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1 Introduction

Imbalances in the autonomic nervous system (ANS) are 
frequently observed in cardiovascular diseases (CVDs), 
including hypertension, chronic heart failure (CHF), and 
myocardial infarction (MI) [13, 14, 26, 45]. Heart rate vari-
ability (HRV) is a noninvasive tool to quantitatively esti-
mate cardiac autonomic imbalances [9, 18, 21]. Reduced 
HRV is a strong predictor of mortality after MI [37] and 
is associated with a series of other outcomes including 
CHF, hypertension, and diabetes mellitus [29, 35, 36, 42]. 
HRV is influenced by sympathetic and vagal modula-
tion of the heart rate. However, the physiological basis of 
HRV remains unresolved [7, 23, 40]. In addition, some 
HRV measures can be confounded by external and inter-
nal perturbations, such as ectopic beats and errors in beat 
detection [24]. Development of more robust noninvasive 
measures of heart rate modulations with clear physiological 
interpretations is required to overcome these limitations.

Recently, a pair of novel indices, termed deceleration 
capacity (DC) and acceleration capacity (AC) of heart rate, 
was proposed to measure the deceleration- and accelera-
tion-related HRV [5]. DC and AC are computed by apply-
ing a phase-rectified signal averaging (PRSA) algorithm to 
the RR interval (RRI) series. The PRSA method selects the 
decelerating and accelerating RRIs as the anchor points for 
DC and AC calculations, respectively. The sections around 
the anchor points are aligned and averaged to generate the 
PRSA average series. DC and AC are then computed as 
the coefficient of a Haar wavelet at scale two in the center 
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of the PRSA average series. The indices have shown high 
clinical significance, with DC verified to be superior to the 
conventional HRV index in predicting mortality after MI 
[4, 5, 19], while both DC and AC are effective biomarkers 
for CHF [32].

DC and AC attempt to separately assess sympathetic and 
vagal modulation through the measurement of decelera-
tion- and acceleration-related HRV [5]. However, despite 
the increased application of DC and AC in the clinical 
setting, it remains controversial as to whether the indices 
reflect cardiac sympathetic or vagal modulation [3, 5, 8, 16, 
32]. Some studies reported that DC reflects vagal activity 
and AC reflects sympathetic activity and that the criterion 
of anchor point selection in the PRSA method determines 
the physiological background of the indices. For example, 
Bauer et al. [5] suggested that DC reflects vagal activity, 
as heart rate deceleration is evoked by vagal stimulation. It 
therefore follows that AC reflects sympathetic function, as 
recently reported [3]. Kantelhardt et al. [17] also suggested 
that DC and AC could separately measure sympathetic and 
vagal functions based on the marked differences in the per-
formances of DC and AC in predicting mortality after MI.

By contrast, DC and AC have also been suggested 
to reflect the same aspects of ANS activity and that the 
scales used in the computation of the indices are associ-
ated with their physiological interpretation. Campana et al. 
[8] reported that both DC and AC are modulated by vagal 
function, as they both measure the change in heart rate 
over a short timescale; similar correlations to aging were 
also found in healthy subjects. In a multi-scale DC and AC 
analysis [19], Kisohara et al. found that the predictive abili-
ties of DC and AC computed with a scale higher than the 
conventional setting were independent of the conventional 
indices, suggesting that the scales used in the computa-
tion of DC and AC have an influence on their physiological 
interpretation.

We intended to use a cardiovascular system model to 
address these controversies. The model was developed by 
Ursino and Magosso [43, 44]. It is able to simulate realistic 
RRI series and analyze the respective roles of sympathetic 
and vagal activities in HRV, such as the low-frequency (LF) 
and high-frequency (HF) components in the power spec-
trum of the RRI series. Because DC and AC are generally 
regarded as variants of HRV [22], a model that is able to 
simulate HRV properties was adopted in this study. Based 
on this model, we tested whether the physiological inter-
pretation of the indices was dependent upon the criterion 
of anchor point selection. For this purpose, the simulations 
were performed with randomly fluctuating sympathetic and 
vagal activities, and the correlations of DC and AC with 
ANS function were evaluated. We also examined whether 
the timescales and wavelet scales in the calculation of DC 
and AC influenced their correlation with ANS functions by 

computing multi-scale DCs and ACs and performing the 
correlation analysis.

2  Methods

2.1  Model description and parameterization

The model developed by Ursino and Magosso [43, 44] con-
sists of two parts. One part is a hemodynamic model, which 
includes the four chambers of the heart, six systemic vascu-
lar compartments, and three pulmonary vascular compart-
ments. Each compartment was described by an electrical 
circuit with a resistance, a capacitance, and an inductance. 
These compartments are connected to form a closed-loop 
cardiovascular system model, in which the time-depend-
ent blood pressure and flow rate can be simulated. The 
other part is an ANS regulating model, which adjusts the 
peripheral resistance, the venous unstressed volume, and 
the heart period in response to the stimuli from the carotid 
baroreceptor (CBR) and the lung stretch receptor (LSR). 
Details of the model have been previously reported [43, 
44]. As heart rate variation was the most important output 
in the present study, the model of heart rate regulation is 
described in detail below.

A diagram of the model of heart rate regulation and its 
connection to the hemodynamic model are shown in Fig. 1. 
Heart period is modulated by the co-activation of the sym-
pathetic and vagal limbs via their responses to stimuli from 
the CBR and the LSR. The governing equations hold as

A description of the variables in these equations is 
shown in Table 1. The subscripts v and s indicate the vagal 
and sympathetic branches, respectively. The CBR uses 
the difference between the carotid blood pressure (Psa) 
and its basal value (Psan) as the input. The LSR uses the 
excess of the pulmonary volume over the amount at the 

(1)vT = GaTv · (Psa − Psan)− GpTv · (VL − VLn)

(2)sT = GaTs · (Psa − Psan)+ GpTs · (VL − VLn)

(3)
dxTv(t)

dt
=

1

τTv
· [vT (t − DTv)− xTv(t)]

(4)
dxTs(t)

dt
=

1

τTs
· [sT (t − DTs)− xTs(t)]

(5)xT = xTv + xTs

(6)kT =
(

RRmax − RRmin

)

/(4 · ST0)

(7)RR =
RRmin + RRmax · exT /kT

1+ exT /kT
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end of expiration VLn as the input. The inputs are amplified 
(by multiplying with the sympathetic gains GaTs and GpTs, 
and the vagal gains GaTv and GpTv), combined, delayed (by 
DTs and DTv), and filtered by a low-pass system (with the 
time constants τTs and τTv) to generate the sympathetic and 
vagal stimuli (xTs and xTv). The stimuli are summed and 
processed by a sigmoidal system [Eq. (7)] to produce the 
RRI value RR, with ST0 as the slope of the sigmoidal curve, 

RRmax as the maximum RRI, and RRmin as the minimum 
RRI.

The parameters of the model were taken from previ-
ous reports [43, 44]. The parameters of the hemodynamic 
model were assigned to suit a person with 70 kg body 
weight [43]. The parameters of the regulating model were 
set according to human and dog experiments [44]. In par-
ticular, for the model of heart rate regulation, the gains of 

Fig. 1  Block diagram of the 
model of heart rate regulation. 
The variation of RR interval 
(RRI) is regulated by the co-
activation of the sympathetic 
and vagal branches. Each 
branch takes the stimuli from 
the carotid baroreceptor (CBR) 
and the lung stretch recep-
tor (LSR) as the inputs. The 
inputs are amplified, combined, 
delayed, and filtered. The 
outputs of the two branches are 
summed and processed by a 
sigmoidal function to generate 
the updated RRI. A description 
of the symbols in the block dia-
gram is provided in Table 1

Table 1  Interpretations and the 
basal values of the parameters 
of the heart rate regulation 
model [44]

Parameter Definition Value Units

GaTs Carotid baroreceptor gain on sympathetic control on heart period 0.015 mmHg−1

GpTs Lung receptor gain on sympathetic control on heart period 0 L−1

GaTv Carotid baroreceptor gain on vagal control on heart period 0.028 mmHg−1

GpTv Lung receptor gain on vagal control on heart period 0.25 L−1

DTs Time delay of sympathetic control on heart period 3 s

DTv Time delay of vagal control on heart period 0.5 s

τTs Time constant of sympathetic control on heart period 1.8 s

τTv Time constant of vagal control on heart period 0.8 s

Psan Normal mean value of instantaneous systemic arterial pressure 95 mmHg

VLn Lung volume at the end of expiration 2.3 L

RRmin Smallest heart period 0.558 s

RRmax Largest heart period 1.308 s

ST0 Central slope for the sigmoidal function of heart period regulation 1
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each input (GaTs, GpTs, GaTv, and GpTv) were determined to 
conform to the variation of heart rate observed in young 
healthy men during pharmacological changes in arterial 
pressure [20]. The time delays (DTs and DTv) and time con-
stants (τTs and τTv) were assigned following from the fact 
that vagal stimulation is completed within two or three 
beats, whereas the sympathetic stimulation on heart rate 
takes effect over a slower timescale, usually within a few 
seconds [44]. The parameters of the model of heart rate 
regulation are described in Table 1.

2.2  Multi‑scale DC and AC calculation

The PRSA algorithm [5, 6] was applied to compute the 
multi-scale DCs and ACs from the RRI series produced 
by the model. Taking the DC calculation as an example, in 
brief, the first step of PRSA was to select the anchor points 
from the RRI series. The ith RRI was selected as the anchor 
point if the neighboring RRIs conformed to

where T was the timescale that determined the number 
of points of the moving average low-pass filter for the 
anchor point selection. The sections with length 2L + 1 
around the anchor points were determined, where L was 
the length of the slowest fluctuations in the signal. The 
determined sections were aligned according to the anchor 
points and averaged to create the PRSA average RR. DC 
was obtained as the wavelet coefficient of the PRSA aver-
age RR

where h(t) = −1/2 (for −1 ≤ t < 0), +1/2 (for 0 ≤ t < 1 ), 
0 (otherwise) was the Haar wavelet function, and s was the 
scale of the wavelet. The scale s determined the frequency 
components in the averaged RRI series that most influenced 
the values of DC and AC. Corresponding to a wavelet at 
scale s, the pseudo frequency Fs is approximated as [1] 

where Fc is the center frequency of a wavelet in Hz, and �t 
is the sampling period. Following this relationship, the Fs 
for Haar wavelet can be obtained as [33] 

where RRmean is the mean RRI of the series. The calcula-
tion of AC proceeded in a similar fashion, except for the 

(8)
1

T

T−1
∑

k=0

RRi+k >
1

T

T
∑

k=1

RRi−k ,

(9)DC =

L
∑

l=−L

RRl

h(l/s)

s
,

(10)Fs ≈
Fc

s ·�t

(11)Fs ≈
0.371

s · RRmean

criterion of the anchor point selection, which describes the 
heart rate acceleration as

The DC and AC computed based on the timescale T and 
wavelet scale s were represented as DC(T,s) and AC(T,s). 
In particular, the conventional DC and AC, which corre-
spond to T = 1 and s = 2 [5], were represented as DCconv 
and ACconv, respectively.

2.3  Model validation and data analysis

The frequency spectral properties of HRV were analyzed 
to validate the model. Physiologically, there are mainly two 
characteristic frequency components in the HRV [40]. One 
is a LF component, which ranges from 0.04 to 0.15 Hz. 
The other is a HF component, which ranges from 0.15 to 
0.4 Hz. The power spectral densities (PSDs) for the basal 
condition and for the conditions with ±20 % variations of 
the basal sympathetic and vagal gains were computed, and 
we examined whether the model was able to generate phys-
iologically correct LF and HF peaks to confirm the model 
validity.

The model was simulated by a numerical program writ-
ten in Matlab R2010b (MathWorks, Natick, MA, USA). 
Each simulation ran for 1200 s. The data of the last 1000 s 
were involved in the analysis. The step size of the simula-
tion was set to 0.01 s. An RRI value was produced for each 
step. As a result, the generated RRI series could be treated 
as a resampled signal with a 100-Hz sampling frequency. 
Before further data analysis, the RRI series was preproc-
essed. For the PSD analysis, the signal was down-sampled 
to 4 Hz and detrended [39]. A Butterworth low-pass filter 
with a cutoff frequency of 0.4 Hz was applied to the signal 
before the down-sampling procedure to avoid aliasing. The 
Welch periodogram approach [2] was used to compute the 
PSD. The RRI series were further down-sampled to 1 Hz 
for the DC and AC calculations.

To determine the correlations of DC and AC to the ANS 
functions, the simulation ran for 400 times. For each run, 
the sympathetic and vagal gains were randomly selected 
from the range of ±20 % of their basal levels and remained 
unchanged during the simulation. Modification of the ANS 
activities was carried out by adjusting GaTs and GpTs for 
the sympathetic branch, and GaTv and GpTv for the vagal 
branch. In addition, the time delays, DTv and DTs, and the 
time constants, τTv and τTs, were randomized with ±20 % 
fluctuations of their basal values to ensure the generality 
of the analysis. Multi-scale DC(T,s) and AC(T,s) were cal-
culated for each level of ANS activity. The segment length 
L was set to 60 [5]. The absolute DC and AC values were 

(12)
1

T

T−1
∑

k=0

RRi+k <
1

T

T
∑

k=1

RRi−k
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used in the correlation analysis because they expressed the 
quantity of the extracted quasi-periodic components. Pear-
son’s correlation analysis was used to evaluate the relation-
ship between the indices and the ANS activities. p < 0.001 
was considered statistically significant.

Sensitivity analysis was performed to verify the robust-
ness of the correlation analysis with respect to the basal 
mean RRI and the response of the sinus node to the ANS 
stimulation. First, the basal mean RRI was modified via 
changing RRmax and RRmin simultaneously by ±20 %. 
Second, the response of the sinus node to the ANS stimula-
tion ST0 was increased and decreased by 20 %, respectively. 
All statistical analysis was performed with SPSS version 
19 (IBM, Armonk, NY, USA).

3  Results

The PSDs of the RRI series at the basal condition and at the 
conditions with ±20 % fluctuations of the ANS gains are 

plotted in Fig. 2. Increasing the vagal gains led to a signifi-
cant increase in the HF component (Fig. 2a). The LF com-
ponent was reduced despite the fact that the sympathetic 
gain was maintained. Opposite variations of LF and HF 
were also observed when the vagal gains were decreased 
(Fig. 2b). The adjustment in the LF was positively depend-
ent upon the sympathetic gains (Fig. 2c, d). For example, 
increasing the sympathetic gains induced a significant 
increase in the LF power (Fig. 2c). By contrast, the HF 
component exhibited slight modification. These observa-
tions are in agreement with a human experiment that used 
autonomic blocking agents and postural changes [28] and 
were similar to the simulation results of Ursino et al. [44].

The PRSA averages at the basal condition and at the 
conditions with ±20 % fluctuations of the ANS gains are 
plotted in Fig. 3. The HF and LF oscillations are observed 
on the PRSA average curve. With the increase of the vagal 
gains, the HF oscillation was enhanced while the LF oscil-
lation was damped (Fig. 3a, b). Opposite variations of the 
HF and LF oscillations were found when the vagal gains 

Fig. 2  PSDs of the RRI series under basal conditions and the states 
with modified sympathetic and vagal gains. The PSDs obtained by 
increasing (a) and decreasing (b) the vagal gains by 20 % and by 

increasing (c) and decreasing (d) the sympathetic gains by 20 % are 
plotted in solid lines. The PSD under the basal condition is plotted in 
the dashed line for comparison
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were decreased (Fig. 3a, c). The sympathetic gains are pos-
itively related to the LF oscillation (Fig. 3d–f). For exam-
ple, when the sympathetic gains were increased by 20 %, 
the LF oscillation became larger while the HF oscillation 
remained at the basal level (Fig. 3d, e). The corresponding 
DCconv and ACconv obtained from the PRSA averages are 
given in Table 2. It is shown that both DCconv and ACconv 
were strongly influenced by the change of the vagal gains 
but slightly modified by the variation of the sympathetic 
gains.

The correlations of |DC(T , s)| and |AC(T , s)| to the sym-
pathetic and vagal functions with both T and s from one to 
five are shown in Fig. 4. Under small timescales and wave-
let scales, |DC(T , s)| and |AC(T , s)| were strongly correlated 

with vagal activity. Taking the conventional scales (T = 1, 
s = 2) as an example, both |DCconv| and |ACconv| showed 
significant positive correlation with vagal activity (|DCconv|: 
R = 0.67, p < 0.001, Fig. 5a, |ACconv|: R = 0.39, p < 0.001, 
Fig. 5b). Neither indices were correlated with sympathetic 
activity (|DCconv|: R = 0.04, p = 0.451, Fig. 5c, |ACconv|: 
R = 0.08, p = 0.098, Fig. 5d).

With increasing timescales and wavelet scales, the corre-
lation of the indices to the vagal activity transited from posi-
tive to negative, whereas the correlation between the indi-
ces and the sympathetic activity was enhanced significantly 
(Fig. 4). The maximal sum of R2 between the indices and the 
ANS functions appeared at T = 3 and s = 5. |DC(3,5)| and 
|AC(3,5)| showed significant negative correlation to vagal 
activity (|DC(3,5)|: R = −0.35, p < 0.001, Fig. 6a, |AC(3,5)|:  
R = −0.34, p < 0.001, Fig. 6b), and significant positive 
correlation to sympathetic activity (|DC(3,5)|: R = 0.48, 
p < 0.001, Fig. 6c, |AC(3,5)|: R = 0.47, p < 0.001, Fig. 6d).

The conclusion of the correlation analysis held in the 
sensitivity analysis. As shown in Fig. 7, with ±20 % fluc-
tuations of the basal RRI and the response of the sinus node 
to ANS stimulation, |DCconv| and |ACconv| still show high 
positive correlation with the vagal gains and poor correla-
tion with the sympathetic gains. |DC(3,5)| and |AC(3,5)| 
maintain their negative correlation with the vagal activities 
and positive correlation with the sympathetic activities.

Fig. 3  The phase-rectified signal averaging (PRSA) curves at the 
basal condition (a, d) and at the conditions with (b) 120 % vagal 
gains, (c) 80 % vagal gains, (e) 120 % sympathetic gains, and (f) 
80 % sympathetic gains. Oscillations are observed at two frequencies. 

One is the high-frequency oscillation, which has a cycle of 5–6 RRIs. 
The other is the low-frequency oscillation, which is indicated by the 
envelope lines

Table 2  Mean RR interval (RRI), DCconv, and ACconv at the basal 
condition and at the conditions with ±20 % fluctuations of the sym-
pathetic and vagal gains

Mean RRI (ms) DCconv (ms) ACconv (ms)

Baseline 970.65 14.53 −12.28

80 % Vagal 967.49 11.97 −10.49

120 % Vagal 971.41 19.09 −14.61

80 % Sympathetic 964.32 15.59 −11.39

120 % Sympathetic 974.51 14.84 −13.29
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4  Discussion

4.1  Validity of the model for DC and AC analysis

As DC and AC are generally regarded as variants of 
the HRV index [22], our analysis of DC and AC using a 

cardiovascular model relied on correct simulation of HRV 
with respect to the ANS functions. The common physiolog-
ical viewpoint [7, 40] suggests that the LF component is 
influenced by the interaction of the sympathetic and vagal 
activities. Excitation of sympathetic activity and/or block-
age of vagal activity are expected to increase the LF power. 

Fig. 4  The correlation coef-
ficients of |DC(T,s)| to vagal 
activity (a) and sympathetic 
activity (b), and the correlation 
coefficients of |AC(T,s)| to vagal 
activity (c) and sympathetic 
activity (d). R correlation coef-
ficient, T timescale, s wavelet 
scale. Both T and s range from 
one to five to include all the 
relevant frequencies in the 
simulated HRV

Fig. 5  The correlation of 
|DCconv| and |ACconv| to ANS 
activity. a |DCconv| versus vagal 
activity. b |ACconv| versus 
vagal activity. c |DCconv| versus 
sympathetic activity. d |ACconv| 
versus sympathetic activity. 
The scattered dots represent 
the |DCconv| and |ACconv| values 
calculated at the corresponding 
levels of ANS function. |DCconv| 
and |ACconv| were positively 
correlated with vagal activity, 
but uncorrelated with sympa-
thetic activity



1928 Med Biol Eng Comput (2016) 54:1921–1933

1 3

Further, the HF component is positively related to vagal 
activity. The PSD analysis was consistent with these physi-
ological viewpoints. Figure 2 shows that an elevation in the 
vagal gain led to an increased HF power and a decreased 
LF power, whereas an elevation in the sympathetic gain 
only led to an increased LF power. Reverse adjustment 
of the cardiac autonomic activities in the model resulted 
in opposite changes in the power of the characteristic fre-
quency components.

Some studies have reported opposite findings to our sim-
ulation results. For example, Houle and Billman showed a 
reduction in the LF power in response to exercise, which 
are common interventions for increasing cardiac sympa-
thetic activity [15]. Taylor et al. [41] also found a reduction 
in the LF power when the cardiac vagal modulation was 
blocked by atropine. These discrepancies can be explained 
as follows. While the PSD analysis only changes the sym-
pathetic and vagal gains in the model, the real interven-
tions that modify ANS activity change both the gains and 
the ‘working point’ of the model, such as basal heart rate 
and sensitivity of the sigmoidal relationship, owing to com-
plex physiological processes [44]. This leads to variations 
of total power in HRV. As a result, a direct comparison 
between the experiments and the simulation by absolute LF 
and HF power is inappropriate. In such a circumstance, the 
LF/HF ratio index should be considered. For example, in 
spite of the reduction in the LF power, Houle and Billman 
reported an increase of LF/HF ratio from 0.59 to 1.04 after 
exercise [15], and Taylor et al. [41] reported an increase of 
LF/HF ratio from 0.63 to 0.98 using atropine. Our simula-
tion succeeded in reproducing the rise of LF/HF ratio. By 
increasing the sympathetic gains to 120 % or reducing the 
vagal gains to 80 % of the basal level, the LF/HF ratio was 
lifted from 0.60 to 1.30 or to 1.47, respectively. It suggests 
that the model is capable of simulating the balance between 
the LF and HF in HRV.

The characteristic LF and HF oscillations in the simu-
lated RRI series were well extracted by the PRSA method. 
As shown in Fig. 3, the HF oscillation with a cycle of 5–6 

Fig. 6  The correlation of 
|DC(3,5)| and |AC(3,5)| to ANS 
activity. a |DC(3,5)| versus vagal 
activity. b |AC(3,5)| versus 
vagal activity. c |DC(3,5)| versus 
sympathetic activity. d |AC(3,5)| 
versus sympathetic activity. 
The scattered dots represent the 
|DC(3,5)| and |AC(3,5)| values 
calculated at the corresponding 
levels of ANS activity. |DC(3,5)| 
and |AC(3,5)| were positively 
correlated with sympathetic 
activity and negatively corre-
lated with vagal activity

Fig. 7  Robustness of the correlation analysis. Sym sympathetic. The 
correlation analysis was tested under ±20 % variation of the basal 
RR interval, and ±20 % of the response of the sinus node to ANS 
stimulation, respectively, to test its robustness. *p < 0.001
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RRI was clearly observed on the PRSA curves. The LF 
oscillation lasted over a longer scale, as indicated by the 
envelope lines. With the variation of the ANS gains, the 
change of the LF and HF oscillation in time domain agreed 
with that in the PSD analysis, indicating that the PRSA 
method is capable of detecting the characteristic frequency 
components masked in the non-stationary signals. The 
validity of the PRSA method permits the use of the model 
for DC and AC analysis.

4.2  Impact of the anchor point selection on the 
interpretation of DC and AC

Previous studies have inferred that the criterion of anchor 
point selection may determine the physiological back-
ground of DC and AC [3, 5, 17] and that DCconv expresses 
vagal activity as the vagal stimulation evokes heart rate 
deceleration. Following this theory, Bas et al. [3] deduced 
that ACconv is related to sympathetic activity. By contrast, 
we found that both DCconv and ACconv were strongly cor-
related with vagal activity, but were largely unaffected by 
sympathetic activity (Fig. 5), suggesting that despite their 
opposite criteria for anchor point selection, they do not 
differ in their physiological background. Our simulation 
results support the assumption of Campana et al. [8] that 
both DC and AC are vagally dependent, but contradict the 
inference that ACconv reflects sympathetic activity [3].

Our findings may be explained based on the principles 
of the PRSA algorithm. The PRSA aims to extract the 
quasi-periodicities from non-stationary signals. Averaging 
the signal segments eliminates noise, and thus extracts the 
appropriate intrinsic frequencies only if the segments are 
well synchronized in phase [6, 27]. In the non-stationary 
RRI series, the exact phase cannot easily be determined. An 
increasing or decreasing trend is thus adopted as the ref-
erence phase for quasi-synchronization. It is important to 
note that the anchor point selection only alters the quality 
of the averaged series, but imposes no effect on the relation-
ship of the indices to the ANS. The step that influences the 
physiological interpretation of the indices is the calculation 
of the index from the averaged series. Because both DCconv 
and ACconv are derived as the coefficient of the Haar wave-
let at scale two, and according to Eq. (11) are most sensi-
tive to the frequency f ≈ 0.191Hz (taking RRmean ≈ 0.97 s 
at the basal condition, Table 2), they primarily detect the 
HF oscillations of HRV, which are predominated by vagal 
function [40]. In consequence, the deceleration- and accel-
eration-related indices reflect similar properties of the ANS 
function under the same scales.

Our results may provide a new explanation for the supe-
rior predictive ability of DCconv compared to ACconv in 
clinical trials [5]. While Kantelhardt et al. [17] suggest that 
this was owing to the assumption that DCconv and ACconv 

reflect different aspects of the ANS, we suggest that the 
stronger correlation of DCconv to the vagal activity (Fig. 5) 
accounts for the difference in their predictive abilities. 
This implies that the process of anchor point selection for 
DCconv results in better extraction of the HF oscillations 
from the RRI series. It could probably be explained by the 
phenomenon of heart rate asymmetry (HRA), the asym-
metrical patterns of heart rate acceleration and decelera-
tion. Porta Index (PI) [31] is a representative HRA index, 
which measures the percentage of negative �RR with 
respect to the total number of nonzero �RR. �RR is cal-
culated as RR(i + τ)− RR(i), where i is the index of the 
RRI in the series and τ is the timescale. With τ = 1, Porta 
et al. [30] reported that PI is larger than 50 %. Our simula-
tion obtained a PI as 55.09 % for the basal condition. PI 
over 50 % indicates that the decelerating runs are steeper 
than the accelerating runs [30]. Because the PRSA method 
can better extract the periodic components from the non-
stationary signal with steeper runs of RRI [25, 27], both 
the experimental and simulated HRA support that DC has a 
stronger association with the ANS activities and thus shows 
superior prognostic ability in comparison with AC.

4.3  Relevance of the scales of DC and AC to their 
physiological significance

DCs and ACs under various timescales and wavelet scales 
were found to be differently correlated with ANS function. 
While DCconv and ACconv were exclusively dependent upon 
vagal activity (Fig. 5), DC(3,5) and AC(3,5) were positively 
influenced by sympathetic activity and negatively related 
to vagal activity (Fig. 6). The distinct frequency compo-
nents measured by DC and AC may explain these differ-
ences. As described in Sect. 4.2, DCconv and ACconv reflect 
the HF heart rate oscillations. The HF components of HRV 
are assumed to mainly reflect vagal modulation [40]. Thus, 
DCconv and ACconv are vagally dependent. According to 
Eq. (11), DC(3,5) and AC(3,5) are most sensitive to the fre-
quency of 0.077 Hz, which lies in the frequency range of 
the LF of HRV. Because the LF component is thought to 
reflect both sympathetic and vagal influences, activation of 
sympathetic modulation and inhibition of vagal modulation 
will lead to an elevation in its power. As a result, DC(3,5) 
and AC(3,5) are positively correlated with the sympathetic 
function and negatively correlated with the vagal function.

Close degrees of correlation of DC(3,5) and AC(3,5) 
with the ANS activities are observed (Fig. 6). The absence 
of HRA at longer timescale may account for the phenom-
enon. With the elevation of τ, Porta et al. [30] reported a PI 
closer to 50 % in comparison with that obtained at τ = 1 . 
Our model achieved a PI as 49.94 % for the basal condi-
tion with τ = 3. As a result, the rates of steepness of the 
decelerating and accelerating runs are similar at the longer 
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timescales, leading to close effects of the PRSA process-
ing with deceleration- and acceleration-related anchor point 
selection, and thus similar degrees of correlation of the 
indices with the ANS activities.

Our results help to interpret the findings of Kisohara 
et al. [19], who reported that the multi-scale DCs and ACs 
for measuring long-term (T = 2, s = 7) heart rate dynamics 
show predictive abilities comparable to but also independ-
ent of that of DCconv and ACconv, suggesting that the multi-
scale DCs and ACs reflect different aspects of HRV from 
the conventional indices. According to Eq. (11), the indices 
with s = 7 characterize the LF components. The strong and 
independent predictive ability of the LF power of HRV [11] 
supports the fact that DC(2,7) and AC(2,7) are independent 
of the conventional DC and AC in predicting SCD.

With respect to the various optimal values of T and s 
reported in recent multi-scale PRSA studies [12, 19, 33, 
38], it is worth noting that the optimal timescales and wave-
let scales depend on the average heart rate of the subjects. 
According to Eq. (10), the frequency-domain properties of 
the PRSA are influenced by both the scales and the average 
beat-to-beat time interval. Thus, it is imperative to provide 
indices with proper scales for subjects with different basal 
heart rates. Particular attention is required when applying 
the multi-scale PRSA method to detect fetal status as fetal 
heart rate is much higher than that in adults.

4.4  Limitations

The present model has some limitations which are worth 
discussing. First, the parameters of the ANS regulating 
model were partly derived from dog experiments. Ursino 
et al. [44] have made efforts to eliminate the barriers that 
prevent its application to human. The baroreflex gains in 
the model were determined based on both dog and human 
experiments. Initially, the preliminary sympathetic gains 
were obtained from vagotomized dog experiments. Then, 
the sympathetic and vagal gains were refined to fit the heart 
rate variation in human [20]. Ursino et al. [44] also sug-
gested that the dynamic characteristics of the autonomic 
loops (time delays and time constants in the model) are 
significantly different among animal species. To account 
for this, we randomized the time delays and time constants 
in the simulation. By these efforts, the model succeeded in 
simulating the HRV properties in frequency domain, the 
DC and AC indices, as well as the phenomenon of HRA. 
Even so, it is better to set the model parameters based 
on human data to study specific human physiological 
problems.

Second, the factors involved in generating the charac-
teristic frequency components were simplified [44]. The 
model only takes carotid baroreflex and lung stretch con-
trols as the main regulators of HRV. The other potential 

mechanisms for HRV include central, humoral, and vaso-
motor factors, etc. As known, the respiratory sinus arrhyth-
mia (RSA), characterized by rhythmical changes of the 
heart period at the respiratory rate, is not only influenced 
by the stretching of the lung receptors, but also highly 
regulated by the central respiratory stimulation. Neglect-
ing the central mechanism, the model may be limited in 
simulating respiration regulated HRV properties. Although 
Fonoberova et al. [10] reported that the model produced 
results in agreement with the experiments under vari-
ous controlled breathing rhythms, comprehensive models 
should be developed to investigate the separated contri-
butions of the respiratory center and the lung stretching 
receptors.

Third, the standard DC and AC are based on 24-h Holter 
recordings [5]. However, the model only involves the short-
term regulation of heart period governed by carotid barore-
flex and the pulmonary stretch receptor, and is thus limited 
in producing the heart rate variation caused by long-term 
regulation, such as circadian rhythm. Although the short-
term DC and AC are strong predictors of cardiovascular 
diseases [34], incorporating the long-term cardiac regula-
tion into the model is necessary for future development of 
DC and AC analysis.

5  Conclusions

We studied the correlation of DC and AC to ANS activity 
using a cardiovascular system model, in which the states 
of the ANS could be adjusted quantitatively, and the RRI 
series under various ANS states could be generated for DC 
and AC computations. The multi-scale PRSA analysis sug-
gested that the physiological relevance of DC and AC to the 
ANS is determined by the timescales and wavelet scales, 
but is not influenced by the criteria for anchor point selec-
tion. We also found that DCconv and ACconv were exclu-
sively dependent upon the vagal activity, with DC superior 
to AC in sensitivity. By contrast, the DC(3,5) and AC(3,5) 
were positively correlated with sympathetic activity, but 
negatively correlated with vagal activity. This study clari-
fied the correlations of DC and AC to the ANS from the 
perspective of computational physiology, and will promote 
the application of these indices in future clinical practice.
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