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1  Introduction

EEG is a noninvasive testing method, which contains very 
useful information related to different physiological states 
of the brain, and thus, it is an effective tool for understand-
ing the complex dynamical behavior of the brain. Since 
EEG is noninvasive, it can be recorded over a long time 
span which is very important for monitoring neurological 
disorders like epileptic seizures which are ephemeral. Epi-
lepsy is a disorder of the normal brain function, by which 
approximately 1 % of the world’s population suffers. These 
EEG recordings are visually inspected by highly trained 
professionals for detecting epileptic seizures. This informa-
tion is then used for clinical diagnosis and possible treat-
ment plans. The process is time-consuming and expensive 
[15].

Research on seizure detection began in the 1970  s and 
various methods addressing this problem have been pre-
sented. Liu et al. proposed the time-domain method which 
searches for periodic, rhythmic patterns in EEG similar 
to the ones occurred during seizure activity. The authors 
analyzed the autocorrelation of EEG to provide a meas-
ure for rhythmicity [30]. Event-related EEG changes over 
the primary motor cortex are then analyzed off-line from 
the EEG recordings [37]. In the frequency domain, seizure 
detection relies on the differences in the frequency-domain 
characteristics of the normal and epileptic EEG [10]. Since 
the EEG is nonstationary in general, it is most appropri-
ate to use time–frequency-domain methods like wave-
let transforms (WT) [2, 26, 54] which do not impose the 
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quasi-stationarity assumption on the data like the time- and 
frequency-domain methods. WT provides both time and 
frequency views of a signal simultaneously which makes it 
possible to accurately capture and locate transient features 
in the data like the epileptic spikes. He et al. [16] proposed 
a method for removing ocular artifacts based on adaptive 
filtering. Nonlinear measures like correlation dimension 
(CD), largest Lyapunov exponent (LLE), and approximate 
entropy (ApEn) quantify the degree of complexity in a time 
series. These measures help understand EEG dynamics and 
underlying chaos in the brain signals [25]. ApEn is a statis-
tical parameter, widely used in the analysis of physiological 
signals, such as estimation of regularity in epileptic seizure 
time series data [39, 40]. Diambra et al. [6] have shown that 
the value of the ApEn drops abruptly due to the synchro-
nous discharge of large groups of neurons during an epilep-
tic activity. Thus, it is a suitable feature to characterize the 
EEG signals. Andrzejak et al. [3, 4] used CD to character-
ize the interictal EEG for seizure prediction and found that 
the CD values calculated from interictal EEG recordings 
are significantly lower for the epileptogenic zone as com-
pared to other areas of the brain.

Artificial neural networks (ANN) have been widely 
applied to classify EEG signals over the last two decades 
[8, 27, 41]. A variety of different ANN-based approaches 
were reported in the literature for epileptic seizure detec-
tion [28, 38, 44]. Kalayci et al. [23] used wavelet transform 
to capture characteristic features of the EEG signals and 
then combined with ANN to get satisfying classification 
result. Auto regressive coefficients are extracted as fea-
ture vectors from EEG segment, and then a neural network 
classifier is used to classify each EEG segment into differ-
ent sleep stages. The BioSleep package produces reason-
able results with the comparison of human scoring in the 
third-part evaluation [22]. Nigam et  al. [35] described a 
method for automated detection of epileptic seizures from 
EEG signals using a multistage nonlinear preprocessing 
filter for extracting two features: relative spike amplitude 
and spike occurrence frequency. These features were fed to 
a diagnostic artificial neural network. Mohseni et  al. [33] 
applied short-time Fourier transform analysis of EEG sig-
nals and extracted features based on the pseudo-Wigner–
Ville and the smoothed pseudo-Wigner–Ville distribution 
and used these features as inputs to an ANN for classifi-
cation. Jahankhani et  al. [21] decomposed EEG signal 
with WT into different sub-bands and extracted statisti-
cal information from the wavelet coefficients. He utilized 
radial basis function network (RBF) and multi-layer per-
ceptron network (MLP) as classifiers. Erfanian et  al. [7] 
presented an adaptive noise canceller (ANC) filter using 
an artificial neural network for real-time removal of elec-
tro-oculogram interference from electroencephalogram 
(EEG) signals. Subasi [43, 46] decomposed the EEG signal 

into time–frequency representations using DWT. Some 
features such as the mean of the absolute value, average 
power, standard deviation, variance, and ratio of the abso-
lute mean value derived from the wavelet coefficients are 
calculated and applied to different classifiers, such as feed-
forward error back-propagation artificial neural network 
(FEBANN), dynamic wavelet network (DWN), dynamic 
fuzzy neural network (DFNN), and mixture of expert sys-
tem (ME), for epileptic EEG classification. Success of 
variance in seizure detection is well established [31]. In 
the work of Srinivasan et  al. [42], features from the time 
domain and frequency domain are employed individually 
or jointly for classifying EEG signals.

The high classification results showed that the Elman 
recurrent neural network combination feature exhibited 
excellent discrimination performance. In [12], Lyapunov 
exponents were extracted from EEG signals with Jacobi 
matrices and then applied as inputs to recurrent neural net-
works (RNNs) to obtain good classification results. Ubeyli 
[49, 50] classified the EEG signals by combining Lyapu-
nov exponents and fuzzy similarity index. Several entropy 
measures were investigated for discriminating EEG signals 
[24]. Connectivity techniques can be used to show real-time 
changes in the brain state in response to stimuli [19]. This can 
allow researchers’ insight into the effects of gaming on brain 
in real time. The classification ability of the entropy meas-
ures was tested through an adaptive neuro-fuzzy inference 
system [45]. Guo et al. [13] decompose original EEG signal 
first into several sub-bands through four-level multi-wavelet 
transform with repeated row preprocessing for each sub-
band signal, and then calculated ApEn feature to classify the 
EEG signals using three-layer multi-layer perceptron neu-
ral network with Bayesian regularization back-propagation 
training algorithms. Neural network is an information pro-
cessing system, and it has been the choice of many research-
ers for the classification due to its special characteristics such 
as self-learning, adaptability, robustness, and massive paral-
lelism. In ANNs, knowledge about the problem is distributed 
through the connection weights of links between neurons. 
The neural network has to be trained to adjust the connection 
weights and biases in order to produce the desired mapping. 
ANNs are widely used in the biomedical area for modeling, 
data analysis, regression, and classification.

Nicolaou et al. [34] proposed approximate entropy drops 
which occurred during seizure intervals and employed 
this as a feature for automatic seizure detections using 
SVM. Ubeyli [51] carried out a study for classification of 
EEG signals by combining the model-based methods and 
least-square support vector machine (SVM). Iscan et  al. 
[20] proposed to combine the time- and frequency-feature 
approach for the classification of healthy and epileptic 
EEG signals using different classifiers including SVM. 
Acharya et  al. [1] extracted four entropy-based nonlinear 
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features from EEG data and trained seven classifiers. Hsu 
et  al. [17] developed a method using the SVM classifier 
with nonlinear features for automatic seizure detection 
in EEG signals. Varun Joshi et  al. [52] presented a new 
method for electroencephalogram (EEG) signal classifica-
tion based on fractional-order calculus. Generally to train 
a SVM classifier, the user must determine a suitable ker-
nel function, optimum hyper parameters, and proper regu-
larization parameter. This goal is usually accomplished by 
cross-validation techniques. The cross-validation technique 
can be used to select parameters. The performance of SVM 
largely depends on the kernels. But selecting the appropri-
ate kernel functions, which are well suited to the specific 
problem such as seizure detection, is very difficult. Speed 
and size is another problem of SVM both in training and 
testing. In terms of running time, SVMs are slower than 
other machine learning techniques, but provides better per-
formance with respect to classification accuracy. Basically, 
SVM is binary classifier, and there are variations of SVM 
for multi-classification such as one versus one and one ver-
sus rest, and DAG MSVMs are available, but they require 
N(N − 1) SVMs for an N class problem which takes much 
computation time. So, the work for multi-class SVM clas-
sifiers and also to customize the kernel function for seizure 
detection is a scope for further research. So, the present 
work contributes the following.

i.	 A new kernel called ELM kernel for SVM
ii.	 A new multi-classification scheme called hierarchical 

MSVM

The proposed scheme is tested using the complete five 
classes of benchmark clinical EEG dataset recorded from 
five healthy subjects and five epileptic patients during both 
ictal and interictal periods. Since the dataset is hierarchi-
cal in nature, the proposed hierarchical approach is much 
suitable. It is shown that the new scheme is able to detect 
epileptic seizures with very high classification accuracy at 
a lesser execution time. The paper is organized as follows. 
Section  2 describes the benchmark dataset and proposed 

methods such as wavelet transform-based feature extraction 
and a novel hierarchical multi-class SVM classifier with 
ELM kernel in this work. Section  3 presents the various 
experiments carried out and results. In Sect.  4, the evalu-
ation procedure and the experimental results are discussed. 
Concluding remarks on the effectiveness of the present 
study and hints for the future researcher are furnished in 
Sect. 5.

2 � Methods

2.1 � Dataset description

The benchmark EEG data [3] used in this work are obtained 
from University of Bonn, Germany. The data are available 
in public domain that consists of five different sets {A, B, 
C, D, E}. Each dataset consists of 100 single-channel EEG 
epochs of 23.6-s duration. The data were recorded with 
128-channel amplifier system and digitized at 173.61  Hz 
sampling rate and 12-bit A/D resolution. The description 
of the dataset is summarized in Table 1. The experimental 
setup followed in this paper on this benchmark dataset is 
also adopted by number of researchers [3, 5, 13, 14, 29, 36, 
47, 48, 51].

The dataset is hierarchical in nature. The dataset can be 
classified as normal and seizure in first level. Then from the 
normal subset they can be further classified as normal-eye-
opened and normal-eye-closed in the second level. As well 
as in the same level, the seizure subset can be classified as 
during-seizure and seizure-free. And in the last level, the 
seizure-free subset can be further classified as hippocam-
pal and epileptogenic. So the hierarchical multi-class SVM 
approach is very much suitable for this particular bench-
mark dataset.

2.2 � Proposed methodologies

The EEG signal classification for epileptic seizure detec-
tion consists of main modules such as a feature extractor 

Table 1   Description summary of dataset obtained from University of Bonn Germany

Subject Five healthy subject Five epileptic patients

SET A SET B SET C SET D SET E

Patient state Awake and eyes open 
(normal)

Awake and eyes closed 
(normal)

Seizure-free (interictal) Seizure-free (interictal) Seizure activity(ictal)

Electrode types Surface Surface Intracranial Intracranial Intracranial

Electrode placement International 10–20 International 10–20 Within epileptogenic 
zone

Opposite to epilepto-
genic zone

Within epileptogenic 
zone

No. of epochs 100 100 100 100 100

Epoch duration (s) 23.6 23.6 23.6 23.6 23.6
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that generates wavelet-based features from the EEG signals 
and a feature classifier (H-MSVM) that outputs the class. 
The block diagram of the proposed approach is illustrated 
in Fig. 1.

2.3 � Wavelet transform‑based feature extraction

Transforming the input data into a set of features which 
reduces dimensionality is called feature extraction. WT 
has several advantages, which can simultaneously possess 
compact support, orthogonality, symmetry, short support, 
and higher-order approximation. WT is widely applied 
in biomedical engineering areas for solving a variety of 
real-life problems. WT provides a more flexible way of 
time–frequency representation of a signal by allowing the 
use of variable-sized windows. In WT, long time windows 
are used to get a fine low-frequency resolution, and short 

time windows are used to get high-frequency information. 
Thus, WT gives precise frequency information at low fre-
quencies and precise time information at high frequencies. 
This makes the WT suitable for the analysis of irregular 
data patterns, such as impulses occurring at various time 
instances. So, WT is an effective tool for classification 
and analysis of nonstationary signal, such as EEG signals. 
Wavelet decomposition of a source EEG signal has been 
done up to fifth level using Daubechies wavelet of order 2. 
As DB2 has asymmetric properties, orthogonality and its 
smoothing feature made it more suitable to analyze and 
detect changes of nonstationary signal such as EEG [11]. 
A rectangular window, which was formed by 256 discrete 
data, has been selected so that the EEG signal is considered 
to be stationary in that interval. Wavelet transformation 
employs two sets of functions called scaling functions and 
wavelet functions, which are related to low-pass and high-
pass filters, respectively. The decomposition of the source 
EEG signal into the different frequency bands is obtained 
by consecutive high-pass and low-pass filtering of the time-
domain signal. The procedure of multi-resolution decom-
position of a signal x[n] is schematically shown in Fig. 2. 
The multi-resolution analysis, using five levels of decom-
position, yields six separate EEG sub-bands. Table 2 sum-
marizes wavelet sub-bands, frequency ranges, and features 
of the proposed work.

In the present work, the dimensionality reduction is car-
ried out from wavelet coefficients of the source EEG data 
which is discussed as follows. After wavelet decomposition, 
the source EEG signal is transformed into 4108 wavelet 
coefficients and decomposed into six sub-bands such as D1, 
D2, D3, D4, D5 and A5, and considering all the features for 
classification increases the computation time [11]. In order 
to further decrease the dimensionality of the extracted fea-
tures and reducing computation time, six features have been 
extracted from each sub-band, and so totally 36 features 
are used to characterize the EEG signals for classification. 
The following wavelet-based nonlinear features such as (i) 

Yes 

No 

Digitized EEG Data 

Wavelet Transformation and Feature Extraction

Training H-MSVM using Wavelet features

Is Training 
Completed?

Testing H-MSVM using Wavelet features

Classes

Fig. 1   Overall system architecture for EEG signal classification

Fig. 2   Five-level wavelet 
decomposition
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approximate entropy, (ii) largest Lyapunov exponent, and 
linear features such as (iii) minimum, (iv) maximum, (v) 
mean, and (vi) standard deviation have been extracted from 
each sub-band. The statistical features have the advantages 
of familiarity and efficiency and also have advantages when 
making inferences. In this work, in addition to linear statis-
tical features such as minimum, maximum, mean and stand-
ard deviation, nonlinear features such as ApEn and LLE are 
used to characterize the signal variance. The nonlinear fea-
tures have a great advantage in reflecting the chaotic behav-
ior and serve as useful features in classifying the EEG sig-
nals [11]. Table 2 summarizes wavelet sub-bands, frequency 
ranges, and features of the proposed work.

2.3.1 � Approximtate entropy (ApEn)

The approximate entropy measures the predictability of the 
current amplitude values of a physiological signal based on 
the previous amplitude values. This measure can quantify 
the complexity or irregularity of the system.

i.	 Let the values containing N wavelet coefficients in 
each sub-band be X = [x(1), x(2), x(3), …, x(N)].

ii.	 Let x(i) be a subsequence of X such that x(i) =  [x(i), 
x(i + 1), x(i + 2), …, x(i + m − 1)] for 1 ≤ i ≤ N − m, 
where m represents the number of samples used for the 
prediction.

iii.	 Let r represent the noise filter level that is defined as 

where SD is the standard deviation of the data 
sequence X.

iv.	 Let {x(j)} represent a set of subsequences obtained 
from x(j) by varying j from 1 to N. Each sequence 
x(j) in the set of {x(j)} is compared with x(i), and in 
this process, two parameters, namely Cim(r) and 
Cim + 1(r), are defined as follows: 

(1)r = k × SD for k = 0, 0.1, 0.2, 0.3, . . . , 0.9

where
	

	 and
	

v.	 ApEn is calculated using Cim(r) and Cim +  1(r) as 
follows: 

2.3.2 � Largaest Lyapunov exponent (LLE)

Largest Lyapunov exponents are computed from each sub-
band. The Lyapunov exponent quantifies the nonlinear cha-
otic dynamics of the signal and measures how fast nearby 
trajectories in the dynamic system diverge. The general for-
mula of Lyapunov exponent is given as follows:

where ∆xij(0) = x(ti)− x
(

tj
)

 is the displacement vec-
tor at the time point ti, that is the perturbation of the 
fiducial orbit observed at tj with respect to ti, while 
∆xij(∆t) = x(ti +∆t)− x(tj −∆t) is the same vector 
after time Δt. The vector x(ti) is the point in the fiducial 

(2)Cm
i (r) =

∑N−m
j=1 kj

N − m

k =

{

1, if |x(i)− x(j) for 1 ≤ j ≤ N − m

0, otherwise

(3)Cm+1
i (r) =

∑N−m
j=1 kj

N − m

(4)ApEn =
1

N − m

[

N−m
∑

i=1

ln

(

Cm
i (r)

Cm+1
i (r)

)]

(5)LE =
1

N∆t

[

N
∑

i=1

log2

∣

∣∆xij(∆t)
∣

∣

∣

∣∆xij(0)
∣

∣

]

Table 2   Wavelet sub-bands, frequency ranges, and features of the proposed work

Signal/sub-bands (6) Frequency range (Hz) Size of wavelet coefficients Features per sub-band Final feature vector

Source EEG 0–86.8 4108 –

Approximate coefficient at level 
5 (A5)

0–2.7 130 Number of features
per sub-band (6)

Detail coefficient at level 5 (D5) 2.7–5.4 130 Nonlinear features (2):

Detail coefficient at level 4 (D4) 5.4–10.8 258 (i) Approximate entropy
(ii) Largest Lyapunov

36 (6 sub-bands x 6 features)

Detail coefficient at level 3 (D3) 10.8–21.7 514 Exponent

Detail coefficient at level 2 (D2) 21.7–43.4 1026 Linear features (4):
(iii) Minimum

Detail coefficient at level 1 (D1) 43.4–86.8 2050 (iv) Maximum
(v) Mean
(vi) SD



154	 Med Biol Eng Comput (2016) 54:149–161

1 3

trajectory for t =  ti and x(tj) is a properly chosen vector 
adjacent to x(ti) in the phase space and N is the number of 
data points.

2.3.3 � Maximum value

Maximum Value = Largest value among the wavelet coef-
ficients in each sub-band.

2.3.4 � Minimum value

Minimum Value = Smallest value among the wavelet coef-
ficients in each sub-band.

2.3.5 � Mean

Mean of the wavelet coefficients is computed in each 
sub-band.

where x is the wavelet coefficients in each sub-band, N is 
the length of the wavelet coefficients in each sub-band, i 
varies from 1 to N, and j varies from 1 to 6 (sub-bands)

2.3.6 � Standard deviation

Standard deviation of the wavelet coefficients is computed 
in each sub-band.

where x is the wavelet coefficients in each sub-band, N is 
the length of the wavelet coefficients in each sub-band, i 
varies from 1 to N, and j varies from 1 to 6 (sub-bands)

2.4 � Classification using hierarchical multi‑class SVM 
with ELM kernel

2.4.1 � Proposed hierarchical multi‑class SVM

In this paper, a new scheme called hierarchical multi-
class SVM with an ELM kernel is proposed for the clas-
sification of EEG signals. The SVM is a binary classifier, 
which can be extended by fusing several of its kind into a 
multi-class classifier. The binary SVM is fused into multi-
class SVM by hierarchical approach, since this particular 
dataset is hierarchical in nature this approach is very much 
suitable. The dataset is partitioned into two nonoverlap-
ping data subsets at different levels. These two subsets 
are used as positive and negative samples to train a SVM 
classifier. Each classifier divides the data into two sets, 

(6)x̄ =

∑

(xi)

Nj

(7)σ =

√

√

√

√

1

Nj

Nj
∑

i=1

(xi − x̄)2

N − 1 such classifiers are needed to solve an N class clas-
sification problem. This scheme is in tree structure, where 
each node of the tree represents a SVM classifier. The pro-
posed H-SVM structures are composed at different levels; 
each level consists of a finite number of SVM classifiers. 
In every node of the tree one, SVM one vs. rest problem 
is computed. The ways to build the hierarchical multi-
class SVM classifier (SVM tree) in the training phase is 
described, and the means to use the SVM tree to classify 
new input patterns during the test phase are illustrated. The 
training for the hierarchical SVM tree classifier starts from 
the training dataset. Figure 3 illustrates the schematic dia-
gram of the proposed hierarchical multi-class SVM classi-
fier. The first two sets include surface EEG recordings that 
are collected from five healthy subjects using a standard-
ized electrode placement scheme. The subjects were awake 
and relaxed with their eyes open and closed, respectively. 
The data for the last three sets are obtained from five epi-
leptic patients undergoing presurgical evaluations. The 
third and the fourth datasets consist of intracranial EEG 
recordings during seizure-free intervals (interictal periods) 
from within the epileptogenic zone and opposite the epi-
leptogenic zone of the brain, respectively. The data in the 
last set were recorded during seizure activity (ictal peri-
ods) using depth electrodes placed within the epileptogenic 
zone. The dataset contains five classes. After training, SVM 
tree classifier contains four-node SVM classifiers. At the 
top level, the dataset {ABCDE} is divided into to set {AB} 
and {CDE} by SVM1. At the second level, dataset {AB} is 
divided into {A} and {B}, respectively, by SVM2; dataset 
{CDE} is divided into {CD} and {E} by SVM3. Finally, 
the dataset {CD} is divided into {C} and {D} by SVM4. 
Both the training and testing phases of the classifier are 
carried out in a top-down manner.

Seizure Free 
Intervals 

- epileptogenic 

Normal 
-Eyes 
closed 

Seizure Free 
Intervals 

- hippocampal 

During Seizure 
Intervals 

-Eyes closed 

SVM1 
{ABCDE} 

SVM2 
{AB} 

SVM3 
{CDE} 

SVM4 
{CD} 

{A} 

Normal 
-Eyes 
open

{B} 

{C} {D} 

{E} 

Fig. 3   Hierarchical multi-class SVM classifier
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2.4.2 � Extreme learning machine (ELM)

Extreme learning machine [18] is a currently popular neu-
ral network architecture based on random projections. It 
has one hidden layer with random weights, and an output 
layer whose weights are determined analytically. Both 
training and prediction are fast when compared with many 
other nonlinear methods. This work points out that ELM, 
although introduced as a fast method for training a neu-
ral network, is in some sense closer to a kernel method in 
its operation. A fully trained neural network has learned a 
mapping such that the weights contain information about 
the training data.

The following, including algorithm, is an abridged and 
slightly modified version of ELM introduction in [32]. 
The ELM algorithm was originally proposed in [18], and 
it makes use of the single-layer feed-forward neural net-
work (SLFN). The main concept behind the ELM lies in 
the random choice of the SLFN hidden layer weights and 
biases. The output weights are determined analytically, thus 
the network is obtained with a very few steps and with low 
computational cost. Consider a set of N distinct samples (xi, 
yi) with xi ∈ Rd1 and yi ∈ Rd2; then, a SLFN with H hidden 
units is modeled as the following sum

With f being the activation function, wi the input weights, bi 
the biases and βi the output weights.

In the case where the SLFN perfectly approximates the 
data, the errors between the estimated

Outputs yi and the actual outputs yi are zero, and the 
relation is

which writes compactly as Hβ = Y , with

and β =
(

βT
1 . . . βT

H

)

 and Y =
(

yT1 . . . y
T
H

)T
.

Theorem states that with randomly initialized input 
weights and biases for the SLFN, and under the condition 
that the activation function is infinitely differentiable, then 
the hidden layer output matrix can be determined and will 
provide an approximation of the target values which is as 
good as expected. (nonzero training error). The way to 

(8)
H
∑

i=1

βif (wixi + bi), ∈ [1,N],

(9)
H
∑

i=1

Cif (wixi + bi) = yi, j ∈ [1,N],

(10)H =











f (w1x1 + b1) . . . f (wHx1 + bH)
...
. . .

...

f (w1xN + b1) . . . f (wHxN + bH)

calculate the output weights b from the knowledge of the 
hidden layer output matrix H and target values, is proposed 
with the use of a Moore–Penrose generalized inverse of the 
matrix H, denoted as H†. Overall, the ELM algorithm is 
summarized below.

2.4.3 � ELM algorithm

Given a training set (xi, yi) with xi ∈ ℜd1 and yi ∈ ℜd2, an 
activation function f: ℜ → ℜ and the number of hidden 
nodes H.

1.	 Randomly assign input weights wi and biases bi, i ∈ [1, 
H];

2.	 Calculate the hidden layer output matrix H;
3.	 Calculate output weights matrix b = H†Y.

Number of hidden units is an important parameter for 
ELM and should be chosen with care. The selection can 
be done for example by cross-validation, information cri-
teria, or starting with a large number and pruning off the 
network.

2.4.4 � Analysis of ELM

Essential property of a fully trained neural network is 
its ability to learn features on data. Features extracted 
by the network should be good for predicting the target 
variable of a classification/regression task. In a network 
with one hidden and one output layer, the hidden layer 
learns the features, while the output layer learns a linear 
mapping. This could be considered as the first nonlin-
ear mapping of data into a feature space and then per-
forming a linear regression/classification in that space. 
ELM has no feature learning ability. It projects the input 
data into whatever feature space, the randomly chosen 
weights happen to specify, and learns a linear mapping 
in that space. Parameters affecting the feature space rep-
resentation of a data point are type and number of neu-
rons, and the variance of hidden layer weights. Training 
data can affect these parameters through model selec-
tion, but not directly through any training procedure. 
This is similar to what a support vector machine does. 
A feature space representation for a data point is derived 
using a kernel function with a few parameters, which 
are typically chosen by some model selection outline. 
Features are not learned from data, but dictated by the 
kernel. Weights for linear classification or regression are 
then learned in the feature space. The biggest difference 
is that ELM explicitly generates the feature space vec-
tors but in SVM or other kernel method only similarities 
between feature space vectors are used.
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2.4.5 � Kernel functions

The idea of the kernel function is to enable operations to 
be performed in the input space rather than the potentially 
high-dimensional feature space. Hence the inner product 
does not need to be evaluated in the feature space. The 
function is expected to perform mapping of the attributes 
of the input space to the feature space. The kernel function 
plays a critical role in SVM and its performance. It is based 
upon reproducing kernel Hilbert Spaces.

If K is a symmetric positive definite function, which satis-
fies Mercer’s Conditions,

Then the kernel represents a legitimate inner product in 
feature space. The training set is not linearly separable in 
an input space. The training set is linearly separable in the 
feature space. This is called the “kernel trick.”

The different kernel functions are listed below.

1.	 Lineal kernel:

2.	 Multi-layer perceptron kernel:

where s is scale parameter and t is the bias.
3.	 Polynomial kernel: 

(11)K(xi, yi) = φ(xi) · φ(yi)

(12)K(xi, yi) =

∞
∑

m

amφm(xi)φm(yi), am ≥ 0,

(13)K(xi, yi) = xTi yi

(14)K(xi, yi) = tanh
(

sxTi yi + t2
)

(15)K(xi, yi) = xTi yi + t)d

where t is the intercept and d is the degree of the 
polynomial.

4.	 Radial basis function:

	 Gaussian radial basis function: radial basis functions 
most commonly with a Gaussian form 

	 Exponential radial basis function: a radial basis 
function produces a piecewise linear solution which 
can be attractive when discontinuities are acceptable. 

 where σ 2 is the variance of the Gaussian kernel.
There are many more including Fourier, splines, 

B-splines, additive kernels, and tensor products.

2.4.6 � ELM kernel

The architecture of SVM with new ELM kernel is illus-
trated in Fig.  4. ELM uses a fixed mapping from data to 
feature space. In derivation of the neural network kernel, 
which has infinite number of hidden units, and when the 
weights are integrated out, the resulting function is param-
eterized in terms of weight variance [53]. We interpret 
ELM as an approximation to this infinite neural network. 
This idea has been suggested for support vector machine in 
[9], which has been the main inspiration for our work. An 
attempt based on the same idea is done in Gaussian process 
classification. Authors of [9] proposed using ELM hidden 
layer to form a kernel to be used in SVM classification. The 
ELM kernel function is defined as

(16)K(xi, yi) = exp

(

−
xi − y2i

2σ 2

)

(17)K(xi, yi) = exp

(

−
xi − yi

2σ 2

)

Fig. 4   Architecture of SVM 
with ELM kernel
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that is, the data are fed through the ELM hidden layer to 
obtain the feature space vectors, and their covariance is 
then computed and scaled by the number of hidden units.

A proper kernel function for a certain problem is 
dependent on the specific data. Here ELM has been used 
as a new kernel for SVM for the classification of EEG sig-
nals. ELM is fast, but it does not search for maximum-mar-
gin hyperplanes. Instead, they minimize a sum of squared 
errors between the class labels and the multi-layer percep-
tron output. This kind of criterion is not really suitable for 
classification. The study proposes to merge both the SVM 
and ELM approaches in order to obtain models which (i) 
are fast to train and (ii) are maximum-margin classifiers.

3 � Results

A five-class EEG signal classification problem is dealt 
with, which is the assignment of subjects to one of five pre-
determined classes. The proposed technique for classifica-
tion of the EEG signals was implemented by using MAT-
LAB (R2013a) software package running in an Intel Core 2 
Duo processor with 2.8 GHz. For classification of EEG sig-
nals, 500 signals are used (Dataset A-E each contains 100 
signals). From these by cross-fold selection method, 50 % 
of the nonoverlapped data are used for training and remain-
ing 50 % of the nonoverlapped data for testing.

The classification and misclassification results of various 
SVMs used in the H-MSVM for the classification of the 
EEG signals are given in Table 3. The challenge is set A is 
confused with set B and set C with set D. From these matri-
ces, the number of EEG signals which are correctly classi-
fied and misclassified could be identified. The classification 
accuracy of the proposed approach has been compared with 
other existing classifiers such as multi-class SVMs (one vs. 

(18)K(xi, yi) =
1

H
φ(xi) · φ(yi),

one, one vs. rest, DAG), artificial neural network (ANN). 
It can be seen from Table  4 that the proposed H-MSVM 
achieves highest classification accuracy over other meth-
ods. Table 5 presents the values of the statistical parameters 
such as sensitivity, specificity and classification accuracy of 
the proposed H-MSVM classifier for various EEG Dataset 
{A, B, C, D, E}. The proposed classifier achieves an overall 
classification accuracy of 94 %.

Stringent experiments have been conducted using hold-
out and cross-validation methods on the entire dataset 
[3]. (i) to study statistical relevance of the dataset; (ii) to 
study the generalization ability of the proposed method to 
an independent dataset; (iii) and to study the variability to 
changes in the training/testing data. The results are pre-
sented in Table 6. From this table, it is evident that the pro-
posed method, when subjected to cross-validations, yields 
consistent classification accuracy with less variations across 
different runs. This table also demonstrates the generaliza-
tion ability of the proposed method and statistical relevance 
of the data using hold-out validations. It is observed from 
the table that the classification accuracy is monotonically 
increasing, when more samples are used for training than 
testing. The proposed method stabilizes at 94 %, in which 
50  % samples are used for training and remaining 50  % 
samples are used for testing. The improvements in terms 
of classification accuracy at 60:40 ratio are 1 %, which is 

Table 3   Classification and misclassification accuracy versus various 
SVMs in the H-MSVM

Classifier Input dataset Size Output results

Correctly classified Misclassified

SVM1 {AB} 100 100 0

{CDE} 150 149 1

SVM2 {A} 50 50 0

{B} 50 49 1

SVM3 {CD} 100 100 0

{E} 50 50 0

SVM4 {C} 50 49 1

{D} 50 49 1

Table 4   Classification accuracy versus various multi-class SVMs 
(MSVM) and ANN

Classifiers Classification accuracy (CA %)

H-MSVM (the present study) 94

MSVM (DAG) 92

MSVM (one vs. rest) 90

MSVM (one vs. One) 90

ANN 89

Table 5   Values of the statistical parameters of the proposed 
H-MSVM classifier for various EEG dataset

Sensitivity  =  number of correctly detected positive patterns/total 
number of actual positive patterns

Specificity  =  number of correctly detected negative patterns/total 
number of actual negative patterns

Classification Accuracy  =  number of correctly classified patterns/
total number of Patterns

Dataset Sensitivity (%) Specificity (%) Overall CA (%)

Set A 93.25 98.42

Set B 93.63 98.36

Set C 94.00 98.16 93.63

Set D 94.13 97.17

Set E 93.13 99.54
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marginal. The classification accuracy of 97 % is achieved, 
when it is overtrained using 80:20 ratio.

Table  7 presents a comparison between the approach 
proposed and other existing research works which use 
the same benchmark EEG dataset. Complete five-class 
EEG dataset {A, B, C, D, E} which are more challenging 
to classify are used. Most of the existing researchers have 
used only two-class or three-class problems. Only a few 
researchers used the complete five-class dataset. The new 
hierarchical multi-class SVM with ELM kernel and the 
features of wavelet transform-based statistical coefficients, 

approximate entropy, and largest Lyapunov exponents were 
used in the study to classify the EEG signals indicating 
higher performance than that of the other existing research 
works.

4 � Discussion

Figure  5 compares between-class distance and within-
class distance for various hierarchical classes of datasets 
based on the features. From the figure, it is observed that 

Table 6   Mean and SD of sensitivity, specificity, and classification accuracy of the proposed classifier for various hold-out and cross-validations

Mean sensitivity SD of sensitivity Mean specificity SD of specificity Mean classification accuracy SD of classification accuracy

Hold-out validation (twofolds)

40:60 71 2.6 77 2.9 74 2.7

50:50 92 2.1 96 2.3 94 2.2

60:40 93 1.8 97 2.0 95 1.9

80:20 96 0.7 97 0.9 97 0.9

Cross-validation

3-folds 92 3.2 96 2.9 94 3.0

5-folds 93 2.5 96 2.7 94 2.6

10-folds 94 2.1 96 2.0 95 2.0

20-folds 95 1.9 96 1.8 96 1.8

Table 7   Comparison of CA of the proposed research work with existing research works

References Year Feature extraction Classification Dataset CA (%)

Chandaka et al. [5] 2009 Cross-relation Support vector machine A, E 99

Ocak [36] 2009 Wavelet transform and approximate 
entropy

Surrogate data analysis {ACD}, E 98

Guo et al. [13] 2010 Multi-wavelet transform-based approxi-
mate entropy

Artificial neural networks A, E 96

Tzallas et al. [48] 2007 Time frequency analysis Naive Bayes, logistic regression, artificial 
neural network

A, E 99

A, D, E 93

A, B, C, D, E 89

Ubeyli [51] 2010 Eigenvector methods Recurrent neural network, probabilistic 
neural network

A, B, C, D, E 78

Guo et al. [14] 2010 Line length feature Artificial neural network A, E 98

Liang et al. [29] 2010 Wavelet transform and line length feature Artificial neural network A, E 97

{ABCD}, E 98

Subasi and Gursoy [47] 2010 Wavelet transform and principal compo-
nent analysis and independent compo-
nent analysis

Support vector machine A, E 99

Proposed work 2014 Wavelet transform-based statistical 
features, largest Lyapunov exponent and 
approximate entropy

Artificial neural network, hierarchical 
multi-class SVM with new kernel

A, E, 99

A, D, E 96

{ABCD}, E 99

{AB}, {CD}, E 95

A, B, C, D, E 94
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within-class distance was minimum and between-class 
distance was maximum. So the extracted features are well 
suited for discriminating various classes.

Table 8 presents the comparison of classification accu-
racies and number of SVMs required for various multi-
class SVMs. Table  9 summarizes classification accuracy 
and execution time of various SVM kernels. It is proved 
that the computation time for ELM kernel is much lesser 
than other kernels with comparable classification accu-
racy. Using RBF kernel, the accuracy increases, reaches 
its maximum, and then decreases. In contrast, the accu-
racy with ELM kernel quickly stabilizes for each dataset. 
Experiments have been conducted using SVM as classifier 
employing RBF kernel and ELM kernel. It is observed that 
the classification accuracy of the RBF kernel does not sta-
bilize quickly, whereas ELM kernel quickly gets stabilized. 
Also it is observed that the classification accuracy of RBF 
kernel-based classifier, after reaching its maximum, started 
decreasing, and this is due to the fact that the RBF Ker-
nel is not immune to over-fitting. This work considered as a 
complete five-class dataset {ABCDE} of EEG for the clas-
sification. In the proposed hierarchical multi-class SVM 
classifier, the computational complexity is lesser when 

compared with other multi-class SVM classifiers that is 
N − 1 where N is the number of classes, since other multi-
class SVM classifiers require number of SVMs which is 
same as the number of classes. For the example applica-
tion, other multi-class SVM classifiers require N(N −  1) 
SVMs. Here in the proposed classifier, only four SVMs 
were used in three levels (hierarchical tree). The small-
est computation of classifying the test pattern is just one 
SVM evaluation when the decision could be made at the 
top node. The worst case is N − 1 SVM evaluations when 
four SVM nodes classifiers have to be traversed before the 
classification decision is arrived at. The test phase for one 
pattern by one-against-one, one-against-rest, and DAG 
SVM approaches require N SVM evaluations. Compared 
with those approaches, the proposed SVM tree classifier 
is more efficient in the test phase. The efficiency gained in 
testing phase is very important for many practical applica-
tions. The classification stage in application such as epi-
leptic seizure detection in real time requires fast response. 
Additional experiments have been carried out using clini-
cal EEG data, acquired from 20 epileptic patients who had 
been under the evaluation and treatment in the Neurology 
Department of Sri Ramakrishna Hospital, Coimbatore, 
India, for detecting epileptic seizure. The proposed method 
achieves 98  % classification accuracy and suits for real-
time clinical utilities. 

5 � Conclusions

The proposed approach has successfully classified com-
plete range of EEG datasets (multi-classes A–E) with the 
emphasis on epileptic seizure detection. When compared to 
other classification schemes, the proposed method is effi-
cient in terms of classification accuracy and computation 
complexity. Moreover, the hierarchical structure generated 
in the approach indicates the interclass relationships among 
different classes and dataset. The proposed approach 
achieves 94  % classification accuracy, which positively 
proved that this method is successful. This paper also 
proposes an approach merging both the SVM and ELM 
framework. Experiments show that the accuracy of SVM 
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Fig. 5   Comparison of between-class distance and within-class dis-
tance for various hierarchical classes based on the features

Table 8   Classification accuracies and number of SVMs versus vari-
ous classifiers

Classifiers Classification 
accuracy (%)

No. of SVMs 
required for N 
class problem

No. of SVMs 
required for the 
5 class EEG 
problem

HM-SVM (pro-
posed work)

94 N − 1 4

MSVM (DAG) 93 N(N − 1) 20

MSVM (one vs. 
rest)

90

MSVM (one vs. 
one)

92

ANN 89 – –

Table 9   Classification accuracy and execution time versus various 
SVM kernels

SVM kernel Classification accuracy (%) Execution time (s)

ELM 94 24

ERBF 92 56

RBF 91 56

Poly 87 32

Linear 82 25
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classifiers with ELM kernel is better, when compared with 
the standard RBF kernels. The results from this work can 
be expanded to include a more complete range of patholo-
gies. Possible directions for further work include optimiz-
ing the features and kernel parameters using particle swarm 
optimization and developing real-time epileptic seizure 
detection and monitoring system.
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