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for potential eosinophilia adverse effect, and the selected 
molecular descriptors and substructures of toxic com-
pounds should be taken into consideration in the design of 
new candidate drugs to help medicinal chemists rationally 
select the chemicals with the best prospects to be effective 
and safe.
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1 Introduction

Eosinophils are a type of leukocytes or white blood cells, 
which are part of the body’s immune system compo-
nents responsible for combating multicellular parasites 
and certain infections in vertebrates [5, 20]. The value 
of blood eosinophil above 600/cmm is defined as eosino-
philia [23, 29], which was originally observed in patients 
treated with tryptophan-containing commercial products 
in the USA in 1898 [3, 15, 22]. Clinical manifestations, 
eosinophilia–myalgia syndrome (EMS), mainly include 
severe skin eruption, fever, hematologic abnormalities, 
and organ system dysfunction [1, 18, 24]. Presently, 
various factors have been found implicated as causes for 
eosinophilia, and exposure to drugs is considered as the 
most common causes, such as antipsychotic, antibacte-
rial, antiviral, antithyroid, anticancer, and other medica-
tions [8, 11, 23]. Unfortunately, the drug-induced adverse 
effects are usually detected after the drug is introduced 
into the market or in phase III clinical trials. These exper-
imental processes are very complicated, time-consuming, 
and costly [14, 34]. In particular, the drug-induced eosin-
ophilia experimental evaluation processes would cause 
negative effect on human health, such as autoimmune 

Abstract Drug-induced eosinophilia is a potentially life-
threatening adverse effect; clinical manifestations, eosino-
philia–myalgia syndrome, mainly include severe skin erup-
tion, fever, hematologic abnormalities, and organ system 
dysfunction. Using experimental methods to evaluate drug-
induced eosinophilia is very complicated, time-consuming, 
and costly in the early stage of drug development. Thus, 
in this investigation, we established computational predic-
tion models of drug-induced eosinophilia using SVM and 
naïve Bayesian approaches. For the SVM modeling, the 
overall prediction accuracy for the training set by means 
of fivefold cross-validation is 91.6 and for the external test 
set is 82.9 %. For the naïve Bayesian modeling, the over-
all prediction accuracy for the training set is 92.5 and for 
the external test set is 85.4 %. Moreover, some molecular 
descriptors and substructures considered as important for 
drug-induced eosinophilia were identified. Thus, we hope 
the prediction models of drug-induced eosinophilia built in 
this work should be applied to filter early-stage molecules 
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diseases and end-organ failure, and even lead to mortal-
ity [8, 15]. Thus, using the cheaper, rapid, and accurate 
computational prediction methods as novel alternative 
techniques to evaluate the safety of candidate compounds 
prior to their synthesis would be a good choice. This may 
help medicinal chemists rationally select the chemicals 
with the best prospects to be effective and safe, and with-
drawal of the suspected culprit chemicals in the early 
stage of drug development.

Presently, many academic institutions and phar-
maceutical companies have realized the advantages 
of computational techniques and have been widely 
employed for the assessment of the pharmacokinetic 
properties and preclinical safety in the early stage of 
drug development [10, 13, 19, 21, 28]. Among these 
computational methods, the statistical and machine 
learning methods have been widely used in the predic-
tion of adverse drug reactions (ADRs), and some of 
them have shown a good performance in the forecast 
of possible ADRs [6, 31, 32]. However, there were few 
reports of computational model of drug-induced eosino-
philia. As far as we know, only González-Díaz et al. [8] 
constructed a computational prediction model of drug-
induced eosinophilia using linear discriminant analysis 
(LDA) method. Thus, in this work, two statistical and 
machine learning methods, a modified method for sup-
port vector machine (SVM) [26] and the naïve Bayesian 
approach [2, 4], were considered to access drug-induced 
eosinophilia. For the modified SVM, the genetic algo-
rithm (GA) is used for the feature selection [16], and 
conjugate gradient (CG) method is employed for the 
parameter optimization [12]. The naïve Bayesian classi-
fication model is a popular and mature machine learning 
method, which employs the versatile machine learning 
algorithms based on the Bayes’ theorem and judges the 
plausibility of different candidate classes for a system 
[2, 4], and has been widely applied in the pharmaceuti-
cal industry [7, 17, 33].

The purpose of this investigation was to develop com-
puter prediction models for drug-induced eosinophilia by 
using SVM and naïve Bayesian approaches, and identify 
some important molecular descriptors and substructures 
associated with compounds inducing eosinophilia. The 
generated prediction models will be validated by five-
fold cross-validation and an external test set. We hope the 
established computational models should be employed for 
the prediction of drug-induced eosinophilia adverse effect 
in the early stage of drug development, and the molecu-
lar descriptors and substructures associated with drug-
induced eosinophilia should be taken into consideration in 
the design of new candidate compounds to help medicinal 
chemists rationally select the chemicals with the best pros-
pects to be effective and safe.

2  Materials and methods

2.1  Dataset collection

The biological activity and chemical structure of each of 
the compounds were extracted from the literature [8]. In 
this research, some compounds were deleted because of 
the Benzen was duplicate, the Nitroprusside is an inorganic 
compound, and the structures of Mustar vacilic and Nafa-
line were not found. Finally, the remaining 148 compounds 
were applied in this investigation. In order to compare with 
previous study, the same training set (107 agents) and test 
set (41 compounds) as those used in the literature [8] were 
applied. The structures of the training set (TrainingSet_107.
sd) and test set (TestSet_41.sd) molecules are listed in the 
Supplementary Data.

2.2  Support vector machines (SVM)

The optimized SVM method, namely GA-CG-SVM, is a 
modified SVM modeling approach. Detailed description 
of the proposed GA-CG-SVM method can be found in our 
previous paper [30–32]. Here, we just make a short sum-
mary to the basic idea of SVM and GA-CG-SVM.

In SVM, each object is described by a vector xi, and the 
class index is represented by the yi. In linearly separable 
cases, two different classes of feature vectors can be cor-
rectly classified by

Here, w is a vector normal to the hyperplane, and b is a 
scalar quantity. The SVM attempts to find an optimal sepa-
rating hyperplane with the maximum margin by solving the 
following optimization problem:

However, in the linearly non-separable cases, no hyper-
plane can be used to perfectly separate two sets of points. 
In this case, the nonnegative slack variables ξi ≥ 0, i = 1, 
…, m. could be introduced. Such that

In order to find a hyperplane that provides the mini-
mum number of training errors, the equation to be solved 
becomes:

(1)w× xi + b ≥ +1, for yi = +1

(2)w× xi + b ≤ −1, for yi = +1

(3)Max
w,b

2

�w�
Subject to yi(w× xi + b)− 1 ≥ 0

(4)w× xi + b ≥ +1− ξi, for yi = +1

(5)w× xi + b ≤ −1+ ξi, for yi = −1

(6)Max
w,b

2

�w�
+ C

m∑

i=1

ξi Subject to yi(w× xi + b)− 1+ ξi ≥ 0
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Here, C is the penalty parameter, which should be predeter-
mined by user.

The nonlinear (non-)separable cases could be easily 
transferred to linear cases through projecting the input vari-
able into a new high-dimensional feature space by using a 
kernel function K(xi, xj). Such as the radial basis function 
(RBF), which is the most widely used kernel function, it 
performed very well in most cases.

The γ is a parameter which should be specified by user 
in advance.

An optimal C and γ can significantly improve the accuracy 
of SVM classification. Furthermore, the feature selection and 
parameter setting (C, γ) influence each other in SVM mod-
eling. Thus, the combined scheme was used to handle the two 
problems: a genetic algorithm (GA)-based method is used for 
the feature selection, and a conjugate gradient (CG) method is 
used for the (C, γ) parameter optimizations.

2.3  Modeling details by GA-CG-SVM

All the structures of the prepared compounds were gener-
ated, and then, geometrical optimization of these com-
pounds was calculated by using Accelrys Discovery Stu-
dio program package (Accelrys, San Diego, CA). The 
optimized 3D structure of each compound was manually 
inspected to ensure that each molecule was properly rep-
resented and is consistent with the one [8]. Molecular 
descriptors were calculated by using the online program 
PCLIENT [27].

The initial features were preprocessed whose purpose 
is to eliminate the redundancy and overlapping of the 
descriptors. Here, the following descriptors were removed: 
(1) descriptors with too many zero values, (2) descriptors 
with very small standard deviation values (<0.5 %), and (3) 
descriptors which are highly correlated with others (cor-
relation coefficients >95 %). After the preprocessing, the 
descriptor values were scaled to a range of −1 to +1, which 

(7)k(xi, xj) = exp
(
−γ

∥∥xi − xj
∥∥2
)

is necessary since the different ranges of descriptor values 
will influence the quality of the SVM model generated.

2.3.1  Construction of the GA‑CG‑SVM model 
of drug‑induced eosinophilia

A total of 107 compounds, including 71 toxic compounds 
and 36 non-toxic agents, were used as training set to train 
the SVM classification model of drug-induced eosinophilia. 
The following various molecule properties were initially cal-
culated: 48 constitutional descriptors, 21 topological charge 
indices descriptors, 99 WHIM descriptors, 154 functional 
group counts descriptors, 119 topological descriptors, 150 
RDF descriptors, 74 geometrical descriptors, and 31 molec-
ular descriptors. These descriptors were firstly preprocessed 
for removing those redundant and unrelated properties. 186 
molecular descriptors were selected and were subjected to 
being further reduced by using GA-CG method. Finally, eight 
molecular descriptors were selected (Table 1), and the opti-
mized parameters (C, γ ) are (4435.096191, 0.025620).

2.4  Naïve Bayesian model

The introduction of naive Bayes classification theory has 
been described in the literature [4, 26]. The naïve Bayes-
ian classification approach is a popular and mature machine 
learning method, which could distinguish between com-
pounds that are positives and those that are negatives with 
using molecular descriptors. In this investigation, the naïve 
Bayesian model was developed by using Discovery Stu-
dio (DS) version 3.1 (Accelrys Inc., San Diego, CA). The 
default physical property descriptors were used, includ-
ing ALogP, molecular weight, number of H donors, num-
ber of H acceptors, number of rings, number of aromatic 
rings, and molecular fractional polar surface area. The 
cross-validation method of the training set was set to 5. 
The “Model Domain Fingerprint” was chosen as ECFP-6 
[extended connectivity fingerprints, with a diameter of 6, 
were generated in Pipeline Pilot (SciTegic, Inc.)], because 
it could give the highest ROC curve. The ROC curve charts 

Table 1  Molecular descriptors 
used in the SVM modeling for 
the prediction model of drug-
induced eosinophilia adverse 
effect

Descriptor Explanation

ZM2V Second Zagreb index by valence vertex degrees

RDF015m Radial distribution function—1.5/weighted by atomic masses

RDF035m Radial distribution function—3.5/weighted by atomic masses

L3u Third component size directional WHIM index/unweighted

E2u Second component accessibility directional WHIM index/unweighted

E3s Third component accessibility directional WHIM index/weighted by atomic Electrotopologi-
cal states

nHDon Number of donor atoms for H bonds (with N and O)

BLTF96 Verhaar model of Fish baseline toxicity from MLOGP (mmol/l)
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the true-positive rate (sensitivity) versus the false-positive 
rate (100 % specificity). Each point on the ROC curve rep-
resents a sensitivity/specificity pair corresponding to a par-
ticular decision threshold. The other parameters were kept 
at their default values.

2.5  Statistical analysis

The predictive performances of statistical and machine 
learning models were assessed by overall prediction accu-
racy (Q); sensitivity (SE), the prediction accuracy for posi-
tive compounds; and specificity (SP), the prediction accu-
racy for negative compounds.

where TP, true positives, is the number of positive instances 
which are correctly identified; TN, true negatives, is the 
number of negative instances which are correctly recog-
nized; FP, false positives, is the number of the negative 
instances which are wrongly predicted as positives; FN, 
false negatives, is the number of positive instances which 
are wrongly predicted as negatives.

(8)Q =
TP + TN

TP + TN + FP + FN

(9)SE =
TP

TP + FN

(10)SP =
TN

TN + FP

3  Results

3.1  SVM classification model of drug-induced 
eosinophilia

In this research, the fivefold cross-validation was employed 
for the training set to evaluate the stability and capacity of 
the established SVM model, and an external test set with 
41 unique drugs was used to further assess the model’s 
predictive power. For the training set, the overall predic-
tion accuracy (Q, Table 2) is 91.6 %. Among these 71 
toxic compounds, 67 agents were correctly predicted. The 
sensitivity (SE, Table 2) is 94.4 %. Of these 36 non-toxic 
agents, 31 compounds were correctly identified. The speci-
ficity (SP, Table 2) is 86.1 %. In order to evaluate whether 
the established SVM model could successfully recognize 
the external series as toxic agents and non-toxic agents, 
the external test set containing 41 compounds was applied. 
Table 3 shows the prediction results of the test set; of these 
41 compounds, 34 were correctly classified. The overall 
prediction accuracy (Q, Table 3) for the test set is 82.9 %. 
For these 24 toxic compounds, 20 agents were correctly 
recognized. The sensitivity (SE, Table 2) is 83.3 %. For 
these 17 non-toxic compounds, 14 agents were correctly 
forecasted. The specificity (SP, Table 3) is 82.4 %. These 
results indicate the established SVM prediction model of 
drug-induced eosinophilia could successfully discriminate 
these agents as positives (toxic compounds) or negatives 
(non-toxic compounds).

Table 2  Fivefold cross-validation results of SVM and Bayesian models for the training set

TP True positive, TN true negative, FP false positive, FN false negative

SE (%): sensitivity, SE = TP/(TP + FN); SP (%): specificity, SP = TN/(TN + FP); Q (%): overall accuracy, Q = (TP + TN)/
(TP + TN + FP + FN)

Model name Positives Negatives Q (%)

TP FN SE (%) TN FP SP (%)

GA-CG-SVM 67 4 94.4 31 5 86.1 91.6

Bayesian model (descriptors + ECFP-6) 63 8 88.7 36 0 100 92.5

Bayesian model (simple descriptors) 60 11 84.5 31 5 86.1 85.0

Table 3  Prediction results of the external test set

TP True positive, TN true negative, FP false positive, FN false negative

SE (%): sensitivity, SE = TP/(TP + FN); SP (%): specificity, SP = TN/(TN + FP); Q (%): overall accuracy, Q = (TP + TN)/
(TP + TN + FP + FN)

Model name Positives Negatives Q 
(%)

TP FN SE (%) TN FP SP (%)

GA-CG-SVM 20 4 83.3 14 3 82.4 82.9

Bayesian model (descriptors + ECFP-6) 18 6 75.0 17 0 100 85.4

Bayesian model (simple descriptors) 19 5 79.2 14 3 82.4 80.5
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3.2  The naïve Bayesian classification model 
of drug-induced eosinophilia

The Bayesian prediction model of drug-induced eosino-
philia based on the same training set was successfully 
developed, in which the default physical property descrip-
tors together with the extended connectivity fingerprint 
descriptor (ECFP-6) were applied (Bayesian model: 
descriptors + ECFP-6). The established naïve Bayesian 
prediction model was also evaluated by fivefold cross-val-
idation method and an external test set. The best cutoff for 
this model is 0.014. The area under the ROC curve (AUC) 
is the ROC score, which is widely used as measure of a 
model discriminatory power. The maximum value for the 
ROC score of 1 indicates the model has a perfect prediction 
performance (100 % true-positive (TP) rate, and 0 % false-
positive (FP) rate). The ROC score of 0.5 represents the 
model has no discriminative ability (i.e., 50 % true-positive 
(TP) rate and 50 % false-positive (FP) rate). In this work, 
the ROC score for the fivefold cross-validation in the train-
ing set is 0.858, which represents the established model has 
a good predictive power.

The fivefold cross-validation results of the training set 
for the model (Bayesian model: descriptors + ECFP-6) are 
given in Table 2. From Table 2, we can see that the pre-
diction accuracy for these toxic compounds (SE, Table 2) 
is 88.7 %. For these non-toxic compounds, the specificity 
(SP, Table 2) is 100 %. The overall prediction accuracy 
(Q, Table 2) for the training set is 92.5 %. For the exter-
nal test set, the ROC score is 0.973. The detail informa-
tion of prediction results is shown in Table 3. As shown 
in Table 3, the total predictability (Q, Table 3) is 85.4 %. 
The model recognizes as toxic (SE, Table 3) 75.0 % of 
these compounds, that is, 18 chemicals out of 24. Moreo-
ver, the model correctly classifies 100 % of the non-toxic 
chemicals (SP, Table 3), that is, 17 agents out of 17. These 
results indicate the established naïve Bayesian prediction 
model (Bayesian model: descriptors + ECFP-6) of drug-
induced eosinophilia could successfully recognize internal/
external agents as positives or negatives. Furthermore, the 
other naïve Bayesian model based on the default physical 
property descriptors was established (Bayesian model: sim-
ple descriptors), in which the ECFP-6 fingerprint descrip-
tor was removed. As shown in Tables 2 and 3, the predic-
tion performance of the model (Bayesian model: simple 
descriptors) was significantly decreased, especially for the 
predictive capability for non-toxic compounds. The predic-
tion accuracy for the training set and for the test set is 85.0 
and 80.5 %, respectively. Figure 1 shows some fragments 
produced by the ECFP-6 descriptors. The Bayesian score 
is a measure of how different this is from the hit rate as a 
whole (the ratio that would be expected if the feature was 
occurring randomly across the toxic agents and non-toxic 

agents), which represents the final contribution of a feature 
to the model prediction. The top 20 toxic/non-toxic frag-
ments are listed in Fig. 1. The results suggested that com-
bined with these fragments could significantly increase the 
overall accuracy of drug-induced eosinophilia prediction.

4  Discussion

In this investigation, the prediction models of drug-induced 
eosinophilia have been successfully developed by using 
the optimal SVM and naïve Bayesian approaches. For the 
SVM modeling, the overall prediction accuracy for the 
training set and for the test set is 91.6 and 82.9 %, respec-
tively. For the naïve Bayesian modeling, the overall predic-
tion accuracy for the training set and for the external test 
set is 92.5 and 85.4 %, respectively. All of these indicate 
the constructed SVM and naïve Bayesian models are suit-
able for predicting the drug-induced eosinophilia adverse 
effect and could be used as tools for screening compounds 
with eosinophilia adverse effect and reducing late-stage 
attrition rates in drug development process.

4.1  Molecular features important for drug-induced 
eosinophilia

The pathogenesis of drug-induced eosinophilia is very 
complex, and different mechanisms have been implicated 
in its development [9, 25]. Thus, investigation of important 
molecular descriptors of these compounds inducing eosino-
philia is very necessary. Using simple natural descriptors 
depicting chemical–physical properties of chemical agents 
to establish the relationship between chemical agents and 
their bioactivities is an advantage of the statistical and 
machine learning methods, such as SVM and naïve Bayes-
ian used here. In this research, the GA-CG method was 
used to select some important descriptors for drug-induced 
eosinophilia. Eight kinds of molecular descriptors, includ-
ing 696 descriptors, were initially calculated. After those 
redundant and unrelated properties removed, 186 descrip-
tors were obtained. Finally, eight important molecu-
lar descriptors were successfully selected from the 186 
descriptors. Table 1 lists the selected descriptors and their 
definitions. From the results of this work, it can be seen that 
the GA-CG selected molecular descriptors are powerful to 
discriminate compounds causing and not causing eosino-
philia. These selected descriptors can be roughly grouped 
into several categories: hydrogen-bonding descriptors 
(nHDon), molecular electronic property-related descriptors 
(E3s), molecular structural information-related descrip-
tors (ZM2 V, L3u, E2u), lipophilicity-related descrip-
tors (BLTF96), and molecular weight-related descriptors 
(RDF015 m, RDF035 m).
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G1: 912478223

21 out of 21 toxic

Bayesian Score: 0.240

G2: -1567199489

16 out of 16 toxic

Bayesian Score: 0.236

G3: -655103622

14 out of 14 toxic

Bayesian Score: 0.234

G4: 2056644143

14 out of 14 toxic

Bayesian Score: 0.234

G5: -81842545

13 out of 13 toxic

Bayesian Score: 0.233

G6: -1236953626

13 out of 13 toxic

Bayesian Score: 0.233

G7: 1854732111

12 out of 12 toxic

Bayesian Score: 0.231

G8: -176494269

12 out of 12 toxic

Bayesian Score: 0.231

G9: 859433814

11 out of 11 toxic

Bayesian Score: 0.229

G10: 2090054846

11 out of 11 toxic

Bayesian Score: 0.229

G11: 1481235578

11 out of 11 toxic

Bayesian Score: 0.229

G12: -978131182

10 out of 10 toxic

Bayesian Score: 0.227

G13: -177264675

10 out of 10 toxic

Bayesian Score: 0.227

G14: -122376699

10 out of 10 toxic

Bayesian Score: 0.227

G15: 490215350

10 out of 10 toxic

Bayesian Score: 0.227

G16: 577592657

10 out of 10 toxic

Bayesian Score: 0.227

G17: -1806159325

10 out of 10 toxic

Bayesian Score: 0.227

G18: -193898895

9 out of 9 toxic

Bayesian Score: 0.225

G19: -176846085

8 out of 8 toxic

Bayesian Score: 0.222

G20: 431976397

8 out of 8 toxic

Bayesian Score: 0.22

Fig. 1  a ECFP-6 descriptors: some substructures that are important 
for drug-induced eosinophilia. Each panel shows the naming conven-
tion for each fragment, the numbers of molecules it is present in that 
are toxic agents, and the Bayesian score for the fragment. b ECFP-6 

descriptors: some substructures that are absent from drug-induced 
eosinophilia compounds. Each panel shows the naming convention 
for each fragment, the numbers of molecules it is present in that are 
toxic compounds, and the Bayesian score for the fragment
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B1: -953984246

0 out of 4 toxic

Bayesian Score: -1.412

B2: -1021054081

0 out of 3 toxic

Bayesian Score: -1.203

B3: -1923054811

0 out of 3 toxic

Bayesian Score: -1.203

B4: 488354296

0 out of 3 toxic

Bayesian Score: -1.203

B5: -1464256689

0 out of 2 toxic

Bayesian Score: -0.937

B6: 470025226

0 out of 2 toxic

Bayesian Score: -0.937

B7: -782828288

0 out of 2 toxic

Bayesian Score: -0.937

B8: 1635415905

0 out of 2 toxic

Bayesian Score: -0.937

B9: 1993671714

0 out of 2 toxic

Bayesian Score: -0.937

B10: 692743133

0 out of 2 toxic

Bayesian Score: -0.937

B11: -1791034651

0 out of 2 toxic

Bayesian Score: -0.937

B12: -1790451017

0 out of 2 toxic

Bayesian Score: -0.937

B13: 103339584

0 out of 2 toxic

Bayesian Score: -0.937

B14: 1017218444

0 out of 2 toxic

Bayesian Score: -0.937

B15: -826638028

0 out of 2 toxic

Bayesian Score: -0.937

B16: 738938915

0 out of 2 toxic

Bayesian Score: -0.937

B17: 1776488

0 out of 2 toxic

Bayesian Score: -0.937

B18:-1104081458

0 out of 2 toxic

Bayesian Score: -0.937

B19: -742804400

0 out of 2 toxic

Bayesian Score: -0.937

B20: -152683720

1 out of 5 toxic

Bayesian Score: -0.892

Fig. 1  continued
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4.2  Analysis of the toxic/non-toxic fragments produced 
by the ECFP-6 fingerprint descriptors

The molecular features considered as important for drug-
induced eosinophilia have been identified by the GA-CG 
method. In order to better understand the structures of 
compounds inducing and not inducing eosinophilia, the 
ECFP-6 fingerprint descriptors were applied in the naïve 
Bayesian model to produce some substructures of toxic 
compounds and non-toxic compounds. Figure 1 shows 
some toxic fragments and non-toxic fragments gener-
ated by the ECFP-6 fingerprints. As shown in Fig. 1, some 
substructures that contribute to toxic compounds (Fig. 1a) 
and those that are not inducing eosinophilia (Fig. 1b) were 
identified. Figure 1a shows some substructures associated 
with toxic compounds, and a compound having any of 
these fragments was considered as a toxic agent, each panel 
represents the naming convention for each fragment, the 
numbers of molecules it is present in that are toxic agents, 
and the Bayesian score for the fragment. The Bayesian 
score takes account of the total number of occurrences of 
the feature, ensuring more weight is placed on features that 
occur more often and little weight on those for which there 
are very few occurrences. In further analysis of these frag-
ments generated in toxic compounds and non-toxic com-
pounds, we found that some fragments only appeared in 
compounds inducing eosinophilia, such as dimethylsulfane 
(G1), N-methylcyclobutanamine (G2), chlorobenzene (G7, 
G16,), N-methylenemethanamine (G10, G11, G14, G15), 
and tetrahydrothiophene (G17, G18). Thus, these substruc-
tures of toxic compounds identified in this research might 
be associated with the drug-induced eosinophilia adverse 
effect and should be taken into consideration in the design 
of new candidate drugs to help medicinal chemists ration-
ally select the chemicals with the best prospects to be effec-
tive and safe.

4.3  Comparison with previous prediction model 
of drug-induced eosinophilia

Presently, although a number of prediction models of the 
pharmacokinetic properties and toxicity have been devel-
oped and used in drug development, there were few reports 
of computational model for drug-induced eosinophilia. 
Only González-Díaz et al. [8] built a prediction model of 
drug-induced eosinophilia using linear discriminant analy-
sis (LDA) method, which gave a good classification of 
91.82 % for the training series and 88.1 % for the exter-
nal validation series. In this study, the GA-CG-SVM gives 
91.6 % for the training set and 82.9 % for the test set. The 
naïve Bayesian model could correctly classify 92.5 % of 
training set compounds and 85.4 % of test set agents. Pre-
diction accuracies of the GA-CG-SVM model and naïve 

Bayesian model established in this work are comparable to 
those of the LDA model built by González-Díaz et al. [8]. 
However, the GA-CG-SVM model could select some criti-
cal molecular descriptors for drug-induced eosinophilia, 
and the naïve Bayesian model could give some fragments 
that contribute to eosinophilia inductors and those that are 
not.

5  Conclusions

In this investigation, the prediction models of drug-
induced eosinophilia adverse effect have been suc-
cessfully developed by using SVM and naïve Bayesian 
approaches. A set of 107 compounds were used as the 
training set, and 41 agents were applied as the external 
test set. For the SVM modeling, the overall prediction 
accuracy for the training set by means of fivefold cross-
validation is 91.6 and for the external test set is 82.9 %. 
For the naïve Bayesian modeling, the overall prediction 
accuracy for the training set and for the external test 
set is 92.5 and 85.4 %, respectively. Moreover, some 
molecular descriptors and substructures associated with 
the toxicity of eosinophilia compounds were identified. 
Thus, we hope the prediction models of drug-induced 
eosinophilia built in this work could be applied to fil-
ter early-stage molecules for this potential eosinophilia 
adverse effect. And the selected molecular descriptors 
and substructures of toxic compounds should be taken 
into consideration in the design of new candidate drugs 
and finally reduce attrition rate in later stages of drug 
development.

Acknowledgments This work was supported by the Project for 
Enhancing the Research Capability of Young Teachers in Northwest 
Normal University (NWNU-LKQN-12-7).

Conflict of interest The authors declare that there are no conflicts 
of interest.

References

 1. Allen JA, Varga J (2014) Encyclopedia of toxicology, 3rd edition 
from Philip Wexler. Elsevier, New York

 2. Berger JO (1985) Statistical decision theory and Bayesian analy-
sis. Springer, New York

 3. Blackburn WD (1997) Eosinophilia myalgia syndrome. Semin 
Arthritis Rheum 26:788–793

 4. Box GEP, Tiao GC (1973) Bayesian inference in statistical anal-
ysis. Addison-Wesley, Reading

 5. Dent G, Loweth SC, Hasan AM, Leslie FM (2014) Synergic pro-
duction of neutrophil chemotactic activity by colonic epithelial 
cells and eosinophils. Immunobiology 219:793–797

 6. Ekins S (2014) Progress in computational toxicology. J Pharm 
Toxicol Methods 69:115–140



369Med Biol Eng Comput (2016) 54:361–369 

1 3

 7. Ekins S, Williams AJ, Xu JJ (2010) A predictive ligand-based 
Bayesian model for human drug-induced liver injury. Drug 
Metab Dispos 38:2302–2308

 8. González-Díaz H, Tenorio E, Castañedo N, Santana L, Uri-
arte E (2005) 3D QSAR Markov model for drug-induced 
eosinophilia—theoretical prediction and preliminary experi-
mental assay of the antimicrobial drug G1. Bioorg Med Chem 
13:1523–1530

 9. Gotlib J (2005) Molecular classification and pathogenesis of 
eosinophilic disorders. Acta Haematol 114:7–25

 10. Grime KH, Barton P, McGinnity DF (2013) Application of in 
silico, in vitro and preclinical pharmacokinetic data for the effec-
tive and efficient prediction of human pharmacokinetics. Mol 
Pharmaceutics 10:1191–1206

 11. Hardman JG, Limbird LE, Gilman AG (1996) Goodman and Gil-
man’s the pharmacological basis of therapeutics. McGraw-Hill, 
New York

 12. Keerthi S, Sindhwani V, Chapelle O (2007) An efficient method 
for gradient-based adaptation of hyperparameters in SVM mod-
els. In: Schölkopf B, Platt J, Hofmann T (eds) Advances in neu-
ral information processing systems ~20 (NIPS ~2006), Vancou-
ver, Canada

 13. Kimber I, Humphris C, Westmoreland C, Alepee N, Dal Negro 
G, Manou I (2011) Computational chemistry, systems biology 
and toxicology. Harnessing the chemistry of life: revolutionizing 
toxicology. A commentary. J Appl Toxicol 31:206–209

 14. Li AP (2011) Drug discovery and development—present and 
future. In: Kapetanović I (ed) Critical human hepatocyte-based 
in vitro assays for the evaluation of adverse drug effects. InTech, 
USA

 15. Lindgren CE, Walker LA, Bolton P (1991) l-tryptophan induced 
eosinophilia–myalgia syndrome. J R Soc Health 111:29–30

 16. Lucasius CB, Kateman G (1993) Understanding and using 
genetic algorithms. Part 1. Concepts, properties and context. 
Chemometr Intell Lab 19:1–33

 17. Magni P, Bellazzi R, Nauti A, Patrini C, Rindi G (2001) Com-
partmental model identification based on an empirical Bayesian 
approach: the case of thiamine kinetics in rats. Med Biol Eng 
Comput 39:700–706

 18. Milaraa J, Martinez-Losac M, Sanzd C, Almudéverc P, Peiróc 
T, Serranoc A, Morcilloe EJ, Zaragozág C, Cortijoa J (2013) 
Bafetinib inhibits functional responses of human eosinophils in 
vitro. Eur J Pharmacol 715:172–180

 19. Modi S, Hughes M, Garrow A, White A (2012) The value of in 
silico chemistry in the safety assessment of chemicals in the con-
sumer goods and pharmaceutical industries. Drug Discov Today 
17:135–142

 20. Pereira MC, Oliveira DT, Kowalski LP (2011) The role of eosin-
ophils and eosinophil cationic protein in oral cancer: a review. 
Arch Oral Biol 56:353–358

 21. Selick HE, Beresford AP, Tarbit MH (2002) The emerging 
importance of predictive ADME simulation in drug discovery. 
Drug Discov Today 7:109–116

 22. Sidransky H, Verney E, Cosgrove JW, Latham PS, Mayeno AN 
(1994) Studies with 1,1’-ethylidenebis(tryptophan), a contami-
nant associated with l-tryptophan implicated in the eosinophilia–
myalgia syndrome. Toxicol Appl Pharmacol 126:108–113

 23. Singh V, Gomez VV, Swamy SG, Vikas B (2009) Approach to a 
case of eosinophilia. Ind J Aerospace Med 53:58–64

 24. Tefferi A (2005) Blood eosinophilia: a new paradigm in dis-
ease classification, diagnosis, and treatment. Mayo Clinic Proc 
80:75–83

 25. Valent P, Gleich GJ, Reiter A, Roufosse F, Weller PF, Hellmann 
A, Metzgeroth G, Leiferman KM, Arock M, Sotlar K, Butterfield 
JH, Cerny-Reiterer S, Mayerhofer M, Vandenberghe P, Hafer-
lach T, Bochner BS, Gotlib J, Horny HP, Simon HU, Klion AD 
(2012) Pathogenesis and classification of eosinophil disorders: a 
review of recent developments in the field. Expert Rev Hematol 
5:157–176

 26. Vapnik V (1998) Statistical learning theory. Wiley, New York
 27. VCCLAB (2005) Virtual computational chemistry laboratory. 

Available at : http://www.vcclab.org
 28. Vedani A, Smiesko M (2009) In silico toxicology in drug discov-

ery—concepts based on three-dimensional models. Altern Lab 
Anim 37:477–496

 29. Weller PF (1991) The immunobiology of eosinophils. N Engl J 
Med 324:1110–1118

 30. Yang SY, Huang Q, Li LL, Ma CY, Zhang H, Bai R, Teng QZ, 
Xiang ML, Wei YQ (2009) An integrated scheme for feature 
selection and parameter setting in the support vector machine 
modeling and its application to the prediction of pharmacoki-
netic properties of drugs. Artif Intell Med 46:155–163

 31. Zhang H, Chen QY, Xiang ML, Ma CY, Huang Q, Yang SY 
(2009) In silico prediction of mitochondrial toxicity by using 
GA-CG-SVM approach. Toxicol In Vitro 23:134–140

 32. Zhang H, Li W, Xie Y, Wang WJ, Li LL, Yang SY (2011) Rapid 
and accurate assessment of seizure liability of drugs by using 
an optimal support vector machine method. Toxicol In Vitro 
25:1848–1854

 33. Zientek M, Stoner C, Ayscue R, Klug-McLeod J, Jiang Y, West 
M, Collins C, Ekins S (2010) Integrated in silico-in vitro strategy 
for addressing cytochrome P450 3A4 time-dependent inhibition. 
Chem Res Toxicol 23:664–676

 34. Zurlo J, Rudacille D, Goldberg AM (1994) Animals and alterna-
tives in testing: history: science and ethics. Mary Ann Liebert, 
New York

http://www.vcclab.org

	Prediction of drug-induced eosinophilia adverse effect by using SVM and naïve Bayesian approaches
	Abstract 
	1 Introduction
	2 Materials and methods
	2.1 Dataset collection
	2.2 Support vector machines (SVM)
	2.3 Modeling details by GA-CG-SVM
	2.3.1 Construction of the GA-CG-SVM model of drug-induced eosinophilia

	2.4 Naïve Bayesian model
	2.5 Statistical analysis

	3 Results
	3.1 SVM classification model of drug-induced eosinophilia
	3.2 The naïve Bayesian classification model of drug-induced eosinophilia

	4 Discussion
	4.1 Molecular features important for drug-induced eosinophilia
	4.2 Analysis of the toxicnon-toxic fragments produced by the ECFP-6 fingerprint descriptors
	4.3 Comparison with previous prediction model of drug-induced eosinophilia

	5 Conclusions
	Acknowledgments 
	References




