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1 Introduction

Cataract is a leading cause of blindness and visual impair-
ment [5]. It is a great challenge to prevent or delay cataract 
formation and treat cataract patients. It is estimated that 
20.5 million (17.2 %) Americans older than 40 years have 
cataract, and this number will rise to 30.1 million by 2020 
[22]. The prevalence of cataract is increased with aging. 
Data from Australia showed that this prevalence doubles 
with each decade of age after 40 years, so that everyone in 
their nineties is affected [16].

There are mainly three types of cataracts: nuclear scle-
rosis, cortical cataract and posterior subcapsular cataract 
(PSC). Damage to epithelial cells has been a focus of 
researchers to identify causes of PSC and cortical cataract 
[8]. Both PSC and cortical opacities can be observed using 
retro-illumination imaging. Cortical opacities are wedge or 
spoke shaped in the periphery of the lens. PSC opacities 
usually present centrally [20]. As PSC opacity lies in the 
center of lens, the light passing through the pupil is easily 
be blocked. PSC can develop rapidly, and it is more likely 
to cause visual impairment than other types of cataract. 
The presence of PSC is an important factor to determine 
if surgery is needed for a cataract patient [21]. This paper 
focuses on the extraction and grading of PSC opacities.

Many clinical cataract classification schemes have been 
proposed to evaluate the severity of cataract. Most of the 
systems grade three types of cataract independently. Slit-
lamp imaging and retro-illumination imaging are two 
means to photograph opacities in lens. By comparison with 
the standard picture, cataracts are classified into different 
severity levels. Systems such as Lens Opacities Classi-
fication System III (LOCS III) [3] as shown in Fig. 1 are 
widely used in clinics. But the manual grading is always 
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subjective, and it is hard to provide quantitative measure-
ment of the area of opacity manually. What is more, man-
ual assessment is time-consuming. There is clinical need 
for objective assessment of cataract opacities, especially in 
population-based studies.

Methods to detect cataracts automatically in retro-illu-
mination images have been investigated [7, 12, 13, 17]. A 
global threshold method was employed by Nidek [17] to 
detect cataract opacity. Based on the work of Nidek, con-
trast-based threshold was proposed [7]. Threshold method 
alone is easy to detect the dark part due to uneven illumina-
tion [25]. Li et al. [12, 13] proposed a method for detect-
ing PSC and cortical cataract. Method in [12] aims at the 
detection of cortical cataract, while [13] is an automatic 
detection of PSC. Original image was transformed to polar 
coordinates so that PSC opacity will present in horizontal 
direction in [13]. PSC opacity was detected by combining 
the global threshold, local threshold and edge detection 
method. The experimental results in [13] present a better 
result than methods in [7] or [17]. But the available tech-
niques still cannot handle several situations. Cortical and 

PSC opacity may present as a contiguous area in retro-illu-
mination image so that the feature of shape cannot distin-
guish them. And severe cortical opacity may also grow to 
the center of lens. In these cases, spatial filter alone cannot 
identify PSC correctly. PSC is not always solid, and there 
is texture inside the opacity. Local threshold can led to a 
flocculent edge detection result, while doctors regard PSC 
as clumps of opacity.

In this paper, a novel automatic screening method is 
explored for PSC. Both cortical and PSC opacities are 
extracted in retro-illumination images first. Then PSC 
opacity is distinguished from cortical opacities. These 
two steps are achieved by MRF model and MGC model, 
respectively. The PSC opacity detection by MRF model 
and MGC model is introduced in Sect. 2. In Sect. 2.1, 
watershed method and MRF are combined to extract opac-
ity area. PSC opacity and cortical opacity present different 
gradient in anterior and posterior images. PSC looks sharp 
in posterior image, while anterior image focuses on corti-
cal and has a clear lens edge. Based on this, MGC model 
is proposed to distinguish PSC and cortical opacities in 
Sect. 2.2. The results of MRF are combined with the result 
of MGC to obtain the final result, and the percentage of 
PSC opacity is calculated.

2  Methods

Retro-illumination image is widely used to detect cortical 
and PSC opacity in clinics. A healthy lens is transparent, 
and the intensity of retro-illumination image is even. Both 
an anterior and a posterior retro-illumination image are 
taken for the lens in clinical diagnosis. The protocol of pho-
tographing anterior and posterior retro-illumination image 
can be found in [10]. Figure 2 shows an example of ante-
rior and posterior image from the same eye, in which PSC Fig. 1  LOCS III standard photographs for grading cataract [3]

Fig. 2  Examples of retro-illumination image from the same eye. a Posterior image. b Anterior image
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opacity presents in the center of lens and cortical opacity 
appears around the edge of the lens. It can be observed in 
Fig. 2 that PSC opacity is clearer in posterior image and 
cortical opacity is clearer in anterior image as focus is dif-
ferent in imaging. Another characteristic of PSC is that the 
texture inside it is not solid, which easily leads to in com-
plete segmentation of PSC opacity.

The region of interest (ROI) is detected to save com-
putation time. The ROI in retro-illumination image is the 
region of lens. The lens extraction algorithm proposed in 
[12] is employed. Canny and Laplacian edge detector are 
combined to detect edge pixels. Then, the edge pixels on 
the convex hull are fitted to an ellipse to detect ROI. The 
success rate for automatic ROI detection is 98.2 %.

The main steps of the segmentation process are illus-
trated in Fig. 3. MRF model and MGC model are car-
ried out on the result of watershed independently. Logic 
operation AND is performed between MRF and MGC 
result.

2.1  Opacity segmentation by MRF model

The extraction of opacity is performed by MRF method. 
After ROI extraction, Gaussian smoothing filter is 
employed to decrease noise. Watershed method is first 
employed to divide images into super-pixels with com-
monness. MRF is then applied to judge whether the region 
belongs to opacity or not. Post-processing is used to avoid 
large area of over-detection. PSC opacity and cortical opac-
ity are both detected at this step.

2.1.1  Initial segmentation

Watershed method [24] uses the concept in geography 
that water falling on the ridge line will flow down along 
the steepest slope until it reaches the bottom of catchment 
basin. The ridge line then divides the basin into adjacent 
regions. Watershed segmentation algorithm is effective for 
the initial partition [15].

The watershed method we use is based on gradient, as 
the gradient near the edge is big and we hope the ridge 
lines appear at the boundary between opacity and back-
ground. This can ensure pixels in one super-pixel belong 
to the same label. The images are divided into small pieces. 
In order to avoid over segmentation and reduce computing 
time, morphological opening operation is performed on the 
image. The results are shown in Fig. 4. The edge of lens 
is always fuzzy, so the radius of the lens is reduced to λ 
times the original radius to avoid noises near ROI margin. 
This will not influence the PSC area as PSC opacity usu-
ally appears in the center. A suitable range of λ is [0.92, 
0.96]. In this paper, λ = 0.95 is chosen. Posterior images 
are chosen to implement watershed and MRF. One reason 
is that there is always a clear lens boundary in posterior 
image. Another reason is that opacities in anterior image 
always have more details and textures, which will increase 
the number of watershed results and the computational cost 
in MRF.

2.1.2  MRF model

Extraction of opacity is performed using a MRF method. 
MRF is a statistical approach which is widely used in image 
segmentation [1, 26]. It deals with the image segmentation 
as an energy minimization problem. In medical image pro-
cessing, MRF model is used to determine whether a group 
of pixels belong to neighboring groups [18].

Images are first segmented into super-pixels like Fig. 5a. 
The super-pixels can be recognized as nodes in a region 
adjacency graph (RAG) as shown in Fig. 5b. A RAG con-
tains two key factors, nodes F={F1,F2, . . . ,Fn} and a col-
lection of all neighbor nodes E. (Fi, Fj) ∊ E if Fi and Fj are 
spatially adjacent. For each Fi, it can be any member of L, Fig. 3  Flowchart of PSC extraction method
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where L = {L1, L2,..., Lm} denotes a set of labels. In this 
paper, there are only two classes of labels: the opacity and 
the back ground. Fi together with its corresponding label 
is donated by ωi, and ω = {ω1, ω2,…, ωn}is one possible 
segmentation result. MRF is a method to find the maximize 
probability ω according to maximum a posteriori (MAP):

where f is the observation data [9] obtained by priori 
knowledge and p(f) does not vary respect to any ω. It is 
reasonable to assume that f and ω are conditionally inde-
pendent [19]. That is to say, p(f/ω) does not vary when ω 
changes and it can be ignored. Then Eq. (1) only concerns 
about p(ω):

 
Hammersley–Clifford theorem was employed to prove 

that MRF is equivalent to Gibbs random field [2], that is

(1)

ω̂ = arg max
ω∈Ω

p(ω/f ) = arg max
ω∈Ω

p(f /ω)p(ω)

p(f )

= arg max
ω∈Ω

p(f /ω)p(ω)

(2)ω̂ = arg max
ω∈Ω

p(ω)

(3)
p(ω) =

1

Z
exp(−U(ω))

Z is a normalized function Z =
∑

ω e−U(ω). The MAP prob-
lem can be expressed as the energy minimization problem:

The energy U(ω) can be written as

The energy function contains two parts. VFi is the energy 
of a single node, and it is only based on the property of 
this node. V(Fi ,Fj) describes the potential of two neighboring 
nodes Fi and Fj, which contains the neighborhood informa-
tion. ω̂ is not only concerned about the node itself. Its sur-
rounding nodes contribute to U(ω).

Super-pixels will be detected by both its own charac-
teristics VFi and its neighbors’ characteristics V(Fi ,Fj). It is 
more robust to use super-pixels as a unit and measure the 
characteristics of super-pixels than utilizing single pix-
els. As local threshold and global threshold only concern 
about gray scale, high gray scale super-pixels exist com-
monly when there are textures inside opacity. It causes 
gaps inside opacity detection result. Characteristics 
V(Fi ,Fj) concerns about super-pixel’s correlation with its 
neighbors. It is more likely to determine a high gray scale 
super-pixel as opacity if most of its neighbors belong to 
opacity.

2.1.3  MRF‑based segmentation

Three key factors are used to form the MRF model as 
described in Sect. 2.1.2. Mean gray value μi, standard devi-
ation σi in each super-pixels are employed to calculate VFi, 
and mean gradient value is employed to value V(Fi ,Fj).

Assume that the mean value μi of Fi follows Gaussian 
distribution. The mean value μL and standard deviation σL 
can be obtained from observation data of each label [4]. 
The extraction of observation data will be explained herein-
after. Equation (5) is transformed into:

(4)
ω̂ = arg min

ω
U(ω)

(5)
U(ω) =

∑

Fi∈F

VFi +
∑

(Fi,Fj)∈E

V(Fi ,Fj)

Fig. 4  Watershed result. For illustration propose, only the central part of Fig. 2 (b) is shown. a Original image. b Watershed method performed 
on original image. c Watershed result after morphological opening operation is performed on the original image

(a) (b)

Fig. 5  An example of region adjacency graph. a Segmented image. b 
Region adjacency graph of (a)
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The function V(Fi ,Fj) is a measurement of the relationship 
between two neighboring regions. Let Bij denotes a set of 
adjacent points in two regions Fi and Fj. lij are the length of 
Bij. A form of V(Fi ,Fj) is:

In this equation, β is a constant and δ(ωi, ωj) = 1 if 
ωi = ωj, δ(ωi, ωj) = −1 if ωi ≠ ωj. K(Fi, Fj) is proportional 
to the mean gradient value of Bij, and its range is from 2 to 
−2. K(Fi, Fj) increases the influence of gradient. The big-
ger the gradient in adjacent points is, the more likely two 
regions belong to different labels.

The equation of U(ω) is then derived:

The factors employed in MRF include mean gray scale of 
super-pixel, mean gradient of adjacent points and coherence 
with neighbor super-pixels. According to these factors, the 
maximum probability of ω is obtained. Iterated conditional 
modes (ICM) [14] is applied to find the proper ω, in which 
limit iterations are used to get the segmentation result.

Observation information for both opacity and back-
ground is needed in the MRF model. Observation data f 
are extracted by different rules, and post-processing is pro-
cessed to avoid large areas error segmentation.

It is challenging to obtain robust segmentation results 
in images with different severity of opacity. Images are 
divided into two groups according to their histograms 
before opacity segmentation is performed. Histograms of 
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severe cataract images are more complicated. There are 
at least two peaks: one for background pixels with high 
gray scale and another for opacity pixels. Histograms for 
mild cataract opacity or healthy lens images always follow 
Gaussian distribution approximately.

There are multiple peaks in histograms for lens with 
severe cataract as shown in Fig. 6a, while simple histo-
grams as shown in Fig. 6b are observed for images with 
light opacity or no opacity. After smoothing the histogram 
of intensity, if there are at least two peaks and the second 
largest peak is bigger than a quarter of the largest peak, it 
means that intensity distribution is extensive and opacity 
is always serious. For images whose peaks of intensities 
histogram are all smaller than 88, opacities in the image 
usually occupy most areas of the lens. These images are 
assigned to group 1. Others are assigned to group 2. His-
togram in group 2 has a centralized gray scale distribution, 
and there is a slight opacity or no opacity in the images in 
group 2.

As the observation data affect segmentation results 
directly, typical values should be selected to represent opac-
ity and background. Opacities are darker than background. 
Background has a higher intensity and is flat. As can be seen 
in Fig. 6, most pixels with intensity greater than A should 
belong to background. The biggest area of watershed result 
in this range is selected as background observation data. 
Intensity between A and C contains both background and 
opacity, thus selecting data there as observation data is 
easy to cause over-detection. For group 1, as the histogram 
shown in Fig. 6a, we choose the biggest area between C and 
peak D in histogram as opacity observation data. Choose 
data blow D would lose opacity details in high gray level. 
For group 2, the biggest area below C is chosen.

2.1.4  Post‑processing of MRF

Images are segmented into opacity and background. Inten-
sity inhomogeneity causes a large area of error detection 
near the edge of lens when the lens is healthy. When opac-
ity area is small, the gray scale difference between opacity 

Fig. 6  Histograms from two different groups. B is the right foot of highest peak A. A is the axis of symmetry for B and C a Histogram of group 
1. D is the peak with smallest intensity. b Histogram of group 2
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and background is small. MRF will fail to distinguish opac-
ity. These cases exist in images of group 2. Gradient in 
opacity edge is much bigger than other places. Edge region 
occupies a relatively large area when opacity area is small. 
So gradient image is chosen to evaluate whether the result 
is over detected in group 2.

Experimentally, the image of gradient bigger than 13 
with the closing operation is chosen as gradient image. 
Each pieces of MRF whose area is bigger than 0.3 times of 
ROI are compared with the gradient image. If the common 
part is smaller than 0.2 times of the piece, the common part 
will replace the original piece as opacity.

Figure 7 is the process of MRF in group 2. There is only 
one peak with corresponding intensity bigger than 88 in the 
histograms of these three examples, so these images belong 
to group 2. Areas near the edge of the lens are darker than 
other backgrounds. MRF regards these areas as opacity. 
The wrong detection areas are large and are not easy to 
eliminate by distance filter. Gradient in these areas is much 
smaller than that in opacity edge. Comparing with gradient 
image enables the wrong area becomes smaller or disap-
pears. Seen from column (e), large areas of wrong pieces 
are avoided effectively.

2.2  PSC opacity segmentation by MGC model

Spatial feature was proposed to exclude cortical cataract 
in [12, 13]. Unfortunately, it cannot handle the images in 
which PSC and cortical are mixed together. In clinical, 
anterior and posterior retro-illumination images are com-
pared to distinguish PSC from cortical. PSC looks sharp in 
posterior image, while anterior image focuses on cortical 
and have a clear lens edge. The comparison between ante-
rior image and posterior images is extracted as a feature to 
distinguish cortical and PSC opacities.

2.2.1  MGC model

In this section, posterior image and anterior image are 
registered and watershed results are merged to compare 
gradient. Image registration method used in this paper is 
based on the method in [11]. Based on cross-correlation, 
scaling factor from 0.97 to 1.03 and rotation are performed 
on posterior image to obtain the best registration. Their 
mean gradient in posterior and anterior image is Gp and 
Ga, respectively. Pieces fulfill Eq. (9) will be recorded as 
PSC pieces.

Fig. 7  Opacity detection process of group 2. a Original images after ROI detection. b Histograms of (a). c MRF results. d Gradient images. e 
Final results of opacity detection
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An anterior image is segmented into super-pixels using 
watershed. Some super-pixels are small, and there are 
not enough pixels to reflex their feature. Spatial merge is 
employed to reduce the number of watershed result and 
decrease noise. Large area of super-pixel can decrease 
noise so that a better comparison of the gradient can be per-
formed. Spatial distance factor Dij is employed to perform 
spatio-temporal merge [23]. There are two factors in Dij: Aij 
denotes the mean intensity difference between two neigh-
bor regions and Gij is the mean gradient in adjoin pixels.

In Tsaig’s method [23], super-pixels will merge with 
its minimum Dij adjacent super-pixel if Dij is lower than 
a constant. This step starts from the smallest super-pixel 
and stops if all the sizes of super-pixels are bigger than 
300 pixels. The original restrict condition that Dij should 
lower than a constant is abandoned in our method. It aims 
at protecting small super-pixels which belong to different 
type with all of its surroundings. This has been achieved by 
the combination of MRF and MGC. Figure 8a shows the 
watershed merge result of Fig. 2. Posterior image is seg-
mented to super-pixels using the merging result of anterior, 
which is shown as Fig. 8b.

PSC is clearer than cortical in posterior image, and tex-
ture can be seen distinctly. The gradient in posterior and 
anterior image of each super-pixel is compared to judge 

(9)Gp − Ga ≥ T

(10)Dij =
1

2
(Aij + Gij)

(11)Aij =

∣

∣

∣

∣

∣

∣

1

Ni

∑

(x,y)∈Ri

I(x, y)−
1

Nj

∑

(x,y)∈Rj

I(x, y)

∣

∣

∣

∣

∣

∣

(12)Gij =
1

Nij

∑

(x,y)∈Ri&(x,y)∈Rj

g(x, y)

whether this super-pixel is PSC. Generally, the gradient 
in posterior image should be bigger than that in anterior 
image for PSC. However, gradient of PSC in posterior 
image sometimes is smaller than that in anterior image 
due to focus and illumination problems. So threshold of 
gradient difference we use to distinguish PSC and corti-
cal is not fixed. Experiments show that here is linear rela-
tionship between the mean gradient ratio and threshold, 
which is illustrated in Fig. 9. The linear relationship can be 
described as follows,

where Ga and Gb are the mean gradient of anterior image 
and posterior image, respectively. In practice, k = −6.80 
and b = 7.27.

Cortical opacity only lies relatively far from the center. 
Spatial filter is employed, and opacity will be excluded if 
it lies outside 0.45 times of radius. To avoid noises, pieces 
less than 50 pixels are removed.

2.2.2  Fusion of MRF and MGC

Segmentation result by MGC may contain backgrounds 
because of the influence of other texture details in lens and 
illumination. What is more, spatial merge is rough. Back-
ground super-pixel may merge into opacity super-pixel. 
Opacity detection result via MRF is used to ensure MGC 
result belongs to opacity. Common parts of result by MGC 
and opacity detection by MRF are used to post-processing.

Comparing mean gradient has limitations for both 
group 1 and group 2. PSC in group 1 is light, and area is 
small. There may be no gradient difference between the 
two images. If opacity area of MRF result is lower than 
5 % of the ROI and it is located within 0.4 of radius, it 
will be recognized as PSC opacity. In group 2, large area 
opacity may have pieces in center that is solid and this is 

(13)Tpsc = k
Ga

Gp

+ b

Fig. 8  Example of watershed merge. a Watershed merge on anterior 
image. b Watershed merge on posterior image
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hard to distinguish by MGC. Convex hull of opacity is 
employed to avoid this phenomenon. If merged super-pix-
els are inside convex hull, it will be added to PSC opacity. 
Figure 10 shows the process of combination of MRF and 
MGC. Its original image is shown in Fig. 2. Figure 10c is 
parts of PSC opacity, but it lacks some pieces in edge and 
inside the opacity. Convex hull solves this problem, and its 
result is shown in Fig. 10d.

2.3  Grading

The percentage of opacity areas is calculated, and images 
are then graded according to Wisconsin grading system. 
Table 1 shows Wisconsin grading system. Grade 1 means 
that there is no PSC opacity in the lens. Threshold between 
grade 2 and grade 3 is 5 %. The greater the grade is, the 
more serious PSC people suffer.

3  Results

The retro-illumination images we use in this paper are 
from Singapore Malay Eye Study (SiMES) [6]. SiMES is 
a population-based study, and the images were taken using 
Niked EAS-1000 camera.

Cataract data and manual grading results are available. 
Manual PSC grading follows the Wisconsin cataract grad-
ing system [10]. For manual grading, the lens is set into 
nine sections. Graders estimate opacity levels in each seg-
ment and add up them.

Table 2 demonstrates the experimental results in this 
paper. G stands for grader’s grading results, and AD stands 
for automatic detection in the table. Total 519 pairs of illu-
mination images are randomly chosen. Among which 317 
belong to grade 1, 99 belong to grade 2, and 103 belong 
to grade 3 according to grader’s grading. The accuracy of 
each grade is 91.7, 83.8, 91.3 %, respectively. Method in 
[13] is compared using the same dataset with only posterior 
images. The results are shown in Table 3. The accuracy of 
method in [13] is 82.9, 70.7 and 69.2 % for grade 1, 2 and 
3, respectively. Accuracy of each grade is improved in the 
proposed method, especially in grade 3 when PSC opacity 
is serious. Sensitivity and specificity are used to evaluate 
the performance of the proposed method:

The sensitivity and specificity are 90.7 and 90.1 %, com-
pared with 82.9 and 82.3 % of the method in [13].

(14)

Specificity =
Number of correctly detected images with no PSC opacity

Number of images with no PSC opacity

(15)

Sensitivity =
Number of correctly detected images with PSC opacity

Total number f images with PSC opacity

Fig. 10  Combination of MRF and MGC. a MRF result that contains 
both PSC and cortical cataract. b MGC result which includes pieces 
in background and cortical cataract. c Common parts of (a) and (b), 

and the red line is its convex hull. d Final PSC detection result (color 
figure online)

Table 1  Wisconsin grading system

Grades of PSC Percentage of total area

1 0

2 ≤5 %

3 >5 %

Table 2  Evaluation of the proposed method

AD1 AD2 AD3 Accuracy (%)

G1 286 25 4 90.7

G2 15 83 1 83.8

G3 5 4 95 91.3

Table 3  Results of the method in [13]

AD1 AD2 AD3 Accuracy (%)

G1 261 47 7 82.9

G2 26 70 3 70.7

G3 10 22 72 69.2
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4  Discussion

Some segmentation results are shown in Fig. 11a–c and 
are examples of group 1, and the rest are images in group 
2. The percentages of PSC opacity area are 18.75, 40.08, 
20.80, 5.24, 5.43 and 5.92 %, respectively, which are man-
ual grading results. Experimental results by our method are 
15.84, 37.00, 20.45, 3.52, 4.48 and 4.62 %.

It can be observed from the figures that the proposed 
method significantly improves the accuracy of PSC detec-
tion when PSC is serious in retro-illumination images. 
Method in [13] can detect PSC opacity successfully in 
cases in Fig. 11d–f. When there are strong textures and 
bright part inside PSC opacity, local threshold and edge 
detection used in [13] can only detect some parts of opac-
ity. After spatial location filter, only a small part of opacity 

Fig. 11  PSC detection result of two different groups. a–c belong to 
group 1 and d, e belong to group 2. The first row is anterior images, 
and the second row is posterior images. MRF and MGC results are 

shown in the third row and fourth row, respectively. The fifth row is 
our final detection results, and the last row is the results by method in 
[13] for comparison
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in the center is left, as shown in Fig. 11a. For (b) and (c), 
PSC is severe and it overlaps with cortical cataract opac-
ity in retro-illumination image. It is hard to separate them 
by posterior image or anterior image alone. Edge detection 
and spatial filter failed to distinguish PSC from cortical 
when their boundary is not distinct.

Observation data f for opacity and background in MRF 
model are obtained automatically according to histogram. 
The proposed method is robust for intensity inhomogeneity. 
Effect of intensity inhomogeneity is minimized by the method 
proposed in Sect. 2.1.4. In Sect. 2.1.4, the threshold of gra-
dient and area of MRF pieces are obtained empirically. And 
parameters k and b as shown in Eq. (13) are obtained empiri-
cally. The optimal setting of these parameters may change in 
a small range for different image acquisition settings.

Our method not only improves the grading accuracy, but 
also enhances the morphological description of PSC. MRF 
method is robust inside the opacity cluster. When judging 
the label, the potential function not only concerns about the 
super-pixel itself but also concerns about its neighbors. If 
a super-pixel is surrounded by opacity, it is more likely to 
have an opacity label. Posterior image focuses on PSC. Its 
gradient in PSC opacity should be bigger than that in ante-
rior image. Difference of gradient value is then employed 
to eliminate cortical opacity. Different value of threshold 
is tested, and experimental results showed that it is hard to 
choose a threshold that can extract PSC perfectly. Experi-
ments on 300 pairs of image prove that Eq. (13) can exclude 
cortical opacity in a maximum extent. Gradient compari-
son alone is not enough to obtain accurate detection of 
PSC opacity. There are noisy pieces of background in the 
experimental results of MGC as shown in the fourth row of 
Fig. 11. And some pieces in PSC opacity center are missed. 
After combining with MRF result and the usage of the con-
vex hull method, PSC opacity is extracted more accurately.

There is still some over-detection problem for some 
cases. For example, there is no PSC opacity as shown in 
Fig. 12a with grader’s grading. Bright textures like water 

traces seriously affect the precision of MRF. MRF regards 
the dark parts above bright textures as opacity, and step 
3.2.2 failed to exclude them. Mean gradient comparison 
can reduce the area of opacity. But the water traces texture 
causes a high gradient ratio between anterior image and 
posterior image. Threshold is −1.21 according to Eq. (13). 
A large area of opacity is detected. More features should be 
considered in PSC detection in the future.

5  Conclusions

A new method is proposed to detect PSC opacity auto-
matically. MRF is employed to estimate opacities in retro-
illumination images firstly. Watershed is used to have an 
initial segmentation, and MRF is applied to obtain opacity 
in the lens. Secondly, mean gradient information is used, 
and MGC is proposed to extract PSC opacity. Then, MRF 
model and MGC model are combined, and spatial infor-
mation is employed to get final result. The sensitivity and 
specificity are 91.2 and 90.1 %, respectively, with 518 pairs 
experiment data. Accuracy of PSC detection and grading 
has been improved compared with available literature. The 
setting of the parameters is for PSC detection, and thus, the 
obtained cortical opacity is not very accurate. The algo-
rithm to detect cortical opacity precisely will be investi-
gated in future work.
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