cardiac activity are modeled; respiration-
related changes are not included (the validity of this simpli-
fication is discussed in Sect. 4). 

We use a modified version of the 4D bio-impedance 
model developed by our group [6]. This model, shown in 
Fig. 2, consists in a mesh of a human thorax where each 
mesh element is at a fixed location x and has a conductivity 
value σ(x, t) that varies over time, in function of the organ 
or anatomical structure occupying the location of the ele-
ment at time t. The model describes cardiac-related con-
ductivity changes induced by the heart, the aorta and the 
lungs. The geometrical deformations of the cardiac cham-
bers and the aorta are directly based on 4D magnetic res-
onance imaging (MRI) scans of a healthy male volunteer 
(62 kg, 178 cm, 28 years old). The same could obviously 
not be done for the pulmonary arterial tree, due to the size 
of its microvasculature and the limited resolution of MRI 
scans, which is why a simplified model of the pulmonary 

vasculature was implemented in [6]. In the present study, 
we replace this pulmonary model by a 4D bio-impedance 
model of a realistic pulmonary arterial tree.

To build this pulmonary model, we start by building an 
anatomically realistic static 3D model of the whole pulmo-
nary arterial tree (Sect. 2.1.2). Then, in order to dynamize 
it (i.e., to make it 4D by simulating the pressure-induced 
distension of its arteries over time), we use a hemodynamic 
model of the pulmonary circulation (Sect. 2.1.3). Finally, 
we transform this 4D model into a 4D bio-impedance 
model by describing how the pressure-induced distension 
of the pulmonary arteries affects the conductivity σ(x, t) in 
the lungs (Sect. 2.1.4).

2.1.2  Anatomical model of the pulmonary arterial tree

The creation of the 3D anatomical model of the pulmonary 
arterial tree was a two-step process. As a first step, an ana-
tomically accurate model of the large pulmonary arteries 
by Reymond [45]—based on contrast-enhanced magnetic 
resonance angiography scans—was rigidly registered onto 
our corresponding MRI-based arteries.

As a second step, the remaining (medium and small) 
arteries were generated using a validated shape-dependent 
volume-filling branching algorithm [7]: The lung volumes 
were automatically filled with a branching tree using the 
end segments of the large arteries as seed points for the 
tree growing procedure. The resulting 3D pulmonary arte-
rial tree is shown in Fig. 3. The tree growing procedure was 
controlled through appropriate branching and asymmetry 
ratios [40] and stopped when the smallest vessels reached 
a radius of 0.01 mm (pre-capillary vessels) [21]. Therefore, 
the obtained model accurately describes the geometry and 
morphometry of a realistic pulmonary arterial tree.

2.1.3  Circulatory model of the pulmonary arterial tree

Several circulatory models exist to assess the distribution 
of pressure and flow in the pulmonary arterial tree [44, 45, 
63]. Some models, such as the 1D distributed parameter 
model validated by Reymond [45], focus on the larger seg-
ments of the arterial tree, where nonlinear effects occur and 
numerical solving schemes are required. Solving such mod-
els numerically for the entire tree is computationally infea-
sible, which is why linearized models are typically used 
for the smaller arteries and provide analytical solutions for 
pressure and flow [40]. In the present study, Reymond’s 1D 
distributed parameter model will be used to assess the dis-
tribution of pressure and flow in the larger arteries of the 
pulmonary arterial tree whereas a linearized solution will 
be used for the smaller arteries, where nonlinear effects are 
negligible. Hereafter, we therefore briefly present 1D dis-
tributed parameter models, such as Reymond’s model. We 

Fig. 2  4D thoracic bio-impedance model developed by our group 
[6], shown here at end diastole (t = 0). The model includes MRI-
based 4D bio-impedance models of the heart and the aorta, and a sim-
plified 4D bio-impedance model of the pulmonary vasculature. Each 
mesh element is at a fixed location, and its conductivity σ(x, t) varies 
over the time course of the cardiac cycle, in function of the organ or 
anatomical structure occupying the location of the element at time t. 
The small rectangles on the periphery of the thorax depict the EIT 
electrodes
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then explain how the governing equations of 1D distributed 
parameter models can be linearized for the small arteries 
and how analytical solutions can be derived. Finally, we 
detail the inflow and outflow boundary conditions we used 
for both Reymond’s model for the large arteries and the lin-
earized model for the small arteries.

Circulatory model for the large arteries In a 1D dis-
tributed parameter model, arteries are considered as long 
straight tapering segments of length l and time- and loca-
tion-dependent cross-sectional area A(x, t) [59] (see Fig. 4). 
The blood running through the artery is subjected to a 
pressure p(x, t) and flows at a rate q(x, t). Both quantities 
are assessed by solving the integral form of the continuity 
and longitudinal momentum Navier–Stokes equations [40, 
45]. The system of equations consists of three unknowns, 
namely pressure (p), flow (q) and arterial cross-sectional 
area (A). An empirically derived state equation describing 
the viscoelastic properties of the arterial wall is used to 
complete the system [4, 45]. The three-unknown system is 
then solved numerically, as no analytical solution exists. In 
the present study, we use Reymond’s 1D distributed param-
eter model [45] developed for the systemic circulation and 
adapted by Billiet [4] for the pulmonary circulation. A 
more detailed description of 1D distributed parameter mod-
els can be found in [40] and [59].

Circulatory model for the small arteries For the small 
arteries, the complexity required for solving the afore-
mentioned three-unknown system becomes computation-
ally infeasible due to the size of the pulmonary tree [40]. 

However, as smaller arteries do not taper significantly, the 
convective acceleration term in the longitudinal momen-
tum Navier-Stokes equation becomes negligible [9, 52] and 
the state equation can be simplified [40]. The linearization 
of the governing equations becomes possible [40], and an 
analytical solution for pressure and flow can be found in 
every arterial segment of the tree [63]. These solutions make 
heavy use of transmission line theory (by analogy with elec-
trical circuits), as small (non-tapering) arterial segments can 
be modeled by electrical analogs (Fig. 5). We implemented 
these analytical solutions for pressure and flow in the small 
arteries following the approach proposed by Wiener et 
al. [63]. A more detailed description of linearized circula-
tory models for small arteries can be found in [40].

Boundary conditions Solving Reymond’s nonlinear 
model for the large arteries and the linearized model for the 
small arteries requires the definition of inflow and outflow 
boundary conditions. To do so, it is first essential to define 
the arterial sites in the tree where the transition between the 
large and the small arteries occurs, i.e., the sites where the 
transition between the nonlinear and the linearized model 
will take place. Let us call them transition sites.

From a hemodynamic viewpoint, large arteries are 
dominated by inertial effects whereas small arteries are 

Fig. 3  Anatomical model of the pulmonary arterial tree. To help 
the visualization, not all smaller arteries are shown and a color code 
is used to illustrate the distance from the pulmonary valve (dark 
blue = close; light green = far)

A x,t( )
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0

Fig. 4  Model of a large arterial segment (tapering tube) of length l 
and cross-sectional area A(x, t)

x

l0
R´l L´l

C´l

Fig. 5  Upper panel Model of a small arterial segment (non-tapering 
tube) of length l. Lower panel Electrical analog, with R′,L′ and C′ 
the electrical resistance, inductance and capacitance per unit length, 
respectively, mimicking their hydraulic counterparts
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dominated by viscous effects [62]. As a ratio of inertial 
over viscous forces, the so-called Womersley number α is 
therefore a well-suited criterion for classifying arteries as 
either large (dominated by inertial effects: large α) or small 
(dominated by viscous effects: small α) [62]. Milnor [34] 
measured Womersley numbers at multiple arterial sites and 
found that large elastic arteries typically show Womersley 
numbers α ≥ 4. Therefore, we can define our transition 
sites as the last arterial segments in the tree (starting from 
the heart) for which α ≥ 4.

Let us now introduce the inflow and outflow boundary 
conditions for the large arteries. A typical inflow bound-
ary condition in 1D distributed parameter models such as 
Reymond’s is a flow waveform [40]. We use the waveform 
proposed by [39], as it can easily be scaled to any desired 
cardiac output (CO) and heart rate:

with t ∈ [0, T [, where T is the cardiac period and τp is the 
time to peak flow (acceleration time). This time is inversely 
related to the PAP and can be empirically derived from it 
as [23]:

where PA is the mean PAP.
As outflow boundary condition, Reymond’s model uses 

three-element Windkessel models at all transition sites [45]. 
These models are frequently used to mimic the afterload of 
the heart [61]. In Reymond’s model, they are used to mimic 
the equivalent impedance of the tree branches “seen” from 
each transition site downstream. These equivalent imped-
ances are known in our study from the 3D anatomical 
model of the pulmonary arterial tree. With both its inflow 
and outflow conditions defined, Reymond’s model can now 
be solved.

Solving Reymond’s model provides us directly with 
the inflow boundary conditions for the small arteries, as 
it determines the flow waveforms entering each transition 
site, i.e., entering the small arteries. On the other hand, 
the outflow boundary conditions for the small arteries in 
linearized circulatory models are typically set by control-
ling the value of the pressure downstream of the arterial 
tree [40] (let us call it PW, see Fig. 6). Formally speaking, 
PW represents the pressure of the capillaries or the venous 
microvasculature, which is difficult to measure in clini-
cal practice. It is, however, essentially the same as pul-
monary capillary wedge pressure if we neglect the small 
transvenous pressure gradient [32], and is assumed to be 
continuous; we discuss the validity of this assumption in 
Sect. 4.

(1)q(0, t) =
CO · t

τ 2p
exp

(

−
t2

2τ 2p

)

,

(2)τp =
1

6.8

[

2.1− log10(PA)
]

,

Setting PW to a given desired value in structured tree 
models is typically done through the use of Nt terminal 
impedances Zti (i ∈ {1, . . . ,Nt}) at the leaves of the tree [40] 
(Fig. 6). The value of each terminal impedance Zti must 
be properly set in order to ensure its upstream pressure to 
equal PW. This requires finding the flow qi running through 
each i-th leaf of the tree, as Zti = PW/qi, ∀i ∈ {1, . . . ,Nt}. 
These flow values can easily be obtained by momentarily 
setting Zti = 0 for all terminal impedances and imposing 
the desired transarterial pressure gradient (PA − PW) at the 
input of the tree.

2.1.4  Assessment of pulmonary conductivity

Transforming our 4D model into a 4D bio-impedance 
model requires assessing the effective conductivity of lung 
parenchyma σ(x, t) at every location x in the lungs. Dur-
ing breath hold, σ(x, t) is predominantly affected by arte-
rial pulsatility. The distension of the arterial bed makes 
the conductivity of lung parenchyma slightly rise above its 
end-diastolic value σ(x, 0) during systole (i.e., for t > 0 ), 
due to the high conductivity of blood (σblood ≈ 0.7 S/m 
at EIT frequencies) [17]. This end-diastolic value of lung 
parenchyma σ(x, 0) is difficult to estimate as it depends 
on the conductivity of lung alveolar tissue σalv, which 
depends on the fractional volume of air in the lungs. Sev-
eral mathematical models have been developed to express 
σalv as a function of the degree of deflation of the lungs. 
Roth et al. [47] compared several of these models and 
introduced their own, based on 3D alveolar microstruc-
tures. For lung tissue imaged at functional lung capacity as 

PA

Z tNt
Z t1

q1

Z t2

q2

Z t3

q3

Z tN -2

qN -2

Z tN -1

qN -1

tt

qNttt

...

...
PW

Small
arteries

Large
arteries

Transition sites

Fig. 6  Schematic representation of the pulmonary arterial tree, by 
analogy with electrical circuits. The tree is made of large and small 
arteries. In the large arteries, nonlinear effects are non-negligible and 
the distribution of pressure and flow in the arterial network requires 
a numerical solution. From the so-called transition sites and beyond, 
the distribution of pressure and flow in the arterial network can be 
solved analytically after linearization of the problem. Each terminal 
arterial segment in the tree (pre-capillary artery) is connected to a ter-
minal impedance Zti that allows controlling the value of the pressure 
PW at the output of the tree
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is the case in our model, their observations suggest an aver-
age value σalv = 0.1 S/m [47]. This conductivity value does 
not include extra-capillary blood vessels, i.e., the arteries 
and veins. In order to obtain the effective conductivity of 
the whole lung parenchyma σ(x, t) (including extra-capil-
lary blood vessels), Nopp et al. [38] suggested to consider 
lung tissue as a mixture of a dielectric medium (alveolar 
tissue with conductivity σalv) and conductive inclusions 
(extra-capillary blood vessels with conductivity σblood). The 
Maxwell Garnett mixing rule states that [24]:

where σm = σalv and σi = σblood are the conductivities of 
the dielectric medium and the inclusions, respectively, 
fi = fi(x, t) is the volume fraction of the inclusions, Nk are 
the depolarization factors, and k ∈ {1, 2, 3} corresponds to 
the three Cartesian coordinates. For cylindrical inclusions 
such as arterial segments, N1,2 ≈ 0.5 and N3 ≈ 0 [24]. 
Via our anatomical model of the pulmonary arterial 
tree, the volume fraction of blood vessels fi(x, t) can be 
assessed in each pulmonary voxel x over time, with pul-
monary venous blood volume approximately equal to the 
non-pulsatile (end diastolic) component of arterial blood 
volume [15]. For instance, in a small pulmonary voxel at 
location x whose volume is occupied at 10 % by arteries at 
end diastole (t = 0), the volume fraction of blood will be 
fi(x, 0) = 0.2 (10 % of arterial blood and 10 % of venous 
blood). The remaining 80 % will be occupied by lung alve-
olar tissue with conductivity σalv. Using (3), this gives us 
σ(x, 0) = 0.17 S/m in that particular pulmonary voxel. As 
the cardiac cycle unfolds (t > 0) and systole occurs, the 
arteries distend with the increase in pressure. We can pre-
cisely determine the extent of this arterial distension thanks 
to the circulatory model. With this distension, the increase 
in arterial blood volume and therefore fi(x, t) is known at 
each instant of the cardiac cycle. As a consequence, via (3), 
the value of σ(x, t) is also known for every location x in the 
lungs and for the whole cardiac cycle, which completes the 
creation of our 4D bio-impedance model.

2.2  Simulation of pathologies

The hemodynamic behavior of our 4D thoracic bio-imped-
ance model is controlled by a set of hemodynamic param-
eters: PA, PW, CI, Rt , and Ct .

2.2.1  Hemodynamic parameters description, 
interdependencies and normal values

A hemodynamic characteristic of the pulmonary circulation 
is that the product of the pulmonary vascular resistance Rt 

(3)σ(x, t) = σm +

1
3
fi(σi − σm)

∑3
k=1

σm
σm+Nk(σi−σm)

1− 1
3
fi(σi − σm)

∑3
k=1

Nk

σm+Nk(σi−σm)

,

and compliance Ct is a constant (at a given downstream left 
atrial pressure) [58]. It is commonly referred to as the pul-
monary RC time τ . In a retrospective study on large clinical 
datasets, Tedford et al. [58] derived the following relation-
ship with pulmonary capillary wedge pressure PW:

As a consequence, except for particular conditions affect-
ing left atrial pressure and thus PW, the pulmonary RC 
time τ remains constant in health and hypertension [26, 27, 
49]. Although τ is related to heart rate (HR) [27, 49], any 
reduction in Rt and related increase in Ct during hyperten-
sion treatment has been shown not to be due to a change 
in HR, and therefore the latter is constant in the model 
(HR = 80 bpm) [27].

In their literature review on pulmonary hemodynamics in 
normal subjects, Kovacs et al. [25] reported normal values 
for Rt of 0.056± 0.023 mmHg · s/mL. In our model, Rt can 
directly be obtained from the anatomical model of the pulmo-
nary arteries as the equivalent resistance of the entire tree [62]. 
We obtain Rt = 0.048 mmHg · s/mL, which is well in line 
with the aforementioned value reported by Kovacs et al. They 
also reported normal mean PAP (PA = 14.0 mmHg) and 
pulmonary capillary wedge pressure (PW = 8.0 mmHg) val-
ues, which yield τ = 0.41 s via (4). We can then obtain the 
pulmonary vascular compliance Ct using the definition of the 
pulmonary RC time:

which gives us Ct = 8.478 mL/mmHg. Lastly, we can find 
the cardiac index (CI), i.e., the cardiac output (CO) normal-
ized by the body surface area (BSA):

With BSA = 1.78 m2 calculated using the Du Bois for-
mula [10], we find CI = 4.19 L/min/m2, which is well in line 
with the value of 4.10 L/min/m2 reported by Kovacs et al.

The list of normal hemodynamic parameters obtained 
for the normotensive (non-pathological) vascular state is 
summarized in the first row of Table 1.

2.2.2  Simulation of pulmonary hypertensive conditions

By modifying the hemodynamic parameters controlling 
the model, several hypertensive conditions can be realisti-
cally simulated and allow us to test our approach in various 
forms of PH.

PH is clinically classified into five groups: pulmo-
nary arterial hypertension, PH due to left heart dis-
ease, PH due to lung diseases and/or hypoxia, chronic 
thromboembolic PH and PH with unclear and/or mul-
tifactorial mechanisms [12]. We aim at simulating one 

(4)τ = −0.0063 · PW + 0.46.

(5)Ct = τ/Rt ,

(6)CI =
CO

BSA
=

PA − PW

Rt · BSA
.
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pathological case of each group, except for the last one, 
since its pathogenesis is unclear. For each pathological 
case considered, five levels of PAP above the non-patho-
logical value (14 mmHg) will be considered, by incre-
ments of 10 mmHg (i.e. PA = {24, 34, 44, 54, 64} mmHg ). 
The case PA = 24 mmHg simulates a borderline pre-
hypertensive stage, as PH is only formally diagnosed 
for PA ≥ 25 mmHg [12]. The remaining cases (34 to 
64 mmHg) represent mild to severe levels of PAP.

Pulmonary arterial hypertension (PAH) PAH is charac-
terized by the vasoconstriction, muscularization and fibro-
sis of the small pulmonary arteries (< 0.5 mm of diam-
eter) [12]. The loss of distensibility that results from this 
vascular remodeling process progressively induces an over-
all decrease in arterial compliance in the whole tree [28, 
48]. In our model, we simulate PAH by reducing the 
diameter of the small arteries—thus increasing Rt—and Ct 

decreases accordingly (via (5)) as the pulmonary RC time 
(τ) does not change in hypertension [58].

In order to simulate the various levels of PAH, let us first 
consider the average hemodynamic parameter values in 
PAH reported by Humbert et al. [22] from a French national 
registry: PA = 55.0 mmHg, PW = 8.0 mmHg (unaffected 
in PAH) and CI = 2.5 L/min/m2. We find the correspond-
ing Rt value (0.635 mmHg · s/mL) with (6). With the base-
line PA (14.0 mmHg) and Rt (0.048 mmHg · s/mL) values 
found earlier for the normotensive case (Sect. 2.2.1), we 
now have two {PA,Rt} pairs, which allows us to predict Rt 
as a function of PA, as both quantities are linearly related in 
the pulmonary circulation [49]. We obtain:

Finally, we obtain the values of CI for each level of PAP 
using (6).

(7)Rt = 0.0143 · PA − 0.1519.

Table 1  Normal and pathology-
specific hemodynamic 
parameter values of the model

PAH Pulmonary arterial hypertension, PH-LHD pulmonary hypertension due to left heart disease, HAPE 
high-altitude pulmonary edema, CTEPH chronic thromboembolic pulmonary hypertension, PA mean pul-
monary artery pressure, PW mean pulmonary capillary wedge pressure, CI cardiac index, Rt pulmonary 
vascular resistance, Ct pulmonary vascular compliance.
a  These values actually represent capillary pressure PC, not pulmonary capillary wedge pressure PW. As 
detailed in Sect. 2.2.2, PW in HAPE is actually normal (10.0 mmHg) [31] whereas PC is abnormally ele-
vated. Increasing PW in the model can simulate either an increase in PW (as is the case in PH-LHD) or an 
increase in transvenous pressure gradient (as is the case in HAPE)
b  As the values provided for PW actually represent PW (see previous note), these Rt values actually rep-
resent pulmonary arterial resistance only, not the true values of the entire pulmonary vascular resistance. 
Those can be obtained using (6) with PW = 10.0 mmHg for all levels of HAPE [31]

Pathology PA (mmHg) PW (mmHg) CI (L/min/m2) Rt (mmHg · s/mL) Ct (mL/mmHg)

None 14.0 8.0 4.19 0.048 8.478

PAH 24.0 8.0 2.82 0.191 2.141

34.0 8.0 2.63 0.334 1.225

44.0 8.0 2.55 0.477 0.858

54.0 8.0 2.50 0.620 0.660

64.0 8.0 2.48 0.764 0.536

PH-LHD 24.0 15.3 2.66 0.111 3.284

34.0 22.6 2.23 0.173 1.835

44.0 29.9 2.02 0.236 1.154

54.0 37.2 1.91 0.298 0.758

64.0 44.5 1.83 0.360 0.499

HAPE 24.0 12.0a 3.70 0.110b 3.107

34.0 17.0a 3.70 0.155b 1.813

44.0 22.0a 3.70 0.201b 1.280

54.0 27.0a 3.70 0.246b 0.989

64.0 32.0a 3.70 0.292b 0.806

CTEPH 24.0 8.0 2.51 0.215 1.905

34.0 8.0 2.30 0.382 1.073

44.0 8.0 2.22 0.549 0.747

54.0 8.0 2.17 0.715 0.573

64.0 8.0 2.14 0.882 0.464
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The complete list of thus obtained hemodynamic param-
eter values to simulate each level of PAH is provided in 
Table 1.

PH due to left heart disease (PH-LHD) In the second 
group of pulmonary PH, the failure of the left heart to 
pump blood efficiently—as in cases of valvular diseases or 
advanced stages of heart failure—leads to an elevation of 
left heart pressures [14]. This rise in PW causes an elevation 
of PA upstream, either in a passive (PA − PW ≤ 12 mmHg ) 
or in a reactive (PA − PW > 12 mmHg) manner [12]. 
In passive PH-LHD, Rt remains normal while it can sig-
nificantly increase in cases of reactive PH-LHD due to 
capillary and arterial remodeling [14]. In a retrospec-
tive study in heart failure patients, Afshar et al. [3] 
reported the following average hemodynamic param-
eters: PA = 38.0 mmHg, PW = 25.5 mmHg and 
CI = 2.13 L/min/m2. From these values and the base-
line PA and PW values found for the normotensive case 
(Sect. 2.2.1), we can predict PW for all levels of PAP as 
experimental data show a quasi-linear relationship between 
PA and PW in PH-LHD [3]:

Proceeding as for PAH, we then find Rt and CI for all lev-
els of PAP. A particularity of PH-LHD is that the drastic 
increase in left atrial pressure significantly decreases the 
pulmonary RC time τ via (4). This diminution of τ is prin-
cipally due to a significant decrease in compliance [58], as 
Rt remains either unchanged (passive PH-LHD) or is mark-
edly augmented (active PH-LHD).

The complete list of thus obtained hemodynamic param-
eter values to simulate each level of PH-LHD is provided 
in Table 1.

PH due to lung diseases and/or hypoxia One example 
of the third PH group is the high-altitude pulmonary edema 
(HAPE), a potentially lethal condition affecting previously 
healthy individuals rapidly going to high altitude [60]. The 
exact cause of HAPE remains unknown [31]. The favored 
hypothesis regarding its genesis is a severe and inhomoge-
neous vasoconstriction of the vasculature associated with 
a stress failure and an increase in transmural pressure PC 
of the capillaries [60]. Rupture of the capillary wall causes 
fluid to flow from the capillary lumen to the interstitial and 
alveolar spaces. In order to simulate HAPE in our model, 
we start by randomly designating small regions of the 
lungs as edemic while the others remain unaffected, thus 
mimicking the typically patchy distribution of high-alti-
tude-induced edemas [60]. Vasoconstriction is induced in 
the non-edemic regions only [60], thus increasing Rt and 
decreasing Ct via (5). In the edemic regions, the presence of 
fluid in the alveolar space causes the electrical conductivity 
of the parenchyma to increase. We consider an increase in 

(8)PW = 0.73 · PA − 2.21.

lung water concentration by 75 % [51]. In the model pro-
posed by Roth et al. [47] for estimating the conductivity of 
lung parenchyma (Sect. 2.1.4), this corresponds to using an 
alveolar tissue conductivity σalv = 0.15 S/m.

In a study on control and HAPE-susceptible subjects at 
high altitude, Maggiorini et al. [31] concluded that HAPE 
is initially caused by an increase in PC. Although the exact 
quantitative relationship between PA and PC in HAPE is 
unknown, it stems from their study that PA ≈ 2 · PC. The 
remaining hemodynamic variables of the model, namely 
PW and CI, remain normal in case of HAPE [60]. Mag-
giorini et al. reported values of PW = 10.0 mmHg and 
CI = 3.7 L/min/m2 for both control and HAPE-susceptible 
subjects at high altitude [31]. In our model, the abnormal 
increase in PC can be simulated simply by setting PW = PC. 
Indeed, increasing PW in the model can simulate either an 
increase in left atrial pressure (as is the case in PH-LHD) or 
an increase in transvenous pressure gradient (as is the case 
in HAPE).

The complete list of thus obtained hemodynamic param-
eter values to simulate each level of HAPE is provided in 
Table 1.

Chronic thromboembolic pulmonary hypertension 
(CTEPH) In the fourth group of PH, the disease is charac-
terized by the partial or complete obliteration of one or sev-
eral pulmonary arterial segments [42]. As a consequence, 
a part or the entirety of the flow is redirected toward the 
non-occluded areas, thereby exposing them to higher wall 
shear stresses [19]. An arteriopathy similar to that encoun-
tered in PAH (vasoconstriction and vascular remodeling) 
progressively develops in these segments, while the arteries 
downstream of the occluded areas typically remain unaf-
fected [19, 42].

In the model, we simulate CTEPH by occluding one 
of the daughter vessels of the left interlobar artery and 
by inducing vasoconstriction in those parts of the micro-
vasculature that are not downstream of the occluded seg-
ment. Pepke-Zaba et al. [42] reported average hemody-
namic parameters in CTEPH from an international registry: 
PA = 47.0 mmHg and CI = 2.2 L/min/m2. Left atrial pres-
sure remains unaffected in CTEPH; Nagaya et al. reported 
a value of 8.0 mmHg for PW [36]. Following the same pro-
cedure as the one used for PAH, we then find Rt ,Ct and CI 
for all levels of PAP.

The complete list of thus obtained hemodynamic param-
eter values to simulate each level of CTEPH is provided in 
Table 1.

2.3  EIT simulations and PTT estimation

With the ability to simulate various PAP-affecting patholo-
gies in our 4D bio-impedance model, we can now proceed 
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to simulating EIT measurements for each of these patholo-
gies using the model. All EIT simulations were performed 
with the EIDORS toolbox [2].

2.3.1  EIT simulations

Obtaining surface voltage measurements (the forward 
problem) The cardiac cycle, of duration T = 0.75 s, was 
discretized into 25 time instants of 30 ms each, thus cor-
responding to an EIT image sampling rate of 33 frames/s. 
At each k-th time instant of the cardiac cycle, the first-order 
forward solver of EIDORS was used to simulate the prop-
agation of small alternating electrical currents in the bio-
impedance model (via the electrode belt shown in Fig. 2) 
and measure the resulting voltages vk . A voltage matrix V 
was then obtained by concatenating horizontally all 25 col-
umn vectors vk .

Real EIT measurements are well known to include 
noise. In order to model noisy voltages, a realistic signal-
to-noise ratio (SNR) was considered. In [50], the authors 
analyzed recordings from a Goe MF II EIT device (Care-
Fusion, Germany) and found SNRs ranging from 42 to 
156 dB. We chose a worst-case scenario SNR of 42 dB 
(i.e., SNR = 15, 850). Following their approach, noisy volt-
ages Vn were thus obtained by adding a white Gaussian 
noise of variance Pi/SNR to each i-th line of V, where Pi is 
the average power of the i-th line [50].

So-called difference voltages Un were then obtained by 
subtracting the first column (first frame) of Vn, i.e., the end-
diastolic voltages, from all columns (all frames) of Vn, as 
is usual in medical EIT applications [20]. Un thus describes 
voltage variations around a reference state (end diastole) 
and allows the linearization of the EIT reconstruction prob-
lem for small voltage variations around this working point.

Reconstructing the internal conductivity distribution 
(the inverse problem) Image reconstruction was carried out 
on a coarser version of the thoracic mesh using the widely 
used one-step Gauss–Newton algorithm with the Laplace 
prior [30]. Difference noisy EIT images Yn representing the 
intrathoracic conductivity changes over time with respect 
to the end-diastolic reference state were thus obtained as:

where R is the so-called reconstruction matrix. Figure 7 
shows an example of an EIT frame at end systole.

2.3.2  Pulmonary PTT estimation approach

In the following, the automatic procedure for estimat-
ing a pulmonary PTT value from a 25-frame EIT image 
sequence Yn is described.

First, a pulmonary region of interest (ROI), defined as 
those pixels depicting a lung-like behavior and a significant 

(9)Yn = RUn,

pulsatility, was automatically segmented from the EIT 
images. To do so, the cardiac frequency Fourier coefficient 
zT of the EIT time signal s(t) at each pixel was computed 
as:

At any given pixel location, the modulus |zT | depicts the 
amplitude of the first cardiac harmonic whereas the argu-
ment arg(zT ) depicts its phase shift with respect to the open-
ing time of the pulmonary valve (t = 0). As the conductiv-
ity increases in the lungs and decreases in the heart shortly 
after cardiac ejection, the first harmonic of s(t) resem-
bles a sine wave (π/2 phase shift) in the lungs whereas it 
resembles an antiphase sine wave (−π/2 phase shift) in 
the heart. Both types of pixels were therefore separated by 
using a threshold value of 0 on arg(zT ). Pixels with signifi-
cant pulsatility were then identified by comparing |zT | to 
an automatic amplitude threshold β obtained using Otsu’s 
method [41]. Finally, the pulmonary ROI was obtained as 
those pixels for which |zT | > β and arg(zT ) > 0 (Fig. 7).

For each pixel belonging to the pulmonary ROI, a PTT 
was estimated from its EIT time signal s(t) using the inter-
secting tangent method [8], resulting in M estimates of the 
pulmonary PTT for M pixels in the ROI. Erroneous PTT 
estimates were expected to arise in case of excessive noise 
or significant influence from sources not related to pulmo-
nary pulsatility in s(t), particularly in ROI pixels located 
near the cardiac region. In order to mitigate for these pos-
sible erroneous PTT estimates, outliers were automatically 
rejected using the median absolute deviation method [29]. 

(10)zT =
1

T

∫ T

0

s(t)e−i 2π t
T dt.

Fig. 7  Example of reconstructed EIT frame (slice at the level of the 
EIT electrodes shown in Fig. 2) depicting the end-systolic distribu-
tion of conductivity change (with respect to end diastole). Cool colors 
(heart region) depict conductivity decreases with respect to end dias-
tole, while warm colors (lung regions) depict conductivity increases. 
The pulmonary region of interest is highlighted by dashed lines. EIT 
tomographs provide functional information; they are known for not 
being anatomically accurate references. A lack of symmetry between 
the left and right lungs—as is the case here—is not unusual
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Finally, a representative pulmonary PTT value was 
obtained by averaging all non-rejected PTT estimates.

This whole process was carried out for all 21 vascular 
states summarized in Table 1. For each of them, the pulmo-
nary PTT value estimated from the EIT images was then 
compared with the underlying PAP.

3  Results

Figure 8 shows the main findings of our study: For each 
type of hypertensive condition considered (PAH, PH-LHD, 
HAPE, CTEPH), the relation between the mean PAP and 
the PTT derived by EIT is shown. In the estimation of the 
PTT, an average of 6.9± 2.6 % of pixels of the pulmonary 
ROI was rejected by the median absolute deviation method.

The next figures aim at illustrating the inner workings of 
our model and approach. Figure 9 illustrates the morpho-
logical differences that can be observed between the pres-
sure waveforms traveling in the pulmonary arterial tree and 
the resulting EIT signals. The continuous lines depict an 
example of the pressure waveforms found at various arte-
rial sites, from the main pulmonary artery to a pre-capillary 
artery, whereas the dotted line depicts the average EIT sig-
nal in the pulmonary ROI.

Figure 10 (top panel) depicts an example of the pressure 
waveforms as found in a distal artery for increasing levels 
of PAP. For each of them, their PTT value is highlighted 
with a marker. Similarly, the bottom panel depicts the cor-
responding average EIT signal in the pulmonary ROI, with 
their respective PTT values also highlighted. Comparing 
the PTT values calculated from the pressure waveforms 
with those calculated from the EIT signals, correlation 
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coefficients r > 0.99 (p < 0.001) were found for all pathol-
ogies (PAH, PH-LHD, HAPE and CTEPH).

4  Discussion

In this study, we have hypothesized that changes in PAP 
could be monitored noninvasively by tracking changes in 
pulmonary PTT via EIT. To test our approach, we have 
used a realistic MRI-based 4D bio-impedance model of the 
human thorax. An anatomical model of the entire pulmo-
nary arterial tree was constructed using contrast-enhanced 
magnetic resonance angiography scans [45] and a vali-
dated tree growing procedure [7]. The pulsatile behavior of 
each arterial segment of the tree was assessed via validated 
hemodynamic models of the pulmonary circulation [40, 
45]. The local conductivity change occurring in each pul-
monary voxel over time was obtained from the pressure-
induced change in pulmonary blood volume. Several PAP-
affecting pathologies were investigated. Simulated EIT 
measurements were performed on the model, and the pul-
monary PTT was estimated from the resulting EIT signals.

4.1  EIT‑based PAP monitoring

Figure 8 shows the main findings of the present study: It 
can be observed that increasing levels of PAP are associ-
ated with shorter PTT values for all forms of PH patholo-
gies, as expected from the PWV principle (higher pressures 
are associated with faster PWV). These results suggest that 
EIT can be used to monitor changes in pulmonary PTT, and 
therefore in PAP. If confirmed experimentally, these results 
could be the opening wedge for noninvasive alternative 
solutions to the pulmonary artery catheter for patients with 
PH.

4.1.1  On the pressure and EIT waveforms

Several other observations, listed hereafter, can be drawn 
from the figures presented in Sect. 3. Although the mor-
phology of the EIT signal roughly resembles that of the 
various pressure waveforms (Fig. 9), it does not resemble 
one of them predominantly. In particular, the slope of the 
EIT signal is less steep than that of the pressure waveforms, 
which suggests that arteries of all sizes contribute to the 
generation of the EIT signal. The contribution of the small 
arteries is not negligible in comparison with that of the 
larger arteries as they are much more abundant [21].

Figure 10 shows how the PTT-related information car-
ried by the pressure waveforms remains present in the EIT 
signals despite the aforementioned morphological differ-
ences between both types of waveforms. Note that all EIT 
signals depicted in Fig. 10 (bottom panel) have similar 

peak-to-peak amplitudes, despite having been generated 
by vastly different distending pressures (top panel). This 
can be explained by the inverse exponential relationship 
between pressure (p) and arterial distensibility (δ) [62]. 
As PAP rises to increasingly severe levels, arterial disten-
sibility decreases due to vascular remodeling. As a conse-
quence, the product of p and δ, which determines the extent 
of arterial distension, remains almost constant throughout 
the physiological range of pressure values [28, 48]. Nev-
ertheless, an amplitude decrease in the average EIT sig-
nal can be expected with an increase in PAP in cases of 
reduced pulmonary microvascular bed in advanced stages 
of PH [53].

4.1.2  On the PTT–PAP relation

It can be observed from Fig. 8 that the PTT value at a given 
PAP level (e.g., PA = 24 mmHg) is not necessarily the 
same for all pathologies. This is due to the physiological 
link between PWV and the structural properties of the arte-
rial wall [62], which can strongly differ between patholo-
gies. Conversely, in CTEPH, the arteriopathy in the non-
occluded areas strongly resembles that of PAH [42], which 
explains why the PAP–PTT relation is very similar for both 
pathologies.

Finally, the inverse exponential nature of the PAP–PTT 
relation (Fig. 8) shows that the approach is best suited 
for tracking PAP changes in early stages of PH, as small 
changes in PAP induce large changes in PTT. The same 
observation was drawn in MRI studies [28, 48], where 
it was found that the distensibility of the main pulmo-
nary artery started reaching a plateau level at around 
PA > 40 mmHg. Beyond this value, the arteries approach 
their elastic limit and the PWV does not increase signifi-
cantly anymore [48].

4.2  Model assumptions validity, limitations and future 
work

We discuss hereafter the validity of the main assumptions 
used in the creation of our model, as well as its main limi-
tations and those of our approach. We then mention practi-
cal workarounds to overcome some of these limitations and 
some suggested future work.

4.2.1  Model assumptions validity

As mentioned in Sect. 2.1.1, our 4D bio-impedance model 
does not take into account impedance changes induced 
by respiratory activity. Respiration does not only affect 
the dielectric properties of the lung parenchyma, it also 
deforms the internal distribution of impedance volumes as 
well as the external thoracic contour. However, we consider 
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this simplification in our model to be acceptable, since sev-
eral techniques (short apneas, electrocardiogram gating, 
frequency filtering, etc.) allow efficiently minimizing the 
influence of these respiratory artifacts in practice in cardiac 
EIT [11, 20]. Moreover, the automatic tracking of the pul-
monary ROI (Sect. 2.3.2) can cope for possible respiration-
induced changes in internal impedance distribution.

A second assumption of our model, mentioned in 
Sect. 2.1.3, is that the pressure downstream of our pul-
monary arterial tree, i.e., PW, is continuous, although it is 
known to be slightly pulsatile [37]. In this study, we have 
considered the influence of the pulsatile component of PW 
to be minor not only in terms of amplitude, but also because 
it occurs late in the cardiac cycle: The early systolic part of 
the σ(x, t) waveform (Fig. 1), which is of interest to esti-
mate the PTT, is not affected by the pulsatility of PW. For 
this reason, its pulsatile component can, in our opinion, be 
neglected without any loss of relevant information.

A third assumption of our model is that the pulmonary 
arterial wall, known to be much thinner than its systemic 
counterpart [37], is of negligible thickness. The non-inclu-
sion of the arterial wall in the model is expected to only 
slightly affect the baseline value of lung conductivity, but 
not its pulsatile behavior. The arteries will distend “at the 
same time” regardless of the presence (or absence) of the 
wall in the model. Thus, only the amplitude of the EIT sig-
nal s(t) is affected; its timing information (its PTT), which 
is of interest for PAP monitoring, remains unaffected.

4.2.2  Model and approach limitations

A first limitation of our approach concerns the timing refer-
ence used for the estimation of the PTT. In our study, t = 0 
corresponds to the time of opening of the pulmonary valve. 
However, in practice, this feature is difficult to estimate 
noninvasively [35].

A second limitation concerns the possible influence of 
conductivity changes not related to pulmonary pulsatility in 
those lung regions close to the heart, in particular sources 
generating conductivity changes similar to those occurring 
in the lungs, such as atrial or aortic changes. Heart motion-
induced displacements of the pulmonary arteries may 
also affect the pulmonary EIT signal in the most proximal 
regions of the lungs [43].

A third limitation, intrinsic to models describing com-
plex processes, is the use of physiological parameters from 
multiple different studies, and therefore different sources.

4.2.3  Practical workarounds

It is important to mention that workarounds exist in prac-
tice to try and overcome some of these limitations. For 
instance, PTT-based systemic blood pressure monitoring 

systems often use the R-wave peak of the electrocardio-
gram—a robust feature to detect—as surrogate timing ref-
erence (t = 0) for PTT estimation [35].

Erroneous PTT estimates resulting from the possible 
artifacts induced in the proximal regions of the lungs by 
sources not related to pulmonary pulsatility are expected to 
be automatically discarded by the outlier rejection method 
(Sect. 2.3.2) [29]. Alternatively, they could be avoided by 
limiting the ROI to its most distal part.

4.2.4  Future work

Further improvement to the present model could aim at 
addressing the aforementioned limitations. However, in our 
opinion, future work should predominantly focus on evalu-
ating our proposed noninvasive PAP monitoring approach 
in real EIT data.

5  Conclusions

There is currently no practical solution for the noninvasive 
monitoring of PAP in patients with PH. We have previ-
ously demonstrated experimentally the feasibility of a novel 
approach based on the use of EIT for the monitoring of sys-
temic blood pressure [55]. In the present study, we evaluated 
its feasibility in the pulmonary circulation for the monitoring 
of PAP. Our results, obtained from simulations on a 4D bio-
impedance model of the human thorax, suggest that changes 
in PAP can indeed be monitored by EIT under various patho-
physiological conditions. If confirmed in clinical data, these 
findings could open the way for a novel generation of nonin-
vasive PAP monitoring solutions for patients with PH.
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