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1 Introduction

Currently, heart diseases are among the leading causes of mor-
tality around the world, especially in highly economical coun-
tries. Since 1960, for instance, heart failure has been the first 
cause of death in the USA [25]. Presently, various treatment 
programs are available for heart failure. However, due to fun-
damental drawbacks to organ transplantation, heart transplan-
tation is counted as the last medical treatment to which cardi-
ologists and surgeons refer. Although scientists are perpetually 
trying to tackle the problem by employing stem cells to grow 
organs, this outstanding endeavor fails to fulfill the emergency 
needs and, therefore, it seems that the only life-saving solution 
is the practice of ventricular assist devices (VADs) implanta-
tion [5, 18, 19, 26, 32]. VADs fall into two groups in terms of 
flow generation: pulsatile flow and continuous flow. Although 
most of VADs designed today are pulsatile, there is not a solid 
view on which is more appropriate. For instance, continuous-
flow pumps are remarkably smaller than pulsatile-flow ones 
and, therefore, their implantation is much less burdensome [9, 
30, 36]. On the other hand, pulsatility of blood flow decreases 
the risk of thrombus formation inside blood pumps [10, 28]. 
Several works debated over the advantages and disadvantages 
of pulsatile-flow versus continuous-flow pumps [22, 29, 33]. 
Shahraki et al. optimized the function of a bichamber VAD by 
investigating three driver patterns and produced pulsatile flow 
[31]. Kato et al. [17] evaluated the echocardiographic param-
eters of the left ventricular of 61 patients following implanta-
tion of continuous-flow and pulsatile-flow VADs. Their study 
revealed that the left ventricle functions were better in patients 
with pulsatile-flow VADs. In a study of 27 patients receiving 
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VADs carried out by Feller et al., it was revealed that cardio-
pulmonary bypass time in continuous-flow VADs are shorter 
than in pulsatile types [12]. This is while having implanted 
31 LVADs, Klotz et al. [20] demonstrated that the output flow 
rate generated by pulsatile LVADs is higher than those by con-
tinuous-flow types.

In this study, we focus our attention on an axial flow VAD 
by proposing two modulation speed patterns that may contrib-
ute to reduce the known complications of rotary blood pumps 
in a clinical setting and help with the design of a miniature 
pump easier to implant. In addition, the clinical application 
of this method may well achieve adequate blood flow rate 
control within a specific range according to patients’ need. It 
is also worthwhile to mention that the study carried out by 
Agarwal et al. [1] demonstrates the comparability of the size 
of the proposed VAD with other newer generation VADs.

2  Materials and methods

Computational fluid dynamics (CFD) has been used for 
designing and optimizing blood pumps in recent years [6, 

23, 37]. Applying ANSYS software as a powerful numeri-
cal package, we have optimized the outflow waveform of a 
blood pump.

2.1  Geometry of the pump

This magnetically levitated pump consists of four parts, 
namely inducer, impeller, diffuser, and straightener 
(Fig. 1).

The dimensions and characteristics of all parts of the 
pump are shown in Table 1.

2.2  Governing equations

The general and dimensionless forms of fluid governing 
equations are as follows:
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Fig. 1  Geometry of the pump: 
a inducer; b impeller; c diffuser; 
d straightener
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In these equations, the asterisk indicates that these 
parameters are dimensionless, while Re is the Reynolds 
number defined as follows [35]:

where ρ is the density of the blood (1050 kg/m3), μ is the 
viscosity of the blood (0.0035 Pa s), ω is the rotational 
speed of the pump impeller (rad/s), and D is the diam-
eter of the impeller (mm). It should be noted that when 
the Reynolds number exceeds 1.0E+04 in an axial flow 
blood pump, the flow is considered turbulent [34]. Here in 
this simulation, given the diameter and rotational speed of 
the pump, the Reynolds number is higher than the critical 
value, and, therefore, flow becomes turbulent. The k−ε tur-
bulent model has been chosen for solving the turbulent flow 
equations whose nonlinear terms are calculated by semiem-
pirical equations [2].

In axial rotary pumps, due to high rotational speed and 
the narrow clearance between rotary and stationary parts 
of the pump, slightly excessive amounts of shear stress are 
generated. On the other hand, the hemolysis index, defined 

(3)Re =
ρωD2

µ

as the amount of the free hemoglobin concentration in the 
blood, is a function of both shear stress and the exposure 
time of the red blood cell (RBC) to the shear stress.

In 1980, Heuser [16] presented a power-law model for 
hemolysis expressing the relation between shear stress, 
exposure time, and the hemolysis index as follows:

where ∆Hb is the amount of free hemoglobin of the blood, 
Hb is the total amount of hemoglobin of the blood, τ is the 
shear stress, and t is the exposure time.

The Lagrangian method is used to calculate the hemol-
ysis index in blood pumps. In this approach, the instant 
measurements of shear stress and exposure time are fol-
lowed by the integration of hemolysis index along a path 
line from which the amount of hemolysis is calculated: 

where HI is the hemolysis index.
By taking the average over a sufficiently high number 

of streamlines, it is feasible to estimate the hemoglobin 
release (hemolysis percentage) in the blood pump. This 
method has been used by sundry persons such as Apel [3], 
Chan [8], Yano [38], and Arora [4].

2.3  Grid generation

For grid generation of different sections of the pump, Tur-
boGrid software is manipulated, which is the special soft-
ware for grid generation in turbomachines. The number 
of the elements for each section is shown in Table 2; this 
number for the impeller section is significantly higher than 
in the other parts for two major reasons: the considerable 
complexity of the geometry of the impeller’s blades and, 
the necessity for reaching the highest possible accuracy due 
to the fact that the impeller is the only rotational part of the 
pump and, therefore, the maximum amounts of the shear 
stress occur in this section.

It should be noted that a number of elements have been 
obtained following mesh independency calculations during 
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Table 1  Dimensions and characteristics of all parts of the pump

Inducer Impeller Diffuser Straightener

Number of blades 6 4 5 3

Maximum thickness of 
blades (mm)

1.5 2.6 1.3 0.5

Length of the section 
(mm)

12.0 34.0 7.5 9.0

Average height of the 
blades (mm)

5.0 4.0 3.0 3.5

General characteristics of the pump

Length of the pump 
(mm)

65

Diameter of the pump 
(mm)

41

Rotational speed (rpm) 3700–7500

Inlet diameter of the 
pump (mm)

14

Outlet diameter of the 
pump (mm)

10

Table 2  Number of elements of 
the pump

Number of elements Number of blades Total number of elements of the section

Inducer 87,010 6 522,060

Impeller 292,688 4 1,170,752

Diffuser 103,560 5 517,800

Straightener 97,526 3 292,578

Total – – 2,503,190
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which the effect of increasing the number of elements on 
two determinable factors, namely shear stress and flow rate, 
is studied.

2.4  Boundary condition

In order for accurate determination of flow rate of the pump 
with variable rotational speed, pressure–pressure boundary 
conditions have been chosen for the inlet and outlet of the 
pump which equals 40 mmHg and aortic pressure pulse of 
the patients with heart failure, respectively. This is because 
the physiological pressures of the inlet and outlet of the 
pump are definite. The various parts of the pump including 
the inlet and the outlet of the pump (where the boundary 
conditions are defined) are shown in Fig. 2.

A healthy heart increases the blood pressure and pro-
vides the sufficient blood flow rate (which is approximately 
6 l/min in normal adults) needed for the body. This is while 
in patients with heart failure, the heart is unable to provide 
adequate blood flow rate [21]. A comparison of aortic pres-
sure pulse of a healthy heart with a heart failure has been 
depicted in Fig. 3.

Figure 3 demonstrates that the pulse generated by a 
heart failure is obviously weaker than that of a healthy 
heart and, therefore, adequate flow rate is supplemented in 
these patients and is carried out by implanting ventricular 
assist devices. However, the functional mechanism of these 
devices is completely antithetical to that of natural hearts. 
This means that in a natural heart, the flow rate is generated 
by the dramatic increase in pressure, while in VADs, high 
rotational speed of the impeller generates the sufficient 
flow rate. Furthermore, since the function of axial pumps 
are sensitive to the outlet pressure of the pump, more pre-
cise results could be achieved by applying physiological 
pressures to the outlet of the pump.

Fig. 2  Various parts of the pump including the inlet and the outlet of the pump

Fig. 3  Comparison of aortic pressure pulse of a healthy heart with a 
heart failure [21]

Fig. 4  Trapezoidal pattern of variation in rotational speed
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2.5  Initial condition

This study aimed at evaluating the performance of a 
blood pump during a cardiac cycle by applying time-
dependent rotational velocity to the impeller and, 
therefore, in addition to boundary conditions, the ini-
tial condition should also be set using time-independ-
ent solution. Since it is intended to achieve a very low 
amount of flow rate at the beginning of the cycle, an ini-
tial rotational velocity of 3500 rpm, necessary for pre-
vention of reverse flow occurrence due to pressure gradi-
ent, was chosen for the impeller from which 0.46 l/min 
flow rate is produced.

Fig. 5  Numerically calculated flow rate versus time in trapezoidal 
cycle

Fig. 6  a Shear stress distribution; b hemolysis distribution; c contour diagram of shear stress distribution for trapezoidal cycle running at 
t = 0.1 s
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3  Results

In this project, the feasibility of simulating pulsatile flow 
of natural heart via continuous-flow blood pumps was stud-
ied. For this purpose, the performances of two different 
proposed patterns of rotational velocity for producing ade-
quate amounts of flow rates, causing the least blood dam-
ages, were studied. It should be noted that a normal heart 
in adults produces approximately 6 l/min flow rate in every 
single cycle. Therefore, velocity should be set to generate 
an adequate flow rate with an appropriate flow waveform 
while less blood injuries occur inside the pump.

Trapezoidal pattern of variation in rotational speed, 
which is depicted in Fig. 4, consists of four phases: 
increasing the velocity (t = 0.0 to t = 0.1 s), maintaining 
the velocity at maximum value (0.1–0.5 s), reducing the 

velocity (t = 0.5 to t = 0.6 s), and maintaining the velocity 
at a minimum value (0.6–0.8 s).

Owing to a need for understanding the total amount of 
generated flow rate within a cycle, Fig. 5 shows the graph 
of numerically calculated flow rate versus time in a trap-
ezoidal cardiac cycle.

The following graphs (Figs. 6, 7) were plotted for 
hemolysis and shear stress distribution for 250 streamlines 
running at t = 0.1 s and 0.15 s within the first and the sec-
ond phases of trapezoidal cycle, respectively.

It is also feasible to study pressure distribution inside the 
pump running at t = 0.15, 0.4, and 0.6 s thanks to depiction 
of Fig. 8.

Sinusoidal pattern of variation in rotational speed is 
depicted in Fig. 9. In this pattern, the rotational veloc-
ity of the impeller varies sinuously in such a way that the 

Fig. 7  a Shear stress distribution; b hemolysis distribution; c contour diagram of shear stress distribution for trapezoidal cycle running at 
t = 0.15 s
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minimum and maximum values are 3700 and 7500 rpm, 
respectively, and the performance of the pump during one 
cardiac cycle (0.8 s) is studied.

Figure 10 shows the graph of flow rate versus time for 
sinusoidal pattern.

Pressure distribution inside the pump at t = 0.4 and 
t = 0.8 s is shown in Fig. 11.

The results of instant calculation of hemolysis percent-
age during one cycle are shown in Fig. 12.

4  Discussion

The analysis of our results shows that the choice of pat-
tern for the rotational speed of the impeller does affect the 
waveform of the generated flow rate. The advantages and 
disadvantages of each pattern will be discussed in the fol-
lowing paragraphs.

4.1  Trapezoidal pattern

This pattern, depicted in Fig. 3, is based on the pattern of 
aortic pulse and is designed in such a way that it is able to 
produce a minimum amount of 6 l/min in each cardiac cycle.

Accordingly, the reason for choosing 3700 rpm as the 
minimum initial velocity is to reach a value by which the 
generated flow rate at the beginning of the cycle is almost 
equal to zero, which is similar to the natural cardiac cycle. 

Fig. 8  Pressure distribution for trapezoidal cycle running at a t = 0.15 s; b t = 0.4 s; c t = 0.6 s

Fig. 9  Sinusoidal pattern of variation in rotational speed

Fig. 10  Numerically calculated flow rate versus time in sinusoidal 
cycle
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Furthermore, unlike the rotational velocity of the pump, the 
flow rate has slight fluctuations in the second phase due to 
pressure fluctuations.

The area under the calculated flow rate versus time in 
a trapezoidal cardiac cycle curve, depicted in Fig. 5, gives 
the total amount of flow rate in a single cycle which equals 
6.65 l/min. This value is very close to the flow rate pro-
duced by a natural heart.

Hemolysis analysis at t = 0.1 s (Fig. 6) shows that hemol-
ysis index (the percentage of free hemoglobin in plasma to 
the total hemoglobin of blood) is 0.47 % and, therefore, the 
pump could work in an acceptable margin of safety.

Likewise, hemolysis index at t = 0.15 s of the second 
phase of the cycle (Fig. 7), where aortic pressure pulse 
reaches its maximum, equals 0.46 %, indicating that the 
operation of the pump in this phase is innocuous. It should 
be pointed out that although the maximum shear stresses are 
relatively high at this moment, and since the exposure time 
is very short, blood cells are not detrimentally affected.

In addition to this, pressure distribution inside the pump, 
depicted in Fig. 8, shows that the minimum pressure occur-
ring inside the pump (849,891 Pa) is much higher than the 
vapor pressure of the blood and, therefore, cavitation does 
not occur inside the pump. The absolute vapor pressure of 
the blood under physiological conditions equals 47 mmHg 
(6266 Pa) [11].

4.2  Sinusoidal pattern

This pattern (Fig. 9) is proposed based on the idea that in 
the former pattern, the pump operates at very low speeds 
and there is the probability of occurrence of stagnation 
points and reverse flow due to high fluctuation of aortic 
pressure.

The graph of flow rate versus time (Fig. 10) proves the 
nonlinearity of relationship between pressure gradient, 
rotational speed, and flow rate of the pump. According to 
this graph, it can be said that the performance of the pump 

Fig. 11  Pressure distribution for sinusoidal cycle running at a t = 0.4 s; b t = 0.8 s

Fig. 12  Instant measurement of 
hemolysis index in trapezoidal 
and sinusoidal cycles
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also varies from ascending to descending pressure gradi-
ents, i.e., flow rate is in good agreement with the descend-
ing phase of pressure gradient while for the ascending 
phase, there exists a noticeable delay for the flow rate to 
be adapted with the pressure gradient. The total amount of 
flow rate in a single cycle equals 6.72 l/min.

It should also be noted that pressure distribution inside the 
pump (Fig. 11) indicates that since the minimum pressure 
inside the pump (85494 Pa) is higher than the vapor pressure 
of the blood [11], cavitation does not occur in this cycle.

Furthermore, Fig. 12 indicates that the maximum amount 
for hemolysis index occurs at t = 0.34 s which equals 
0.44 %. This value is negligible and shows that RBCs trave-
ling along streamlines are not likely to be ruptured.

4.3  Comparison of the patterns

To generate pulsatile flow, two distinct patterns for adjust-
ing rotational speed of the pump have been proposed. 
As mentioned previously, the generated flow rate in both 

Fig. 13  Resultant flow rates of trapezoidal and sinusoidal patterns a versus time; b versus rotational speed

Fig. 14  Comparison of perfor-
mance curve of the designed 
VAD with number of newer 
generation VADs [7, 13, 15]
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cycles is sufficient and very close to that of a natural heart. 
In the trapezoidal cycle, because of the relatively long 
interval during which the output flow rate of the pump is 
almost zero, simulating the natural pulsatile flow of the 
heart is properly carried out; this is while the bare mini-
mum of the output flow rate of the pump in this interval 
increases the probability of thrombus formation due to 
stagnation points and reverse flows (although the exposure 
time of blood inside the pump is much shorter than the time 
needed for platelets augmentation). Figure 13 compares the 
resultant flow rates of both patterns.

In order for better drawing a comparison of the designed 
VAD with the other commercial ones, its performance 
curve (pressure vs. flow rate for two different constant rota-
tional speeds) together with number of newer generation 
VADs is depicted in Fig. 14.

The findings indicate that although a constant rotational 
speed could create fluctuation in output flow rate, this kind 
of fluctuation is in sharp contrast to the natural pulsatility 
of the heart and, therefore, not an adequate one. The varia-
tions of the output flow of the pump produced by a constant 
rotational speed and pulsatile outlet pressure are shown in 
Fig. 15.

Instant measurement of hemolysis index in both patterns 
is depicted in Fig. 12. The percentage of hemolysis index 
in trapezoidal pattern is higher than in sinusoidal pattern in 
almost the entire duration of the cycles. Furthermore, there 
is a noticeable similarity between hemolysis index varia-
tions versus time with rotational speeds. This is because of 
the fact that hemolysis is affected by shear stress which is 
proportional to the rotational speed.

5  Conclusion

According to the discussion, the authors believe in bal-
ance that the sinusoidal pattern of variation of rotational 
speed for the impeller of the pump is more promising and 
is preferred to the trapezoidal pattern. Moreover, with an 

appropriate control of the pump speed through a deter-
mined pattern, it is feasible to generate a decent pulsatile 
flow without any functional defects.

Furthermore, it should be noted that the idea of gener-
ating pulsatile flow by continuous-flow pumps has been 
under debate in recent years [24, 27]. We have also stud-
ied the possibility of generating this kind of flow by pro-
posing two specific patterns without claiming to propound 
a novel idea for generating pulsatile flow. Although blood 
damage measurement was carried out with military preci-
sion here, we still believe that as in the study by Hayward 
et al. [14], conducting a major review of decisive factors 
such as left ventricle suction, right ventricular failure, and 
blood pressure of the patient needs to be the subject of fur-
ther scrutiny.
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