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1  Introduction

Angiogenesis, the formation of new capillaries from exist-
ing vasculature, is the main mechanism of vascularization 
during embryonic development and wound healing. It is 
also involved in processes such as tumor growth and metas-
tasis. Blood vessels are constructed from endothelial cells 
(ECs) which are phenotypically inactive. In angiogenesis, 
external stimuli such as tumour angiogenic factors (TAF) 
changes EC to an active cell phenotype, which can decide 
to stay inert, go and/or grow. ECs of the nearby vessels 
start to migrate up along the TAFs gradient. Newly formed 
sprouts extend toward the tumour. During the extension, 
sprouts fuse together and form a network of capillaries. 
Blood flow starts in the network and successively remodels 
the network structure. Though dozens of cells and mole-
cules are involved, ECs play the main role during the entire 
process of angiogenesis [37].

EC migration, proliferation, survival, and lumen for-
mation are regulated by signals from extracellular matrix 
(ECM) and blood flow. Growth factors are the main sources 
of biochemical signals [23, 25]; while biomechanical sig-
nals originate from blood flow [1] and interaction of EC 
with ECM and with other ECs [3, 4].

Mechanosensing and mechanotransduction are per-
formed by common proteins on the EC surface [9]. More-
over, similar signal transduction pathways are activated 
during vessel formation and acquirement of lumenal 
compartment [29]. These similarities allow studying sig-
nal transduction in angiogenesis in a unified framework. 
Accurate determination of EC phenotype is the main issue 
in this work. In the initial steps of the angiogenesis, single 
sprouts extend toward the tumour. EC phenotype is mainly 
regulated by biochemical and biomechanical signals from 
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ECM; though, there are evidences from the role of inter-
stitial flow in regulation of sprouting angiogenesis prior to 
anastomosis [67, 68]. After anastomosis and formation of 
closed loops, blood flow starts and regulates cell pheno-
type (Fig.  1). Different signaling pathways are activated 
before and after anastomosis; therefore, signaling cascades 
and phenotype maps are presented here in the two phases 
of vascular development, i.e. before anastomosis (without 
blood flow) and after anastomosis (with blood flow).

In EC phenotype determination before blood flow, 
integrins, vascular endothelial (VE) cadherin, and trans-
membrane receptors (such as tyrosine kinase receptors, 
G-protein-coupled receptors, tyrosine-kinase-associated 
receptors, and serine-threonine kinase receptors) are 
responsible for receiving EC environmental signals [49]. 
Lumen formation is a key step in vascular morphogenic 
events that is essential for blood flow, so lumenal compart-
ment shall be formed during sprout extension and anas-
tomosis. An increasing number of studies try to explain 
acquirement of lumenal compartments in blood vessels [5, 
6, 8, 20, 29, 32, 35, 56]. Using in vivo and in vitro models, 
signaling cascade of lumen formation has been also investi-
gated [5, 6, 16, 20, 22, 32, 35, 48, 63]. Blood flow induces 
shear stress on the inner layer of the capillary wall. A num-
ber of membrane molecules and microdomains mediate 
mechanotransduction of shear stress and its conversion into 
intracellular biochemical signals. There are several candi-
dates as shear stress sensors including ion channels, caveo-
lae, G-protein-coupled receptors, tyrosine kinase receptors 

especially VEGFR2, integrins, glycocalyx, and primary 
cilia [1, 2, 9, 33]. Though multiple receptors are involved 
in signal transduction before and after anastomosis, key 
events in sprouting angiogenesis are regulated by VEGF 
specific receptor tyrosine kinases (RTKs), integrins, and 
VE cadherins [4].

Mapping of environmental cues to specific cell pheno-
types needs a model that takes into account the intracellular 
molecules interactions and receptor cross talk. Regarding 
the intracellular signaling molecules behaviour, Boolean 
models can be used to simulate signaling networks. Appli-
cation of Boolean network in biological and medical mod-
elling dates back to 1960s when Kauffman [36] used a 
Boolean network to model the genetic regulatory networks. 
Li et al. [47] used a Boolean model to develop a dynamic 
model of guard cell abscisic acid signaling. In the context 
of angiogenesis, Bauer et al. [3, 4] constructed a Boolean 
network model of critical signaling pathways in ECs.

In the current work, comprehensive signaling cascades 
and phenotype maps before start of the blood flow (includ-
ing lumen formation) and after it is presented. The relation 
between environmental signals and EC lumen formation 
has not been considered in the previous models. To build 
an integrated model for EC lumen formation prediction 
and phenotype determination before start of the blood 
flow, critical signaling pathways of ECs and lumen forma-
tion are combined and used in a Boolean network model. 
Moreover, a clear relation between EC phenotype and flow 
induced shear stress has not been presented in the previous 

Fig. 1   Cell phenotype determi-
nation with and without blood 
flow
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works, so critical signaling pathways of ECs in the pres-
ence of blood flow are proposed in this work. The signal-
ing cascades for lumen formation and shear stress are used 
to develop a hybrid map to relate environmental and flow 
induced signals to EC phenotype and lumen formation. 
This map is used in tumor-induced angiogenesis simula-
tions [7]. In addition, the model developed in this study 
is used to propose strategies to inhibit angiogenesis (anti-
angiogenic therapy) through blockade of intracellular sign-
aling molecules.

2 � Methods

Interaction of EC surface receptors with ECM activates 
signaling pathways inside EC. Shear stress also activates 
signaling pathways inside EC. Though there are a few com-
mon signaling molecules between the pathways, different 
signaling pathways are activated by shear stress and inter-
action with ECM. Figure 2 shows a schematic from signal-
ing pathways in EC that are activated by shear stress and 
interaction with ECM.

To obtain a map between environmental signals and 
lumen formation before anastomosis, a Boolean network 

model is used. When blood flow starts, the main regulator 
of cell phenotype is the shear stress induced by blood flow. 
The proposed signaling cascade for shear stress activation 
of EC is used to create a map between the activation signals 
and cell phenotype. Finally, the maps are unified to build 
a hybrid map for cell phenotype determination with and 
without flow. The reader is referred to the previous works 
for the descriptions and details of the method [3]. The main 
software that is used in this study is RBN Toolbox with 
some modifications on the source codes [64].

2.1 � Signaling cascade of lumen formation

The signaling cascade of lumen formation is the bridge 
between environmental signals and EC response. Interac-
tion of integrins and extracellular matrix activates a cas-
cade of events in ECs. Downstream of integrin signaling, 
activation of Cdc42, Rac1, and Src plays a substantial role 
in vascular lumen formation [6, 14, 16, 38]. Cdc42, Par6, 
Par3, membrane type1-matrix metalloproteinase (MT1-
MMP), and integrin coassociate to control EC lumen for-
mation [60].

Downstream of Cdc42 and Rac1, other proteins are acti-
vated to transduce signals and modulate cell cytoskeleton. 

Fig. 2   Schematic from signal-
ing pathways inside an EC



550	 Med Biol Eng Comput (2016) 54:547–558

1 3

Small GTPase Rac1 activates Pak2. Cdc42 activates Pak2 
and Pak4. Pak2 and Pak4 are also activated by pro-
tein kinase C (PKC), especially isoform PKCε [20, 39]. 
Cdc42 activates Par3, Par6, and PKCζ. Activation of Src, 
Pak2, Pak4, Par3, Par6, and PKCζ is required for lumen 
formation.

One required step in lumen and tube formation is the 
establishment of cell polarity [22]. An EC has two faces, 
one that looks the central luminal area (apical) and the other 
one that is connected to extracellular matrix (basal). Some 
proteins inside the cell control the establishment of apical-
basolateral polarity. The main known proteins responsible 
for cell polarity in ECs are Par proteins including Par3, 
Par6, and atypical PKC isoform ζ. Cadherin also showed to 
have direct role in regulation of cell polarity [28]. Based on 
the available in vivo and in vitro experiments, Davis et al. 
[20] proposed a signal transduction pathway for EC lumen 
formation. A schematic of the proposed signaling pathways 
is shown in Fig. 3a. In the proposed signaling pathway for 
lumen formation in Fig. 3a, phorbol esters (that are known 
to enhance angiogenesis and lumen formation) used as an 
external activator of PKCε. It is assumed that in the process 
of sprouting angiogenesis, external signals exist to activate 
PKCε.

To incorporate the lumen formation signaling cascade 
model into the phenotype determination signaling path-
way, a few simplifications on the signaling cascade are 
required. The signaling pathway in Fig.  3a is simplified 
through nodes information integration. Rac1 and Cdc42 are 
integrated in a single node without loss of information [4]. 
Pak2 and Pak4 are also integrated into a single node (Pak) 
and Par3 and Par6 into Par. The incorporation of signaling 
pathway of lumen formation into the signaling pathways of 
cell phenotype determination is performed and the result is 
presented in Fig. 3b.

In the schematic presented in Fig.  3b, receptors cross 
talk and Boolean dependence relations between intracel-
lular molecules are shown. In this schematic, an arrow 
indicates an activation signal while a hammerhead indi-
cates inhibition signal. In each box or node, the first line 
is the node title (signaling molecule) and the second line 
is its Boolean dependence relation with other nodes. The 
Boolean dependence relations determine activation or deac-
tivation of nodes. For example, Grb-2/Sos activates Ras. 
Ras activates Raf-1 and contributes in activation of PI3K 
(with FAK). The Boolean operators in the dependence rela-
tion are very important in construction of the network.

The three main surface receptors of ECs are considered 
for this network. The first, cell–cell contact or cadherin 
is representative of VE cadherin in endothelial cells. The 
second one is RTK and represents chemical signals from 
VEGF in the domain. The third one, integrin, is responsible 
for receiving biomechanical signals from ECM molecules, 

which reflects the amount of attachment of ECs to ECM 
molecules such as matrix fibres. Activation or deactiva-
tion of any receptor and the downstream effectors, directly 
affects cell response. In ECs, the response is cell pheno-
type, i.e. proliferation, apoptosis, and/or motility, or lumen 
formation.

Rac and Rho are the main agents in cross talk between 
signaling pathways. Different feedback mechanisms for 
interplay between Rac and Rho are reported in the litera-
ture [51, 61, 62, 72]; however, no definitive mechanism for 
interaction of Rac with other signaling molecules especially 
Rho is mentioned in the literature. In the model developed 
here, inhibitory effect of Rho on Rac, is utilized [3].

2.2 � Shear stress activation of ECs

There are considerable evidences on the effect of shear 
stress on EC function and phenotype. Cultured ECs reori-
ent their longitudinal axis according to the streamlines of 
the flow. This will reduce the effective shear stress on ECs 
[70]. Several studies show that shear stress has a pivotal 
role on EC survival and prevention of apoptosis [21, 34]. 
There is also evidence that shear stress impacts EC pro-
liferation [33, 42]. In wound healing, laminar shear stress 
enhances EC migration [27, 44]. In microcirculation, e.g. 
for a capillary network, shear stress may play a role in 
guidance of EC migration along the interstitial flow paths 
[45]. It is also reported that shear stress stimulates ECs to 
produce vasodilators [13, 53].

At the intracellular scale, experimental studies deter-
mine the role of cell surface receptor and intracellular sign-
aling molecules in signaling cascade of shear stress. Inte-
grin is involved in shear stress mechanotransduction [66] 
and activation of receptor tyrosine kinases (RTKs) [46]. 
Activation of integrin activates FAK, paxillin, c-Src, Fyn, 
and P130, which leads to activation of Ras-ERK pathway 
[30, 43]. The ERK pathway is involved in cell growth and 
proliferation [73]. Shear stress also activates RTKs includ-
ing VEGFR2 and Tie2. The activation of RTKs is inde-
pendent from VEGF [11, 31, 40, 65]. Activation of RTKs 
activates MAPK pathways including ERK, JNK, PI3K, and 
Akt through activation of Ras. These pathways are the main 
regulator for cell survival and inhibition of apoptosis [1, 
33]. Moreover, shear stress causes rapid tyrosine phospho-
rylation of PECAM-1 [50]. Activation of ERK is dependent 
on PECAM-1 [54]. PECAM-1, VEGFR2, and VE-cadherin 
form a complex mechanosensory system. This system has 
a critical role in transduction of shear stress signals [71]. 

Fig. 3   a Schematic of general signaling network for EC lumen and 
tube formation. b Schematic of signaling network and receptor cross 
talk for EC phenotype and lumen formation

▸
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PECAM-1 and VE-cadherin are necessary for shear stress 
activation of integrin [2].

Different candidates for shear stress sensors in ECs were 
introduced, however, as mentioned before, main events 
in ECs are regulated by RTK, integrin, and VE-cadherin. 
Based on the available experimental data, a signaling cas-
cade activated by shear stress is proposed here and shown 
in Fig. 4.

Table 1 outlines the Boolean dependence relation of the 
network shown in Fig. 4 and the corresponding references 
for each relation. The signaling cascade presented in Fig. 4 

is analysed for the relation between input signals and cell 
phenotype.

3 � Results and discussion

Results are presented in two main sections. In the first sec-
tion, the model output is used to build a map for the rela-
tion between local signals and EC phenotype and lumen 
formation. In this section, specific strategies also are tested 
in the model to inhibit angiogenesis. These strategies are 

Fig. 4   Signaling cascade of shear stress activation of EC
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based on blockade of intracellular signaling molecules that 
may change phenotype and stop the angiogenesis process. 
In the second section, considering cell phenotype alteration 
due to blood flow, a hybrid map is obtained to explore cell 
phenotype determination and lumen formation with and 
without blood flow.

3.1 � Mapping environmental signals to cell phenotype 
and lumen formation

The Boolean network model maps environmental cues to 
cell phenotypes and lumen formation. The model takes 
the receptors status as inputs. Then, with a random set of 
initial conditions for intracellular signaling molecules, the 
solution starts and iterates toward the final converged state. 
The converged state is cell phenotype and/or ability of EC 
to form lumen.

The state of Rac plays a central role in receptor cross talk 
in this model. This is verified by activating or deactivating 

this node, which results in different cell phenotypes [4]. For 
more explanation about the role of Rac and VE-cadherin 
in the ECs signaling cascade in angiogenesis, consult Ref. 
[3]. Considering two possible states for Rac (activation and 
deactivation) and three environmental input signals, there 
are sixteen possible states for the model initial conditions. 
For each possible state, a Boolean network model is con-
structed and its converged state is obtained.

In order to summarize results in a single map, the model 
output for all sixteen possible states of inputs and Rac are 
gathered in Fig. 5. A sample of the network evolution for 
box number 14 is also shown in the top of Fig. 5.

Each surface receptor and signaling molecule in Fig. 3 
is represented by a white or black node in the leftmost col-
umn in the sample network evolution in top of Fig. 5. The 
nodes are numbered from 1 to 28. Nodes 1–3 correspond to 
the three surface receptors, i.e. cell–cell contact, RTK, and 
integrin, respectively. Nodes 4–24 are intracellular signal-
ing molecules. The outputs are states of the nodes 25–28 
that determine cell phenotype and lumen formation. The 
first column in the sample of network evolution in Fig.  5 
is the initial condition of the nodes. The initial conditions 
for nodes 1–3 are the input signals, and for nodes 4–28 are 
set randomly. Iterations run from left to right and the rows 
show nodes evolutions during iterations. After 20 iterations, 
the last column shows the output signals. In the first eight 
iterations, column 1–8, the nodes change their states until a 
converged set of nodes states is obtained in iteration 9 and 
stays fixed until the end of solution.

It should be mentioned that the network output (state 
of nodes 25–28 in the last time step) is independent of ini-
tial conditions of intracellular signaling molecules (nodes 
4–28). This is verified by multiple runs from several ini-
tial condition sets, which all converge to a unique set of 
phenotypes.

In Fig. 5, lumen formation is determined based on input 
signals. In the input state, the states for RTK and ECM inte-
grin are determined. Rac activation status is on the left side 
of the map and contact inhibition (activation of cadherin 
signal) is on the right side of the map. Cadherin signal 
determines whether the endothelial cell has enough cell–
cell contact or not. Each box in the table corresponds to a 
combination of input signals and Rac activation status. The 
resulting phenotype in the table is a combination of pro-
liferation, apoptosis, migration, and lumen formation. The 
outputs are determined by letters, respectively (P: prolifera-
tion, A: apoptosis, M: migration (motility), L: lumen for-
mation). It should be mentioned that in case of activation 
of apoptosis (A in the phenotype in box numbers 1–12), the 
cell is considered to undergo apoptosis, and other cell phe-
notypes are not considered. In a special case in box number 
15 there is no output signal, which means that the cell is 
quiescent.

Table 1   Nodes dependence relation and corresponding reference for 
shear stress signaling cascade

Node Dependence relation References

Integrin VE-cadherin and flow [2, 30, 33, 43]

RTK Flow [50]

PLC RTK [1, 49]

Grb-2/Sos RTK and Src [12]

FAK Integrin [2, 11, 49, 65]

Src FAK [49]

PKC PLC [49]

Ras Grb-2/Sos [1, 11, 12]

Rho FAK [49]

PI3K Ras and Src [3, 4]

MEKK Ras or Rho [1]

ROCK Rho [49]

Rac Not Rho and PI3K [3, 4]

Raf-1 Ras and PI3K and PKC [1, 41, 49, 70]

MEK1/2 Raf-1 or Rac [49, 58]

Akt PI3K [49, 50]

MEK4 MEKK [1]

Actin ROCK or Rac [49]

ERK1/2 MEK1/2 [1, 49]

eNOS Akt [49, 50]

JNK MEK4 and ASK1 [1, 55]

NO eNOS [49, 50]

ASK1 Not NO [9]

Caspace-3 Not NO [55]

Bad Not Akt [55]

Proliferation ERK1/2 [26, 49]

Apoptosis Caspace-3 or Bad or JNK [55]

Migration Actin [49]
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This model is developed based on the results of multiple 
in vivo and in vitro experimental models. Fundamental role 
of integrin in EC lumenogenesis has been shown by multi-
ple in vitro and in vivo models [5, 17, 18, 24, 59]. Receptor 
blocking antibodies of integrin, completely inhibits Lume-
nogenesis in ECs [17, 39]. The Map developed in this study 
agrees completely with the experiments on the role of inte-
grin in lumenogenesis. Moreover, it is shown that blocking 

antibodies of integrin can cause collapse of an existing cap-
illary network [10, 19]. This is due to the apoptotic signal 
that is produced when integrin signal is off.

The key role of Cdc42 and Rac1, collectively named as 
Rac in this study, in vascular lumenogenesis is also shown 
by multiple experimental studies [6, 52, 57, 74]. Davis 
et al. [20] show that siRNA suppression of Cdc42 and Rac1 
significantly inhibits lumenogenesis in ECs. Accordingly, 

Fig. 5   Prediction of cell phenotype and lumen formation based on external signals
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in the map developed in Fig. 5, ECs form lumen only when 
Rac (Cdc42 and Rac1) activation state is on.

3.2 � Targeted inhibition of signaling molecules 
and anti‑angiogenic strategies

The model developed in this study is used to examine the 
effect of targeted inhibition of specific signaling molecules 
on cell phenotype. In this method, using blocking antibod-
ies or technologies to suppress the expression of individ-
ual genes, specific signaling molecules are inhibited. This 
means that the inhibited node cannot transduce the signals 
to downstream effectors. In the model, inhibition of signal-
ing molecules is equivalent to setting the output signal of 
the inhibited node permanently off, regardless of the input 
signals. Inhibition of intracellular signaling molecules can 
change the cell fate. The change may make the ECs unable 
to form lumen, proliferate, and migrate. In ideal conditions, 
the ECs undergo apoptosis. Making the ECs unable to form 

lumen or drive them to undergo apoptosis are excellent 
strategies to inhibit angiogenesis. Phenotype alterations 
may disrupt the angiogenesis process and are also consid-
ered as anti-angiogenic strategies. To examine this concept, 
cell phenotypes correspond to inhibition of intracellular 
signaling molecules are presented in Table 2.

3.3 � Cell phenotype alteration due to flow in the loop

When blood flows in the capillaries, it acts as the main reg-
ulator of cell phenotype. ECs are activated by shear stress 
magnitudes as low as 0.2  dyne/cm2 [15, 69]. Activation 
means that both integrin and RTK are activated and this 
does not depend on their specific ligands [1, 31]; however, 
activation of RTK and integrin depends on the activation of 
VE-cadherin [2].

In cell phenotype determination without blood flow, 
apoptotic signal is dominant except for the cases that 
both RTK and integrin signals are active. Similarly, flow 
activates both RTK and integrin; as such, a hybrid map is 
derived for EC phenotype with and without blood flow. In 
the signaling cascade presented in Fig. 4, the Boolean net-
work model has a fixed output, which is the activation of 
proliferation and migration signal. The final hybrid map, 
which is obtained from integration of the model results 
with and without blood flow is shown in Fig. 6.

The outputs are shown by letters, P: proliferation, M: 
migration, PM: proliferation and migration, PML: prolif-
eration, migration and lumen formation. When blood flows 
in the capillary and creates shear stress on capillary walls, 
activation of integrin and RTK depends on VE-cadherin. 
This means that when VE-cadherin is not activated, the 
results are similar to no flow conditions. By contrast, when 
the VE-cadherin signal is active, the EC starts to proliferate 
and migrate, without relation to the Rac state.

Table 2   Summary of the inhibited nodes with desired anti-angio-
genic effect and the mechanism of production of the effect

Inhibited nodes Anti-angiogenic effect

Grb-2/Sos Apoptosis

Ras Apoptosis

PI3K Apoptosis

PIP3 Apoptosis

PKB/Akt Apoptosis

FAK Apoptosis

Rac1 Inhibition of migration

β-Catenin Inhibition of proliferation

Actin Inhibition of migration

Cyclin D1 Inhibition of proliferation

Src Inhibition of lumen formation

Pak/Par Inhibition of lumen formation

MEK 1 and Raf-1 Inhibition of proliferation

MEK 1 and ERK 1/2 Inhibition of proliferation

MEK 1 and GSK-3β Inhibition of proliferation

MEK 1 and Bad Inhibition of proliferation

MEK 1 and p53 Inhibition of proliferation

MEK 1 and PTEN Inhibition of proliferation

MEK 1 and RhoA Inhibition of proliferation

MEK 1 and ROCK Inhibition of proliferation

ERK 1/2 and Raf-1 Inhibition of proliferation

ERK 1/2 and GSK-3β Inhibition of proliferation

ERK 1/2 and Bad Inhibition of proliferation

ERK 1/2 and p53 Inhibition of proliferation

ERK 1/2 and PTEN Inhibition of proliferation

ERK 1/2 and RhoA Inhibition of proliferation

ERK 1/2 and ROCK Inhibition of proliferation

ERK 1/2 and GSK-3β Inhibition of proliferation Fig. 6   Hybrid map for EC phenotype considering both flow and no 
flow conditions
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4 � Conclusions

A Boolean network model of receptor cross talk for lumen 
formation is presented. Moreover, signaling cascade of 
shear stress activation of ECs is proposed and the result-
ing phenotypes in angiogenesis are obtained. This is, to our 
knowledge, the first study that presents a comprehensive 
model of cell phenotype determination and lumen forma-
tion based on environmental cues and blood flow. Effect 
of inhibition of each intracellular signaling molecule and 
possible anti-angiogenic effects are also investigated in 
this study. The model predicts that inhibition of intracellu-
lar signaling molecules, solely or in pairs, can be used to 
inhibit angiogenesis, thus posing a strategy to achieve anti-
angiogenic effects. Moreover, this study shows the depend-
ency of phenotype to blood flow. ECs survive when both 
RTK and integrin are activated, with and without flow. The 
hybrid map developed in this study is a valuable map in 
modelling sprouting angiogenesis.
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