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parts: difference entropy, information measure of correla-
tion, and inverse difference were statistically significant in 
the prediction of survival, with log-rank p values of 0.001, 
0.001, and 0.008, respectively. Among 22 features exam-
ined, three texture features have the ability to predict over-
all survival for GBM patients demonstrating the utility of 
GLCM analyses in both the diagnosis and prognosis of this 
patient population.
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1 Introduction

Glioblastoma multiforme (GBM) is the most common and 
most aggressive primary brain malignancy in adults [39]. 
The inability to perform complete surgical tumor resection 
and poor drug delivery to the brain contributes notably to 
the lack of effective treatment and poor prognosis. Gener-
ally, tumors such as GBM are heterogeneous with intra-
tumoral spatial variation in both cellularity and areas of 
necrosis [4]. Tumors with high intratumoral heterogeneity 
have been shown to have a poorer prognosis likely second-
ary to their intrinsically aggressive biology [38]. Tumors 
are classified into four grades of glioma, namely grade 1 
(juvenile pilocytic astrocytoma; best prognosis), grade 
2 (low-grade glioma), grade 3 (anaplastic astrocytoma), 
and grade 4 (glioblastoma: the most aggressive type). It is 
mainly located in the cerebral hemispheres, and the average 
patient survival with GBM is around 14.6 months [30, 39].

Given the poor patient survival in GBM, computer-aided 
detection techniques may play a role in early, accurate diag-
nosis. To this end, brain tumor diagnosis using the image 
processing and analysis has been an area of increased 

Abstract GBM is a markedly heterogeneous brain tumor 
consisting of three main volumetric phenotypes identi-
fiable on magnetic resonance imaging: necrosis (vN), 
active tumor (vAT), and edema/invasion (vE). The goal 
of this study is to identify the three glioblastoma multi-
forme (GBM) phenotypes using a texture-based gray-level 
co-occurrence matrix (GLCM) approach and determine 
whether the texture features of phenotypes are related to 
patient survival. MR imaging data in 40 GBM patients 
were analyzed. Phenotypes vN, vAT, and vE were seg-
mented in a preprocessing step using 3D Slicer for rigid 
registration by T1-weighted imaging and corresponding 
fluid attenuation inversion recovery images. The GBM 
phenotypes were segmented using 3D Slicer tools. Texture 
features were extracted from GLCM of GBM phenotypes. 
Thereafter, Kruskal–Wallis test was employed to select the 
significant features. Robust predictive GBM features were 
identified and underwent numerous classifier analyses to 
distinguish phenotypes. Kaplan–Meier analysis was also 
performed to determine the relationship, if any, between 
phenotype texture features and survival rate. The simula-
tion results showed that the 22 texture features were signifi-
cant with p value <0.05. GBM phenotype discrimination 
based on texture features showed the best accuracy, sensi-
tivity, and specificity of 79.31, 91.67, and 98.75 %, respec-
tively. Three texture features derived from active tumor 
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research interest in recent years allowing for partial auto-
mation of GBM identification [45]. This identification is 
based on the tumor heterogeneity which is a pattern feature 
of malignancy that represents areas of high cell density or 
GBM phenotypes such as: active tumor and edema parts, 
with low cell density of necrotic parts [6, 40, 43]. These 
phenotypes can be segmented manually or semiautomati-
cally by image processing tools applied to MR images. 
Moreover, they can specifically be identified as active 
tumor (vAT) and necrosis (vN) using T1-weighted imag-
ing (T1–WI) images and edema (vE) by fluid attenuation 
inversion recovery (FLAIR) sequences [12]. However, not 
all the parts of phenotypes can be clearly identified even 
though this identification is clinically and prognostically 
useful. Therefore, it is important to assess the GBM het-
erogeneity by quantifying its phenotypes and this is repre-
sented by the employment of many feature types including 
Gaussian mixture model (GMM) features [8], histogram-
based features [17], wavelet-based features [28], and tex-
ture-based features [3, 5, 7, 28].

GMM-based features have been successfully employed 
to classify the normal from abnormal brain heterogene-
ity [13]. Similarly, histogram-based features have shown 
that GBM has two Gaussian distributions in FLAIR 
sequence which are represented by vAT and vE pheno-
types. Among nine statistical features for classifying vAT 
and vE, kurtosis and skewness have shown a highest range 
of 58.33−75.00 % accuracy classifier [9]. Wavelet-based 
features have been used to extract space–frequency tex-
tures in order to predict MGMT gene methylation status in 
GBM [28]. Texture features based on gray-level co-occur-
rence matrix (GLCM) have been employed to differentiate 
between pathological and healthy tissue in different organs. 
Thus, texture features based on the GLCM have been 
extracted and can evaluate the relationships of gray-level 
intensity in the image by second-order statistics. In this 
context, GLCM-based textures can compute the gray-level 
intensity within an image and provide additional descrip-
tors of tumor heterogeneity [7]. These feature types can 
enhance standard reporting techniques and help to more 
accurately characterize tumor heterogeneity [15].

In addition to their diagnostic utility, imaging features 
have also been associated with survival in GBM. For 
example, contrast-enhanced MR image features provided 
novel prognostic information and were accurate in predict-
ing survival times in patients with advanced gliomas [34]. 
Additionally, two newer studies have been considered a 
standardized lexicon of imaging features derived from MRI 
[known Visually Accessible Rembrandt Images (VASARI)] 
which have been demonstrated to be feasible predictors of 
survival [21, 29]. New texture analysis of GBM phenotypes 
with texture-based survival prediction could be useful in 
clinical practice. Recently, it showed that the texture feature 

ratios from contrast-enhancing, non-enhancing lesions and 
kinetic texture analysis obtained from perfusion parametric 
maps provide useful information for predicting survival in 
patients with GBM [27].

This paper focuses on GBM phenotype analysis using 
texture feature extraction based on GLCM from MR 
images. This approach further show the effect of radiomics 
analysis for GBM tumors using descriptors (features) that 
may be subsequently employed in automated glioma diag-
nosis with phenotype characterization, and demonstrate the 
feasibility of texture features to be associated with survival 
in GBM. They may also provide a more accurate assess-
ment of the patient prognosis and underlying genomic 
composition.

2  Methods

2.1  Patients population and data acquisition

In this study, data were collected from The Cancer Imaging 
Archive (TCIA) (http://cancerimagingarchive.net/), and 40 
GBM patients were used to validate the proposed method. 
The GBM data were acquired prior to any treatment from 
patients with brain tumors that were subsequently diag-
nosed as GBM. The GBM diagnosis was based on histolog-
ical examination. These patients were visually assessed as 
having sufficient quality and as containing the phenotypes 
[necrosis parts (vN), contrast enhancement/active tumor 
(vAT), and edema/invasion (vE)]. For visual assessment, 
3D Slicer software was used for illustrating the GBM phe-
notypes and testing that the patient images can be correctly 
registered using T1–WI and FLAIR sequence. Table 1 
shows the characteristics of GBM patients by representing 
the average, median, minimum, and maximum of the phe-
notypes (vN, vAT, and vE), age, and overall survival.

The imaging protocol used whole-brain T1–WI and 
FLAIR scanning using a 3T MRI scanner (GE Health-
care). T1–WI scans were acquired based on the following 
parameters: slice thickness (ST) = 5 mm, spatial resolution 
(SR) = 1.04 mm, pixel spacing (PS) = 0.78 mm, repeti-
tion time (TR) = 650 ms, echo time (TE) = 9 ms, and flip 
angle (FA) = 90°. And, FLAIR scans were acquired using 

Table 1  Patient and tumor characteristics

Average Median Minimum Maximum

vE (mm3) 73,748 63,366 5568 199,900

vAT (mm3) 28,133 27,311 3282 57,631

vN (mm3) 12,585 11,939 587 44,737

Age (years) 57.15 56 34 81

Overall survival (days) 412.12 394.00 67.00 828.00

http://cancerimagingarchive.net/
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the following parameters: ST = 5 mm, SR = 1.24 mm, 
PS = 0.78 mm, TR = 10,002 ms, TE = 147 ms, FA = 90°, 
and acquisition time 10:24 min.

2.2  Data preprocessing

The entire sequences available for the patient MRI set were 
obtained, yet only post-contrast T1–WI and FLAIR were 
used for texture analyses. Moreover, from the available 
database 40 patients’ data were randomly chosen to obtain 
full GBM tumor imaging MRI sets. All of the images had 
512 × 512 pixel acquisition matrices and were converted 
into grayscale before further processing. Note that the 
standard imaging parameters were used for each of the 
sequences as noted in the TCIA database. Standardization 
was employed by the linear normalization of each image. 
MRI raw data were filtered by an average filter (spatial fil-
ter) with size window of 3 × 3 before further processing to 
minimize the effects of noise in images and other external 
factors. Thereafter, registration, segmentation, and texture 
feature extraction were employed on GBM phenotypes for 
data collection.

2.3  Registration and segmentation based on 3D Slicer

Registration obtains more information from different scan 
angles by using different slices and voxel thickness. It reg-
isters two corresponding scans or images and rigidly aligns 
them to each other to make an accurate registration. This 
operation affects the computation time which is a necessary 
obligation as we finish the registration step. The computa-
tion time changes depending on the image size and angle 
rotations. It can be more sophisticated with the three-
dimensional data (3D), and the percentage accuracy may be 
decreased [18, 42]. Eventually, transformation of locations 
in one image to new locations in another image requires 
regulator parameters. The step of determining the correct 
transformation parameters is required during the image reg-
istration process. Since the FLAIR scans and T1–WI post-
contrast scans obtained with different slice parameters, 
angles, and voxel thickness, we rigidly aligned and regis-
tered the scans to each other. Moreover, most of the voxel 
size of the FLAIR and T1–WI images was similar and was 
simply registered. However, in case that the voxel size was 
dissimilar, we resampled the FLAIR volume to the matrix 
of T1–WI voxel size. The patient’s images which have 
complex rotation modifications and registrations were not 
considered in order to achieve an error less than 2 mm. The 
average of computational time necessary to complete each 
volume registration is 40–50 s.

Registration for each patient’s data was done by using 
T1–WI and its corresponding FLAIR sequence using 3D 
Slicer (Fig. 1) [1]. Phenotypes were segmented based on 

T1–WI, FLAIR, and its corresponding registration image 
by using the 3D Slicer (example in Fig. 1d). Histogram 
analysis clearly shows the difference in shape of phenotype 
data fitting. For example, distribution shape in the pixel 
intensity axis for each phenotype was not similar (Fig. 1). 
Moreover, phenotype was segmented manually slice-by-
slice and organized in order to extract the texture features. 
Then, the texture features of necrosis (vN) and active 
tumor parts (vAT) were computed from T1–WI, while tex-
ture feature of edema/invasion (vE) was extracted from 
FLAIR sequence. Texture features extracted for each phe-
notype were employed on each axial slice using the GLCM 
technique.

2.4  Gray‑level co‑occurrence matrix computation

Texture feature extraction based on GLCM is a second-
order texture that is based on the joint co-occurrence of 
gray values for pairs of pixels at a given distance d and 
direction θ [10, 23]. Traditionally, the co-occurrence matrix 
Pd,θ (i, j) of a given two-dimensional (2D) image I of size 
N × N can be defined as

where dx and dy specify the distance between the pixel of 
interest and its neighbor, along the x and y axis of an image, 
respectively. Note that the GLCM is a square matrix of size 
Ng × Ng, where Ng represents the number of gray levels of 
the image.

For 2D images, typical values used for “d” are {1, 2, 
3, 4} and those for “θ” equal {0o, 45°, 90°, 135°}. The 
GLCMs corresponding to the additional directions {180°, 
225°, 270°, 315°} added to the specification of the texture 
associated with combinations of the aforementioned four 
offsets and four directions. These additional directions 
were considered to cover the whole spatial relationship of 
offset d. In fact, 4 offsets with 4 symmetric directions may 
provide 16 GLCMs.

For each phenotype slice, 16 GLCMs are quantified by 
22 descriptors with each slice being represented by a fea-
ture vector of 22 features. Each of these feature values is 
the average of 16 descriptor values.

For whole GBM tumor, a feature vector of 22 features 
represents the average of each descriptor in whole slice in 
each GBM patient. Note that these descriptors (features) 
have been proposed by Haralick [23] and an additional 
feature type based on GLCM originally described for sea 
ice texture analysis [37]. Table 2 shows the texture feature 
names and explains the mathematical formula representing 
the texture descriptors. All the 22 texture functions are ana-
lyzed and discussed in the result section.

(1)
Pd,θ (i, j) =

N
∑

x=1

N
∑

y=1

{

1, if I(x, y) = i ∧ I(x + dx, y+ dy) = j

0 otherwise
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2.5  Processing and analysis of features

The Kruskal–Wallis test was applied to assess the statistical 
significance between texture features and GBM phenotypes 
[31]. For this statistical test, a p value < 0.05 was considered 
to be significant. Thus, z score normalization was employed 
on each of the feature vectors which converted to zero mean 
and unit variance. Note that the mean and standard devia-
tion (σ) of the feature vector were calculated as follows:

where r is the original value, rn is the new value, and the 
mean and σ are the average and standard deviation of the 
original data, respectively.

2.6  Classifier setting

We implemented four classifier techniques, namely discrimi-
nant analysis (DA) [20], naïve Bayes (NB) [2], decision trees 
(DT) [35], and support vector machine (SVM) [24] using 
the Statistics and Machine Learning Toolbox in MATLAB 
software. The implementation of DA was performed using 
pseudo-inverse which is equivalent to approximating the 

(2)rn =
r −mean

σ

solution using a least-squares solution method. The imple-
mentation of NB considered a kernel estimation method 
which approximated the complex distributions of data.

For training based on DT classifier, two conceptual 
phases is considered: a “growing” phase where training 
examples are recursively split based on their attributes and 
a “pruning” phase which simplifies the tree by removing 
low discriminating branches of the tree. One of the most 
important components of decision trees is the split crite-
rion, which selects for each node of the tree an attribute 
to separate examples along the branches of this node. The 
choice for best attribute splitting can be based on several 
techniques. For this work, we considered the Gini index 
(IG(t)) for splitting data and identify the feature subset lead-
ing to the highest accuracy. IG(t) is an impurity-based crite-
rion that measures the divergence between the probability 
distributions of the attribute’s values

where pi is the relative frequency of class i at node t and 
node t represents any node at which a given split is per-
formed. pi is determined by dividing the total number of 
observations in the class by the total number of observations.

(3)IG(t) =
∑

i

pi(1− pi)

(a)
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Fig. 1  Preprocessing of texturized MRI image from GBM patients. 
a T1–WI axial image, b corresponding axial FLAIR image, c cor-
responding axial registration, and d 2D segmentation (label map) of 
GBM phenotypes. Phenotypes segmentation: illustration of 3D seg-

mentation of phenotype vN, vAT, and vE. And, two-dimensional his-
togram distribution of normalized phenotypes: associated pixel histo-
gram distribution of vN, vAT, and vE
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SVM function (c) uses a model to identify support vec-
tors (si), weighted (αi), and bias (b) that are used to classify 
vectors (x) according to the following equation

where K is a kernel function (radial basis function).
Note that the SVM is a binary classifier which can be 

extended by fusing several of its kind into a multiclass clas-
sifier [16]. For 3 classes as we have the phenotypes (vN, 
vAT, and vE), 3 classifiers are necessary: one SVM clas-
sifies vN from vAT and vE, a second SVM classifies vAT 
from vN and vE, and a third SVM classifies vE from vN 
and vAT. The decision then is a combination of targets of 
all the separate SVMs. For example, vectors from classes 
vN, vAT, and vE have codes (1, −1, −1), (−1, 1, −1), and 
(−1, −1, 1), respectively. If each of the separate SVMs 
classifies a phenotype correctly, it means that no error for 
this phenotype classifier. However, if at least one of the 
SVMs misclassifies the phenotype, the class selected for 
this phenotype is the one its target code closest in the Ham-
ming distance sense to the actual output code and this may 
be an erroneous decision. The reason to use these specific 
classifier methods is to achieve the trade-off performance 
metrics.

The low number of patient samples was a limitation to 
prove the technical method and the medical analysis. In this 
case, leave-one-out cross-validation can be a solution to 
evaluate the performance metric by the swapping test and 
training sample data [36]. In this way, all of the GBM phe-
notypes were used for both training and testing. Thus, we 
computed the classifier accuracy, sensitivity, and specificity 
to evaluate the classifier feature. In addition, receiver oper-
ating characteristic (ROC) curve was employed which pro-
vides the true positive versus (vs) false positive rates. ROC 
curves are widely employed to evaluate the performance of 
a medical test or model and are associated with area under 
the curve (AUC). An AUC value close to 1 shows better 
classification performance [22, 33].

Moreover, survival curves were plotted by Kaplan–
Meier method and compared by the log-rank test [25]. 
We considered the median of each feature to grouping the 
patients in two groups based on cutoff with the threshold 
being the median feature value. For survival analysis, we 
considered p value <0.01 to be statistically significant.

3  Results

Proposed approaches were implemented in 3D Slicer [1] 
and MATLAB 2013b (version 8.2 [44]) and performed on 

(4)c ≈
∑

i

αiK(si, x)+ b

(5)K = e

(

−x1−x2
2

)

GBM brain tumor MR images. The GBM images were reg-
istered, and phenotypes were segmented and identified by 
our considered techniques.

3.1  GLCM‑based texture features

The 22 texture features exhibited p values <0.05 which 
formed the basis for their use in further analysis (Table 2). 
Each of the 22 texture functions provided a unique value 
for each GBM phenotype. Texture functions f17, f18, f19, 
and f20 show high values among the 22 features, and 
across the three GBM phenotypes, with maximum val-
ues of texture function seen for f19. Note that the values 
for each feature take into consideration the average of 
the values derived from different phases and offsets for 
that particular feature and also the average derived from 
multiple samples. This correlation of texture feature val-
ues with the three GBM heterogeneity phenotypes allows 
these phenotypes to be distinguished using their distinct 
texture features.

3.2  Classification

The Kruskal–Wallis test showed that whole 22 texture fea-
ture extracted from GLCMs were significant with p value 
<0.05 (Table 2). Performance metrics of the texture fea-
ture classifier showed a maximum accuracy, sensitivity, 
and specificity of 79.31, 91.67, and 98.75 %, respectively, 
using DA technique, while the classifier accuracy value 
was decreased with SVM (77.59 %), NB (75.00 %), and 
DT (70.69 %), respectively (Table 3).

Moreover, from 36 vN, 40 vAT, and 40 vE phenotypes, 
confusion matrix showed that 33 vN and 32 vE were cor-
rectly classified using DA, while the highest vAT samples 
(29 vAT) were correctly classified using SVM classifier 
(Table 4).

The texture feature classifier of phenotypes was then 
evaluated based on ROC which showed that the AUC value 
based on DT classifier is better than the DA, SVM, and NB 
classifier (Fig. 2). AUC of (vN vs. vE) is greater than (vN 
vs. vAT) and (vAT vs. vE) of 99.23, 97.63, and 94.12 %, 
respectively (Fig. 2b). We choose the AUC of (vN vs. vE), 
(vN vs. vAT), and (vAT vs. vE) because the ROC must be 
operated between two classes.

Table 3  Summary of the classification results

Classifier Accuracy Sensitivity Specificity

DA 79.31 91.67 98.75

DT 70.69 75.00 90.00

NB 75.00 91.67 96.25

SVM 77.59 91.67 95.00
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3.3  Survival analysis

Kaplan–Meier curves were significantly different for three 
texture features: difference entropy f18 (p value = 0.001), 
information measure of correlation f20 (p value = 0.001), 
and inverse difference f21 (p value = 0.008) (Fig. 3; 
Table 5). Kaplan–Meier analysis confirmed that three fea-
tures based on active tumor phenotype were predictors of 
overall survival. For edema and necrosis parts, the texture 

features were not statistically significant for predicting 
overall survival with considered the p value <0.01. We 
observed that the most texture feature statistically signifi-
cant to predict the survival time of GBM patient was in 
the active tumor parts (contrast enhancement, vAT), and 
this is confirmed if we considered the p value = 0.01. In 
these terms, we can also consider the features (f1, f2, f3, f4, 
f17, f19, and f22) to predict the survival time of GBM patient 
(Table 5).

Table 4  Confusion matrix of 
the GBM phenotypes

Samples DA DT NB SVM

vN vAT vE vN vAT vE vN vAT vE vN vAT vE

36 vN 33 0 3 27 3 6 33 0 3 33 2 1

40 vAT 0 27 13 4 28 8 0 25 15 2 29 9

40 vE 1 7 32 4 9 27 3 8 29 2 10 28

Fig. 2  A ROC curve plotting 
true positive rate against false 
positive rate for vN versus vAT, 
vN versus vE, and vAT versus 
vE in four classifier techniques: 
a DA, b DT, c NB, and d SVM

(a)

AUC (vN vs. vAT) = 0.99
AUC (vN vs. vE) = 0.99
AUC (vAT vs. vE) = 0.93

(b)

AUC (vN vs. vAT) = 0.97
AUC (vN vs. vE) = 0.99
AUC (vAT vs. vE) = 0.94

(c)

AUC (vN vs. vAT) = 0.93
AUC (vN vs. vE) = 0.97
AUC (vAT vs. vE) = 0.76

(d)

AUC (vN vs. vAT) = 0.97
AUC (vN vs. vE) = 0.98
AUC (vAT vs. vE) = 0.89
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Considered p value <0.01, median survival time based 
on texture feature is 273.5 days (f18 ≤ 0.36; f20 ≤ 0.37; 
f21 ≤ 0.35), 443 days (f18 > 0.36; f20 > 0.37), and 325 days 
(f21 > 0.35). These texture features were statistically signifi-
cant based on active tumor phenotype, while the features 
of edema and necrosis parts were not significant using 
Kaplan–Meier and log-rank test (Fig. 3; Table 5).

4  Discussion

The goal of this study was to provide high discrimination 
accuracy of GBM phenotypes using texture feature extrac-
tion from GLCM computation and find the texture features 
that predict the overall survival of GBM patients. The results 
of our study provide further evidence that texture image 

features that describe tumor spatial variations are useful in 
describing the GBM phenotypes and in predicting survival.

Data fitting showed that the histogram shape was distinct 
in data distribution of GBM phenotypes (Fig. 1). Moreover, 
the average, median, minimum, and maximum function of 
GBM phenotypes showed maximum, medium, and mini-
mum values in vE, vAT, and vN, respectively (Table 1). 
Similarly, texture features relating to GBM phenotypes 
showed maximum, medium, and minimum values in vE, 
vAT, and vN, respectively (Table 2). This suggests that 
each GBM phenotype has higher values of texture vE than 
vAT and vN. Test of significance using texture feature to 
discriminate between GBM phenotypes was obtained using 
Kruskal–Wallis test. Furthermore, we observed that the 
whole GLCM-based feature set showed high significance 
(p value <0.05) which is represented by 22 texture features 
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Fig. 3  Kaplan–Meier curves show a significant difference in survival for a difference entropy, b information measure of correlation2, and c 
inverse difference with log-rank p values of 0.001, 0.001, and 0.008, respectively
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(Table 2). This suggests that spatial textures based on the 
GLCM provide significant features to distinguish between 
phenotypes.

For classification of the GBM phenotypes, we observed 
that the trade-off between performance and accuracy was 

achieved using DA classifier. The misclassification rate 
is resulted from some texture features that have common 
characteristics between GBM phenotypes which is repre-
sented by an AUC value between vAT versus vE in four 
classifier techniques (Fig. 2). This is further demonstrated 

Table 5  Summary of Kaplan–
Meier analysis for GBM 
phenotypes texture features

Signification features for predicting survival patients with GBM are shown in bold

Features Cutoff (median) Median survival (days) p value

Above threshold Below threshold

vN vAT vE vN vAT vE vN vAT vE vN vAT vE

f1 0.2 0.318 0.30 325.0 325.0 327.5 315.0 285.0 298.0 0.84 0.01 0.8

f2 0.2 0.320 0.30 325.0 325.0 327.5 315.0 285.0 298.0 0.84 0.01 0.8

f3 0.2 0.319 0.30 325.0 325.0 327.5 315.0 285.0 298.0 0.84 0.01 0.8

f4 0.2 0.317 0.30 325.0 325.0 327.5 315.0 285.0 298.0 0.84 0.01 0.01

f5 0.4 0.378 0.35 325.0 318.5 394.5 315.0 336.0 240.5 0.89 0.18 0.01

f6 0.5 0.417 0.37 304.0 325.0 394.5 328.0 298.0 273.5 0.97 0.05 0.25

f7 0.5 0.429 0.39 325.0 319.5 344.0 315.0 317.0 273.5 0.67 0.13 0.01

f8 0.4 0.431 0.37 345.5 319.5 394.5 268.0 317.0 240.5 0.55 0.13 0.97

f9 0.9 0.962 0.96 324.0 322.5 345.5 317.0 306.5 303.0 0.33 0.74 0.99

f10 0.8 0.935 0.94 344.0 322.5 345.5 291.0 306.5 303.0 0.65 0.67 0.57

f11 0.9 0.954 0.97 324.0 316.0 327.5 317.0 327.5 316.0 0.35 0.97 0.91

f12 0.8 0.944 0.96 297.0 322.5 327.5 328.0 306.5 303.0 0.27 0.72 0.97

f13 0.9 0.962 0.96 324.0 322.5 345.5 317.0 306.5 303.0 0.33 0.74 0.99

f14 0.8 0.935 0.94 344.0 322.5 345.5 291.0 306.5 303.0 0.65 0.67 0.57

f15 0.9 0.954 0.97 324.0 316.0 327.5 317.0 327.5 316.0 0.35 0.97 0.91

f16 0.8 0.944 0.96 297.0 322.5 327.5 328.0 306.5 303.0 0.27 0.72 0.98

f17 0.2 0.374 0.30 316.0 443.0 318.5 328.0 273.5 322.5 0.99 0.01 0.98

f18 0.1 0.36 0.30 316.0 443.0 318.5 328.0 273.5 322.5 0.99 0.001 0.98

f19 0.2 0.37 0.30 316.0 325.0 318.5 328.0 298.0 322.5 0.99 0.01 0.98

f20 0.1 0.37 0.30 316.0 443.0 318.5 328.0 273.5 322.5 0.99 0.001 0.98

f21 0.2 0.35 0.31 325.0 325.0 327.5 315.0 273.5 304.0 0.84 0.008 0.9

f22 0.2 0.352 0.31 325.0 325.0 327.5 315.0 285.0 304.0 0.84 0.01 0.9

Fig. 4  Heat map of correlation 
coefficients between texture fea-
tures of GBM phenotypes. vN, 
vAT, and vE are the necrosis, 
active tumor, and edema parts, 
respectively. Black rectangle is 
the part of correlation coef-
ficient between (vE) and (vAT 
and vN). Correlation coefficient 
value >0.6, <0.2–0.6>, and <0.2 
represents high, middle, and 
low correlation, respectively
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by higher coefficient of correlation values between pheno-
type features. The heat map of the phenotype feature corre-
lation showed that edema parts have some correlation with 
necrosis and active tumor features (Fig. 4). Specifically, 
middle correlation coefficient range of 0.4–0.6 presented 
certain texture features between vAT and vE as illustrated 
in Fig. 4. The middle range of correlation coefficient values 
demonstrated a middle similarity between vAT and vE tex-
ture features.

In reality, overlap between GBM phenotypes can be rep-
resented by the misclassification (≈20 %), and thus, it is 
not surprising that a certain texture feature shares a simi-
lar value. Note that the link between the texture feature 
and raw data is not directly correlated. For instance, a raw 
image with regular texture generates an irregular GLCM 
matrix which provides low value of the entropy (f9). Look-
ing at the entropy in GBM phenotypes, vE has a maximum 
value followed by vAT and vN. It can be conditional that 
the edema phenotype is more irregular texture than vAT 
and vN, respectively (Table 2). This technique was success-
fully employed in abnormal colon cell discrimination [11], 
and the prediction of the clinical and pathological response 
to neoadjuvant chemotherapy (NAC) in patients with 
locally advanced breast cancer before NAC is started [41].

Additionally, survival analysis of GBM patients based 
on texture feature derived from GLCM demonstrated that 
the three features (difference entropy, information measure 
of correlation, and inverse difference) of vAT phenotype 
were statistically significant with median overall survival 
range of 273.5–443 days (Fig. 3). We observed that the 
texture in vAT phenotype may predict overall survival of 
GBM patients. Recently, a new study based on spatial habi-
tat features has shown 14 spatial features associated with 
molecular subtype and 12-month survival GBM [26].

Our approach can be a potentially valuable tool in esti-
mating characteristics invisible to the radiologist on inspec-
tion. To our knowledge, this is the first study looking into 
the discrimination of GBM phenotypes using texture fea-
ture extraction based on GLCM and to show the ability of 
the technique to predict overall survival of GBM patients 
based on their phenotype features. Many studies, however, 
have been carried out to discriminate between tumor types. 
For example, texture analysis proved to differentiate benign 
from malignant based on T1–WI and similarly to discrimi-
nate pleomorphic adenomas and warthin tumors [19]. Also, 
texture analysis has been utilized effectively in the charac-
terization of posterior fossa tumors of children [32]. More-
over, a recent study using MRI showed that texture features 
derived from GLCM were significant features in differen-
tiating true progression from pseudo-progression in GBM 
[14].

The influence of increased diagnostic accuracy is still 
limited to establish clinical use. However, one potential 

advantage of the texture analysis is that the methods applied 
and their results are not limited to simple GBM phenotype 
discrimination. Our results, in addition to considering the 
optimal method of GBM phenotype discrimination, are 
also promising in their ability to characterize GBM het-
erogeneity, while the selection of texture features helps to 
accurately predict overall survival of GBM patients.

5  Conclusions

In this study, a novel approach based on texture feature 
extraction has been presented for GBM phenotype discrim-
ination and predicting of overall patient survival. We have 
demonstrated the potential of texture features extracted 
from GLCM to characterize GBM phenotypes. The most 
important finding of this work is that the whole 22 texture 
feature set has been found to significantly classify GBM 
phenotypes, and three features were statistically significant 
for predicting overall survival. This study provides prelimi-
nary information of GBM phenotypes characterization and 
survival analysis of GBM patients. We note that a larger 
prospective trial is needed to fully evaluate the performance 
metrics of the proposed approach. Considering all the tex-
ture types extracted from GBM phenotypes that are under 
investigation, we posit that we are on the verge of a water-
shed moment in the identification and prediction of each 
phenotype by their texture features.
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