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Pennes’ bioheat model was used to perform the numeri-
cal simulation on different case studies, and the results 
obtained were then compared using a hypothesis statistical 
analysis method to the reference breast model developed 
previously. The results obtained show that ED, SF, and PF 
breast models had significant mean differences in surface 
temperature profile with a p value <0.025, while HD breast 
model data pair agreed with the null hypothesis formulated 
due to the comparable tissue composition percentage to the 
reference model. The findings suggested that various breast 
density levels should be considered as a contributing factor 
to the surface thermal distribution profile alteration in both 
breast cancer detection and analysis when using the ther-
mography technique.

Keywords Breast cancer simulation · Surface 
temperature profile · Thermography · Breast density

1 Introduction

The number of breast cancer incidences has risen at a very 
significant scale, and it has appeared to be the second lead-
ing cause of death in women [2]. Current research also 
show that the number of young women diagnosed with 
breast cancer has increased concurrently [10, 11, 37]. On 
the other hand, studies also show that early detection and 
treatment of cancer can lead to higher survival chance com-
pared to late detection [12, 16].

These important findings indicate that detecting breast 
cancer at its earliest stages is very crucial to saving lives. 
To date, mammography has still remains as the gold-
standard technique for breast cancer imaging worldwide. 
However, routine mammography is only recommended for 
women of 40 years old and above since the effectiveness of 
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mammography decreases for higher density level of breast 
tissue in young women [20, 50, 52, 57]. This is because 
X-rays permeate through different types of breast tissues 
differently. It has been discovered that high-density breast 
tissues attenuate the X-ray radiation to a greater extent 
compared to fatty tissue and appear as a relatively lighter 
area, thus causing reduction in both sensitivity and specific-
ity of the mammography [13].

Breasts are made from the combination of ducts, lob-
ules or glandular, fatty, and fibrous connective tissues. 
The breasts of women are considered dense if they have 
a higher composition of fibrous and connective tissues 
with low fatty tissue content, while the breasts are con-
sidered less dense when the fatty tissue composition is 
high. Generally, the density level of the breasts decreases 
with age, and based on the Breast Imaging Reporting and 
Data System (BI-RADS) developed by American Cancer 
Research, breast density can be divided into four main 
categories: extremely dense (ED), heterogeneously dense 
(HD), scattered fatty (SF), and predominantly fatty (PF) 
[13, 45]. Younger women tend to have denser breasts, 
and previous studies have shown that women with dense 
breasts have a four-to-sixfold increased risk of develop-
ing breast cancer [10, 13, 28]. Hence, the breast density 
factor should be considered when evaluating the potential 
benefits of extended imaging from breast cancer screen-
ing [14, 28]. These studies concluded that a reliable tech-
nique for early detection of cancer in young women with 
high breast density is indeed very crucial for a better sur-
vival rate.

Multiple adjunctive screening tools such as elastogra-
phy, electrical impedance tomography (EIT), and diffuse 
optical imaging (DOI) techniques have been developed to 
be used alongside mammography techniques in detecting 
early stages of tumor in young women [27, 32, 38, 39, 51, 
53, 59]. Thermography imaging technique has shown to be 
a potential screening tool with a higher level of sensitiv-
ity in complementing the current gold-standard technique 
[35]. It is a non-invasive and harmless imaging technique, 
which requires no breast compression and is cost-effective 
and free from any radiation [5, 23, 29]. A comparative 
study between thermography and other imaging modali-
ties, specifically for breast cancer imaging, has proven that 
thermography provides additional functional and physi-
ological information on thermal and vascular properties of 
the tissues [32]. On the other hand, Gautherie and Gros, in 
their twelve years of cancer thermographic study on breast 
cancer patients, showed that thermography is useful as 
a risk factor predictor and also to assess rapidly growing 
neoplasm [24]. Hence, many studies have been carried out 
to improve the accuracy of thermography as an adjunctive 
tool in early detection of breast cancer [22, 25, 38, 40, 44, 
48, 56, 58, 61].

Different tissues have different thermal conductivity 
values, which elevate the core body temperature at vari-
ous rates [62]. Both cancerous and pre-cancerous tissues 
have high metabolic rates due to their rapid multiplication, 
which demand more blood vessels in order to supply suf-
ficient nutrients to these fast growing cells [5, 23, 26]. This 
process is called angiogenesis, which will consequently 
elevate the temperature of the surrounding tissues, caus-
ing skin surface temperature alteration via heat conduction 
and convection processes occurring within the tissues and 
blood vessels, respectively. Hence, thermography uses this 
heat information, which is radiated from the skin surface 
in infrared thermal radiation form to be converted into an 
energy signal and calculated using different parameters to 
map the actual surface temperature of an object in a simpli-
fied visual format also known as a thermogram.

Current studies on breast thermography have also shown 
that thermography is not yet fully accepted for an adop-
tion into a clinical practice due to lack of screening data on 
asymptomatic population as well as having a limitation in 
obtaining breast cancer patients from different age groups, 
especially in young women [6, 59]. Bezerra and others, in 
their clinical studies, have revealed that the estimated val-
ues of parameters from their simplified physical model was 
worse compared to those results obtained from two actual 
patients, a young woman and an old woman, respectively. 
They concluded that this was probably due to the age of 
the patients who had different physical breast properties 
and density levels compared to their homogeneous model 
[8]. Furthermore, several breast models developed previ-
ously for numerical simulation and analysis purposes have 
either used single-layer tissue breast models (two- and 
three-dimensional), homogeneous phantoms, or a single 
composition multi-layer breast model [1, 3, 17, 18, 36, 58]. 
Besides, the complexity of human breast tissue composi-
tion has resulted in minimal progressive in the investigation 
of breast density level as a contributing factor in thermal 
profile alteration.

Meanwhile, in a series of studies conducted by Ng and 
Sudarshan, a single flexible multi-layer four-quadrant 
breast model has been developed to analyze the effects 
of blood flow and tumor existence on female breasts 
using finite element method (FEM) simulation. This 
model allowed the authors to mold the model based on 
the required pattern with proper choice of tissue proper-
ties values. They concluded that metabolic heat genera-
tion and blood perfusion properties are the key param-
eters that affected the skin surface temperature, whereas 
lowering these factors at the minimal levels maximized 
the effective heat transfer process [40–42]. They also 
highlighted that the large variability in breast diameter 
and tissue volume would affect the magnitude of tem-
perature profile, but no further analysis was carried out 
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to specifically address this issue [54]. On the other hand, 
Li and others have developed a three-dimensional FEM 
breast model associated with both thermal and elastic 
properties of the breast. The effects of both properties to 
the surface temperature distribution were quantitatively 
investigated, and this fused model was found to be very 
useful in enhancing the clinical application foundations 
of breast thermography [30, 31]. In addition, Das and 
Mishra, in their recent studies, have developed a simpli-
fied homogeneous two-dimensional breast model in esti-
mating the size and the location of tumor. Nonetheless, 
they did not consider certain factors, such as multi-layers 
tissue or breast density, since the analysis of these param-
eters estimation would increase computational time [18, 
19]. Next, Mital and Pidarpati have adopted the multi-
layer breast model from Ng and Sudarshan and investi-
gated tumor parameters using an evolutionary algorithm. 
They suggested that a non-uniform 3D breast geometry 
should be considered in future investigation to be used 
in a clinical scenario although its complexity and com-
putational time may increase [36]. Hence, it can be seen 
that due to the complexity of modeling realistic breast 
model with different breast density levels, many previous 
studies have excluded this factor as part of their aim and 
methodology.

Therefore, the objective of this particular study was to 
develop breast models with different breast density levels 
and to investigate the effects of changes in varying breast 
density compositions to the surface temperature distri-
bution profile of the breast. Four different breast models 
that were comprised of different breast density levels with 
embedded tumors were developed, and a statistical analy-
sis of four different case studies was conducted to observe 
the mean difference in comparison with the existing model 
developed by Ng and Sudarshan [34, 40, 41].

2  Methods

2.1  Breast modeling

Four different three-dimensional breast models, namely 
extremely dense (ED), heterogeneously dense (HD), scat-
tered fatty (SF), and predominantly fatty (PF), with differ-
ent breast density compositions (Table 1) were developed 
based on the multi-layer configuration breast model pre-
sented by Ng and Sudharsan [41]. The tissue compositions 
ratio was adopted according to the Breast Imaging Report-
ing and Data System (BI-RADS) developed by America 
Cancer Research [7]. In addition, inverse calculation was 
performed by converting the dimension values given in the 
reference model into the percentage of tissue compositions 
for each layer as tabulated in Table 1.

Figure 1 shows the cross-sectional view of the devel-
oped breast models which are comprised of muscle layer 
(DI), glandular layer (D2), and subcutaneous fat layer (D3). 
Anatomically, glandular layer consist of lobules, lactif-
erous ducts, and fibrous tissue. The tumor is shown as T1 
which was embedded in the centerline of the breast model 
to minimize the effect of the asymmetrical tissue thickness 
due to the curvature nature of the breast. In addition, the 
breast model properties were constructed to be as close as 
possible to the actual breast anatomy in order to perform 
a good and smooth numerical simulation to mimic human 
physiological changes [42, 56]. A homogeneous spatial dis-
tribution of blood vessels is assumed in all tissue compo-
nents, in order to minimize the heterogeneity effects on the 
overall surface temperature profile.

A hemispherical shape with a diameter L = 14.4 cm 
was used to represent the average female breast geometry 
[41, 47, 48]. Meanwhile, the glandular layer was devel-
oped by using another hemispherical shape with a smaller 

Table 1  Tissue composition 
percentage and thermo-physical 
parameters for all breast models

Tissue composition (%) Muscle (D1) Gland
(D2)

Fat
(D3)

Tumor
(T1)

Extremely dense (ED) 20 70 10 –

Heterogeneously dense (HD) 20 60 20 –

Scattered fibroglandular (SF) 20 40 40 –

Predominantly fatty (PF) 10 20 70 –

Ng and Sudharsan 26.5 54.1 19.4 –

Thermophysical parameters Muscle (D1) Gland
(D2)

Fat
(D3)

Tumor
(T1)

Thermal conductivity (W/m °C) 0.48 0.48 0.21 0.48

Metabolic heat generation (W/m3) 700 700 400 8720

Blood perfusion (1/s) 0.8e−3 0.5e−3 0.2e−3 0.1e−1

Specific heat blood (J/kg °C) 4200 4200 4200 4200

Blood density (kg/m3) 1060 1060 1060 1060
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radius and a semi-ellipsoidal shape with specified radius 
and height to mimic the muscle layer. The dimension of the 
thoracic wall underneath the muscle layer was consistently 
maintained to ensure that the breast model had a constant 
volume throughout the study. A perfect spherical shape 
with size range of 1.0–3.0 cm was embedded in the breast 
model to mimic the in situ tumor with a constant diame-
ter to represent the small non-palpable tumor, which was 
classified clinically as T1 and T2 at the international level 
to denote the early stages (Stage 0 and Stage I) of tumor 
characteristics [41].

2.2  Bioheat transfer mechanism

Heat transfer in living tissue is a complicated and com-
plex biological process involving multiple mechanisms, 
such as heat conduction, heat convection by blood perfu-
sion, and metabolism. One of the functions of blood flow 
in the biological system is to provide thermal stability to 
the tissue, depending on the relative local tissue tempera-
ture. Moreover, in a biomedical environment, any abnor-
mality and sudden change in temperature distribution can 
be intrinsically connected to both biological and physio-
logical processes, and they are normally the first signs of 
a disease [19]. This behavior is closely related to the can-
cerous tissue. This is because the rapid growth of cancer 
cells would require sufficient nutrient supply that would 
be transported through blood vessels. The newly formed 

blood vessel known as angiogenesis would subsequently 
increase the metabolic rate of the surrounding tissues, and 
these changes would eventually induce temperature altera-
tion on the skin surface via heat conduction and convec-
tion processes occurring within the tissues and blood ves-
sels, respectively [4, 5, 33].

2.3  Thermophysical properties and numerical 
simulation

The numerical simulation of these breast models was per-
formed via the finite element method (FEM) available in 
COMSOL Multiphysics computational package. A set of 
thermophysical parameters was used in the simulation for 
different types of tissue layers as shown in Table 1 [24, 
60]. Next, each breast model was meshed into a prede-
fined number of finite elements as the first step of FEM 
for spatial discretization. The tetrahedral meshing was 
selected. Test on normal and fine element size meshing 
settings showed that the difference in surface temperature 
was insignificant. Therefore, in order to reduce the com-
putational time, a normal element size meshing has been 
adopted to all domains for simulation.

According to Gautherie in his extensive study, the tumor 
doubling time and the metabolic rate can be related by a 
hyperbolic function, as shown in Eq. (1), while the tumor 
diameter related to the doubling time can be expressed as 
Eq. (2) [24].

Fig. 1  Cross-sectional view of breast models with different breast compositions, a ED, b HD, c SF and d PF
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where C = 3.27× 106 W day/m3 and τ is the volume dou-
bling time of the tumor. Hence, based on both equations 
above, it was possible to calculate the respective metabolic 
heat value for different tumor sizes. Therefore, metabolic 
heat generation, qm for tumor size of 1.0, 2.0, and 3.0 was 
65.4× 103, 8.72× 103 and 5.79× 103 W/m3, while the 
calculated doubling days were approximately 50, 375, and 
564 days, respectively.

In this study, Pennes’ bioheat equation (PBHE) was 
adopted to model the heat transfer mechanism in the blood-
perfused tissues and to quantitatively describe the ther-
mal interaction in the breast on a continuum basis [49]. 
Equation 3 describes the steady state of heat transfer via 
conduction through the tissue, as the volumetric metabolic 
heat generation of the tissue was considered to be directly 
proportional to the product of the volumetric perfusion rate, 
as well as the temperature difference between the arterial 
blood and the local tissue.

where ωb, ρb, and cb are the perfusion rate, the density, and 
the specific heat capacity of the blood. T is the local tissue 
temperature, Ta is the arterial blood temperature, and qm 
represents the metabolic heat generation rate.

Additionally, Fig. 2 shows the boundary conditions 
adopted to all breast models are specified at the breast skin 
surface as shown in Eq. 4:

where Te is the surrounding temperature and h represents 
the combined effective heat transfer coefficient due to con-
vection, radiation, and evaporation of 13.5 W/m2 K [47, 48, 
55]. The inner boundary condition at the core area of the 

(1)qmτ = C
(

W day/m3
)

(2)D = e(0.002134×(τ−50))
× 10−2 m

(3)∇ · (−k∇T) = ρbωbcb(Ta − T)+ qm

(4)−k∇T = h(Te − T)

thoracic wall was considered to be adiabatic and isother-
mal with a fixed temperature of 37 °C. Four case studies 
were carried out on each of the breast model with a total 
of 85 separate cases of simulation performed. Case study 
(i) was designed to observe the baseline surface tempera-
ture of healthy breast in all models without any presence of 
tumor. Case study (ii) was designed to monitor the effect of 
different tumor locations on surface temperature profiles by 
embedding a fixed tumor size of 2 cm throughout the simu-
lation. In case study (iii) and (iv), two locations specifically 
5.5 and 4.5 cm from body core were selected, respectively, 
to observe the effect of various tumor sizes on surface tem-
perature profile.

Finally, a statistical analysis of the surface temperature 
mean difference for all breast models based on case study 
(ii) and (iii) was performed to quantify whether various 
breast densities have a significant influence to the overall 
surface mean temperature difference when compared to 
the reference model. The null hypothesis, H0, was formu-
lated where the mean temperature of the reference breast 
model had insignificant difference compared to other breast 
models developed, i.e., H0: µref = µx, where x represents 
ED, HD, SF, and PF breast models individually. Since 
both groups involved were independent of each other, an 
unpaired two-tailed t test analysis with 95 % confidence 
interval (CI) was employed in this study to calculate the 
probability of the observing data obtained, as well as to 
determine whether they agreed with the null hypothesis 
statement. The test was carried out on all case studies, and 
the probability of the data pair was observed.

3  Results

3.1  Surface temperature profile analysis

Figure 3 shows the result of the surface temperature profile 
for a normal breast model. It was observed that for normal 
breast model simulation, the maximum surface temperature 
for the ED breast model was the highest among all, fol-
lowed by Ng and Sudharsan’s breast model, the HD breast 
model, SF breast model, and PF breast model, respectively. 
As depicted in Table 1, tissue composition percentage of 
the reference and the HD models was almost similar, and 
hence, their surface temperature distribution shifted only 
by approximately 1.1 °C compared to other models.

On the other hand, Fig. 4 shows the maximum surface 
temperature profile of a tumor with a diameter of 2.0 cm 
embedded in 6 different locations which represents case 
study (ii). Generally, each model displayed a Gaussian dis-
tribution profile since all models were developed using a 
symmetrical geometry measurement. As the tumor moves 
closer to the surface, the increase in the maximum surface 

Fig. 2  Boundary condition adopted for the breast model
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temperature became more significant for both SF and PF 
breast models with 1.3 and 1.9 °C, respectively, compared 
to the case where the tumor was located far from the breast 
surface. At z = 5.5 cm (1.7 cm from surface), both maxi-
mum surface temperatures for SF and PF breast models 
had a slight difference of 0.2 °C compared to the earlier 
case where the tumor was positioned at z = 4.5 cm (2.7 cm 
from surface) and its maximum temperature difference was 
0.7 °C. However, as for ED and HD breast models, their 
temperature increment patterns were comparable as they 
portrayed approximately 1 °C difference from their normal 
breast models. Hence, this showed that for a tumor located 

closer to the breast surface, all models experienced a sig-
nificant temperature increase from their normal and healthy 
breast models, but when the tumor location was farther 
from the breast surface, their surface temperature increase 
was quite a challenge to be detected, especially in SF and 
PF, due to their overall low surface temperature. This could 
eventually result in a misinterpretation of the thermogram.

From case study (ii), 2 locations have been chosen 
to represent both superficial and deeper locations which 
were then adopted in case study (iii) and case study (iv), 
respectively. Figure 5 shows the simulation results of all 
models with various tumor sizes located at z = 5.5 cm and 

Fig. 3  Surface temperature pro-
file for healthy breast models

Fig. 4  Maximum surface temperature for tumor size of 2.0 cm at 
various depth locations

Fig. 5  Maximum surface temperature of various tumor sizes at two 
locations (i) 4.5 cm and (ii) 5.5 cm from body core
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z = 4.5 cm from body core. These case studies were carried 
out to observe the changes in surface temperature profile in 
the breast models as the tumor’s size changes or grows. It 
was observed that as the tumor size increased from 1.0 to 
3.0 cm, the maximum surface temperature of all models in 
both locations increased accordingly. However, for a tumor 
located at z = 5.5 cm, it can be seen that as the tumor 
grew to the maximum size and approaching the surface, 
all models have shown to have significant maximum tem-
perature increase and had an approximately similar tem-
perature value. While for a tumor size of 3.0 cm located at 
z = 4.5 cm, the maximum temperature differences between 
each models can be clearly distinguished with minimal 
temperature distribution alteration where the ED model 

showed a higher maximum temperature from the reference 
model, HD breast model had the closest increase pattern 
with 0.1 °C difference from reference model while both 
SF and PF models had lower maximum surface tempera-
ture compared to the reference model by 0.98 and 1.41 °C, 
respectively. Finally, it can also be seen that the surface 
temperature profile for breast models with tumor size of 
1.0 cm located at z = 4.5 cm had shown to be qualitatively 
similar from their initial normal healthy condition. How-
ever, by quantitative measurement, their temperature values 
have shown to increase at a minimal range compared to a 
larger tumor located as the same location.

3.2  Statistical analysis for temperature mean difference

Tables 2 and 3 show the results from case studies (ii) and 
(iii), respectively. The results obtained from two-tailed 
t test analysis are usually expressed as t(df) = t value, p 
value <0.025 where t value indicates the t statistic, p value 
indicates the probability of obtaining the given t value by 
chance alone, and df is the degree of freedom. It can be 
clearly observed from Table 2 that ED, SF, and PF breast 
models had p values <0.05 for all tumor locations and sizes. 
Thus, ED, SF, and PF breast models had shown to be sta-
tistically significant toward the reference model due to the 
difference breast compositions percentage, which provided 
strong evidence against the null hypothesis developed in 
this study. On the other hand, the result for the surface tem-
perature mean difference between HD and reference breast 
models showed that the two-tailed p value was statistically 
insignificant in both case studies. This is because, the ratio 
of tissue composition in HD model developed had the clos-
est percentage value compared to the reference model as 
shown in Table 1.

4  Discussion

The overall finding was supported by Chen and Holmes, 
who in their studies stated that besides perfusion heating, 
thermal conductivity is another factor that contributes to 
the heat transfer process in the tissue [15]. Since the meta-
bolic heat generation and thermal conductivity values of the 
gland are higher compared to the fatty tissue, the biological 
heat conductivity process in the dense breast tissue is more 
effective than the less dense breast which results in higher 
overall temperature alteration on the skin surface. Thus, the 
breast density factor shows to be crucial when estimating 
tumor parameters.

The maximum temperature distribution profile from 
case study (ii) revealed the effects of different tumor loca-
tions to average surface temperature profile. It can be seen 
that as the tumor moves closer to the skin surface, SF and 

Table 2  Results of t test analysis for all models developed against 
the reference model for case study (ii)

Tumor location (cm) t test ED HD SF PF

5.50 p value 0.0001 0.1919 0.0001 0.0001

t value 6.1146 1.3069 9.0924 13.9724

Df 588 474 442 442

5.25 p value 0.0001 0.2304 0.0001 0.0001

t value 6.0318 1.2008 9.3652 13.8655

Df 588 458 442 426

5.00 p value 0.0001 0.2292 0.0001 0.0001

t value 21.7117 1.2039 8.9242 14.1737

Df 482 458 426 426

4.75 p value 0.0001 0.2333 0.0001 0.0001

t value 5.8982 1.1935 8.6978 14.1395

Df 588 458 426 426

4.50 p value 0.0001 0.2333 0.0001 0.0001

t value 5.8578 1.1935 8.6733 14.1608

Df 588 458 426 426

Table 3  Results of t test analysis for all models developed against 
the reference model for case study (iii)

Tumor size (cm) t test E HD SF PF

1.0 p value 0.0001 0.2109 0.0001 0.0001

t value 5.8193 1.2527 8.8604 14.8579

df 588 458 426 442

1.5 p value 0.0001 0.2122 0.0001 0.0001

t value 5.945 1.2493 9.2954 14.5347

df 588 458 442 442

2.0 p value 0.0001 0.1919 0.0001 0.0001

t value 6.1146 1.3069 9.0924 13.9724

df 588 474 442 442

2.5 p value 0.0001 0.1177 0.0001 0.0001

t value 6.0158 1.5672 8.9367 13.5774

df 630 532 484 484



1370 Med Biol Eng Comput (2016) 54:1363–1373

1 3

PF models were shown to have higher temperature differ-
ences compared to the other models. Although significant 
differences are normally translated as an increase in sen-
sitivity, in reality additional surrounding convective heat 
transfer could reduce the physical breast surface tempera-
ture and make detecting deeper tumor in low-dense breast 
more challenging and less sensitive [46].

In addition, Fig. 5 has shown that for tumor size of 
3.0 cm at z = 5.5 cm which was positioned underneath the 
skin surface, all breast models showed approximately simi-
lar maximum temperature points. This was due to the thin 
layer of fat tissue that separated the tumor in all models 
before it ulcerated or penetrated through the skin surface 
which can be easily detected and palpated via a clinical 
breast examination (CBE) procedure. Thus, at this location, 
the tumor possessed higher effects on the maximum surface 
temperature alteration in all models, while tissue density 
was proven to have less effect on the warmer area but only 
to the surrounding healthy tissue. However, the increase in 
the temperature values was based on the models developed, 
and they could possibly have a various increment patterns 
when the tissues are arranged differently, which is one of 
the challenges faced by researchers in modeling real breasts 
since every woman has varying physical breast properties 
[9, 41, 43, 54]. Nevertheless, the ED breast model shown 
higher maximum surface temperature than the other models 
when the size of the tumor was less than 2.0 cm. Thus, it is 
equally important to compare the surface temperature value 
for both breasts in order to obtain their surface temperature 
profile, especially in detecting smaller or farther underlying 
tumors that cannot be palpated via a CBE procedure or via 
mammography.

Although changes in tumor sizes and locations altered 
the surface temperature profile, case studies (ii), (iii), and 
(iv) have shown that tumor location from the skin sur-
face had a higher effect on the surface temperature profile 
alteration compared to its size, even though smaller tumor 
tended to have a higher metabolic rate. In fact, a similar 
observation was made by Das and others in their previous 
study [17]. Hence, the overall observation indicates that if 
the tumor parameter estimation is calculated without con-
sidering the breast density level factor and other tissue 
properties [48, 54], one might over estimate the size or the 
actual location of the tumor from the thermogram obtained.

Finally, based on the statistical analysis conducted, it 
was proven that with the presence of tumor, different breast 
density models showed significant alterations in surface 
temperature profile in addition to other parameters, such 
as blood perfusion and metabolic heat generation [21, 
40]. The breast density level factor, which can be directly 
related to age, depicted that a single-layer or a single breast 
composition model is insufficient to represent a model for 
women’s breasts in general [14]. However, by considering 

multiple breast density models, researchers could estimate 
tumor size, locations, and other thermophysical proper-
ties with a better accuracy since there is no specific breast 
model that can fit all breast types.

5  Conclusion

The simulation results obtained showed that different breast 
densities produced varying surface temperature distribution 
profiles with the presence of tumor. Quantitatively, statis-
tical analysis revealed that ED, SF, and PF breast models 
had significant surface temperature mean differences from 
the reference model with p value >0.025 in all simulation 
results, while HD breast model contrarily showed insig-
nificant surface temperature mean difference from the ref-
erence model. This statistical analysis is very important to 
provide evidence that breast density level is indeed a factor 
that contributes to the significant alteration of the surface 
temperature profile for cancerous breasts.

Furthermore, it was also observed that as the tumor 
moved toward the skin surface, all models had approxi-
mately similar maximum surface temperatures. At this 
point, breast density levels failed in providing a distinguish-
able maximum temperature for all models, but required a 
comparison of both breasts to obtain the maximum tem-
perature difference with their normal healthy breast. How-
ever, as the tumor becomes superficial, it can normally be 
easily detected via a CBE procedure, and thus, thermogra-
phy screening may not be necessary. Hence, this study sug-
gested that the breast density factor should be considered 
for smaller and deeper tumor cases among young women 
with dense breasts. For future study, dynamic thermal 
changes should be observed and tumor locations should be 
varied on all axes in order to observe the asymmetrical sur-
face temperature profile for all breast models with varying 
tissue arrangements. As for this study, the heat convection 
was maintained at the same value, but one should consider 
the effect of overall heat boundary condition, especially 
in clinical practice, since it will cause further temperature 
degradation and different thermal alteration profiles on the 
skin surface.

In addition, although a large-scale data are still required 
to obtain a better standard for different breast density lev-
els, this particular study hoped to facilitate the understand-
ing of the complex mechanism underlying the observed 
surface temperature profile, as well as to improve the cur-
rent early tumor detection and analysis for the thermogra-
phy technique.
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