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1  Introduction

Diabetes mellitus (hereafter to be referred in this article as 
diabetes) is one of the most common chronic disease affect-
ing nearly 200 million people worldwide and by 2025, it is 
estimated to increase affecting 333 million people globally 
as given by International Diabetic Federation (IDF) [24]. It 
is a group of metabolic diseases caused by altered blood 
sugar, either because the body does not produce enough 
insulin (Type 1) or because cells do not respond to the insu-
lin that is produced (Type 2 which constitutes 90 % of dia-
betes worldwide). Blood flow dynamics has been actively 
considered as a potential tool for assessing diabetes for 
many years [5, 15, 28, 31, 35, 52]. Of these, microcircula-
tion also has been actively investigated for the purpose spe-
cifically [4, 14, 15, 31, 32, 47, 53]. Impaired flow to lower 
limbs reflected in the foot sole is a common microcircula-
tory complication faced by diabetic patients which leads to 
gangrene and even amputation if left untreated. Succeeding 
health problems include ulceration in the lower extremi-
ties, neuropathy, an impaired blood supply, and hyperten-
sion. Previous studies have shown the role of microvas-
cular change in the pathogenesis of diabetes with respect 
to metabolism [10, 23], effect of nitric oxide (NO) [44], 
peripheral microvascularization changes [46], dermal neu-
rovascular dysfunction [49], microvascular dysfunction [6, 
26, 39, 40], and venous distension [50].

LDF, a technique based on the frequency shift of incom-
ing and outgoing laser to/from the tissue to assess the flow 
velocity based on red blood cell scattering, provides a real-
time non-invasive measurement of microvascular perfu-
sion [8, 9]. LDF measures local cutaneous blood perfusion, 
which is affected by cardiac pumping, respiration, influence 
of the autonomic nervous system, and local metabolism. 
Different signal processing strategies have been adopted 
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for analysing LDF signals previously for essentially facili-
tating flow velocity [33]. Dynamic characteristics of laser 
Doppler flux have been investigated previously [37]. Con-
sidering the complexity of the interactions that determine 
the microvascular perfusion, temporal fluctuations in the 
LDF signals can be characterized by fractal analysis, a 
technique that is capable of characterizing irregular time 
series generated from nonlinear systems [13, 17, 18]. Self-
similar nature of LDF signals at different scales of obser-
vation is indicated by a frequency spectrum having a form 
of an inverse power–law relationship. The extent of this 
self-similarity is measured by Hurst coefficient (H) which 
is a measure of the extent of correlation between successive 
elements of the time series. Various methods are available 
for estimating the fractal characteristics of a time series. 
Important methods include Hurst rescaled range analysis, 
variogram method, dispersional analysis, scaled windowed 
variance, detrended fluctuation analysis, and box counting 
method [12, 21, 22, 27, 34]. Application studies involving 
LDF data from rat brain cortex and volar surface of fore-
arm have been found to possess fractal characteristics pre-
viously [12, 13, 20, 33].

Decomposing LDF signals in the spectral domain reveals 
various physiological rhythms associated with blood flow 
control mechanisms [11, 30]. Unlike Fourier transform, 
short-time Fourier transform (STFT) and wavelet transform 
(WT) simultaneously retain time and frequency informa-
tion. STFT gives the time–frequency content of a signal 
with a constant frequency and time resolution due to the 
fixed window length, whereas continuous WT retrieves 
the time–frequency content information with an improved 
resolution due to its multiresolution property [16]. Continu-
ous wavelet transform (CWT) is used to analyse the scale-
dependent structure of a signal as it varies in time. In this 
article, the CWT is considered as a qualitative tool to ana-
lyse LDF signals. As the frequencies contained in the LDF 
are low frequencies, to obtain good low-frequency resolu-
tion wavelet analysis is preferred over Fourier and STFT 
as it offers good frequency and time resolution. Previously, 
wavelet analysis of LDF signals from human forearm has 
revealed five characteristic frequency bands corresponding 
to various physiological mechanisms, namely cardiogenic 
activity (0.6–1.6  Hz) representing the heart beat dynam-
ics; respiratory (0.15–0.4  Hz) the rhythmicity of breath; 
myogenic activity (0.06–0.15 Hz) the rhythmic activity of 
vessels; neurogenic activity (0.02–0.06 Hz); and endothe-
lial activity (0.0095–0.02  Hz) corresponding to metabolic 
activity [7, 30, 43, 45]. The relative contribution of power 
spectral density of these bands is an indicative of underly-
ing vascular functioning and reactivity. Changes in vascu-
lar function are associated with diseases like hypertension, 
peripheral vascular disease, and diabetes.

In this pilot study, LDF signals obtained from the gla-
brous skin of the plantar area of the foot of the Type 2 
diabetic subjects are first subjected to fractal analysis to 
estimate the correlation in a gross level, and the amount of 
signal correlation is further investigated by WT analysis to 
assess the changes in the associated capillary blood flow 
dynamics associated with the disease.

2 � Materials and methods

2.1 � Experimental set‑up

Blood perfusion signals were recorded using ML-191 
model laser Doppler blood flow meter (AD Instruments 
Inc., Australia, operating at 830 ±  10  nm and 0.5  mW). 
An optical fibre probe connected with the ML-191 (Oxy-
Flo, Oxford Optronix Ltd) was used to illuminate and col-
lect the scattered light from the skin tissue. The probe was 
attached to the surface of interest by means of a two-sided 
adhesive tape. The instrument calculates the blood perfu-
sion or red blood cell flux in arbitrary units which is rep-
resented as the product of RBC concentration and scatterer 
velocity under the probed volume. The flow meter was con-
nected to the PowerLab® data acquisition system which 
used LabChart® software for data acquisition.

The study was conducted on six Type 2 diabetic subjects 
without neuropathy and an equal number of healthy con-
trol subjects. Subjects with smoking habits and alcoholics 
were excluded from the study. Also, subjects with neuropa-
thy/necrotic ulcers were not considered for this pilot study. 
The average age of control group was 41 with a standard 
deviation of 15 and that of the diabetic group was 50 with 
a standard deviation of 6.9. All the subjects were asked to 
clean their foot, and the measurement was taken from the 
metatarsal region of the foot uniformly. The selection of 
metatarsal region as the region of interest was made based 
on previous research on diabetic foot to extract oxygena-
tion flow details by our group [1]. Also, this region is one 
among the regions in the foot sole, prone to develop ulcer 
with the more predominant changes in flow dynamics due 
to exerted walking pressure.

The region of interest was confirmed free from callus 
formation before taking the measurement. The measure-
ments were taken with the subjects in the supine position 
with their foot allowed in a resting position throughout the 
measurement. The subjects who participated in the study 
were fully informed of experimental procedures, protocol, 
and purpose associated with the study. The participation 
in this study was purely voluntary with the subjects’ writ-
ten consent. The study was approved by the Institute Ethics 
Committee, IIT Madras. The experimental set-up for LDF 
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measurements is shown in Fig. 1a, and a sample recorded 
LDF signal is shown in Fig. 1b.

2.2 � Fractal analysis

For all the subjects, LDF signals were recorded for 20 min 
duration at a sampling rate of 1 kHz using the experimental 
set-up from the plantar area of the foot. Signals of 5 min 
duration were considered for the study involving fractal 
analysis. The fractal nature of the LDF signals was checked 
by power spectrum analysis, and the log power spec-
tral density versus log frequency curve is found to obey a 
power–law relationship given as below.

where f is the frequency and β is the slope of the log–log 
plot as shown in Fig.  2. The obtained values of β for all 
the recorded signals showed that the nature of the signals is 
fractional Brownian motion, where β > 1 [12].

Variability of fractional Brownian motion LDF sig-
nals at different scales was analysed using line detrended 
scaled windowed variance technique to estimate the Hurst 
coefficient (H). In order to get an accurate estimate of H 
with 0.95 probability of distinguishing between two time 
series with H differing by 0.1, 218 points of the signal 

(1)P(f ) =
1

f β

were considered while doing scaled variance analysis 
[12].

In line detrended scaled windowed variance method, the 
LDF data are divided into non-overlapping windows of size 
n(n = 24, 25… 210). Too small and too large window sizes 
were not used for optimum results [12]. For each of these 
window sizes, a least square fit is calculated for the points 

Fig. 1   a Laser Doppler flow 
meter (LDF) experimental set-
up: The system consists of the 
laser unit, optical fibre probe 
for illumination and collec-
tion, and a data acquisition/
processing unit. The obtained 
perfusion signal is also shown. 
b Recorded perfusion signal 
shown separately

Fig. 2   Log power spectral density versus log frequency plot of 
recorded perfusion signals obeying the power–law



560	 Med Biol Eng Comput (2015) 53:557–566

1 3

in each window, and this linear fit is then subtracted from 
the points within these windows. Then, the average local 
standard deviation (SD) for each of these windows is cal-
culated, and the mean of the SD for that particular window 
size n is found. This is repeated for all window sizes. A plot 
of log SD against log window size (n) is made. The slope 
of the least squares fit to the plot gives the Hurst coefficient 
(H).

2.2.1 � Significance of H

H can be any real number in the range 0 < H < 1. H indi-
cates whether the signal has a persistent or anti-persistent 
behaviour. H  >  0.5 indicates a persistent signal implying 
that the increments of the series are correlated. In a corre-
lated series, it is more likely that a positive increment fol-
lows a positive increment or that a negative increment fol-
lows a negative increment. H < 0.5 indicates increments of 
the signal that is anti-correlated. Anti-correlated series have 
successive increments that follow alternate ups and downs 
[2, 13, 17, 18, 41].

2.3 � Wavelet analysis

For the wavelet analysis, the complete signal for the dura-
tion of 20  min was used. CWT is a scale-independent 
method used to analyse the time–frequency characteris-
tics of wide band, non-stationary signals. The CWT uses 
a mother wavelet and by scaling and translating the mother 
wavelet along the length of the signal, the WT performs the 
time scale decomposition thus providing time localization 
and multiresolution capability. The CWT of a signal f(t) is 
defined as

where s is the scaling and τ is the translational parameter 
of the mother wavelet ϕ [16, 19]. In this paper, we have 
used complex Morlet wavelet which is based on Gaussian 
window modulated by sine wave for the analysis of LDF 
signals as it has the best representation in both time and 
frequency. The Gaussian function guarantees a minimum 
time-bandwidth product, providing simultaneous localiza-
tion in both time and frequency domains. It has been used 
as a mother wavelet for signals that require high-frequency 
resolution at low frequencies like LDF [42].

Complex Morlet in time domain is defined as

where fb is the bandwidth parameter, fc is the wavelet cen-
tre frequency, and ϕ(t) represents the wavelet coefficients at 

(2)F(τ , s) =
1

√
|s|

∞
∫

−∞

f (t) ϕ∗
(

t − τ

s

)

dt

(3)ϕ(t) =
1

√
π fb

ei 2π fc te
−t2

fb

time t [38]. For the analysis of LDF signals, complex Mor-
let with fc 1 Hz and fb of 2 was used.

The processing of LDF signals was carried out using 
MATLAB Signal Processing Toolbox. Prior to the wavelet 
analysis, the signals were mean subtracted and resampled at 
10 Hz after applying a low-pass filter to prevent anti-alias-
ing. After down sampling, the signal was high-pass-filtered 
to remove low-frequency signals below 0.005 Hz. Also, to 
eliminate end effects while computing WT, the pre-pro-
cessed LDF signal was negatively reflected about its ends. 
After pre-processing the LDF signals, CWT was computed, 
and the average energy density in each frequency band was 
analysed from the obtained wavelet scalogram. Average 
energy density in each band (∈ (f1, f2)) is given by Eq. (4),

where f1, f2 are the lower and upper limit of the frequency 
band of interest, s1, s2 are the scales corresponding to f1 and 
f2, and g(s, t) is the CWT of the LDF signal at scale s and 
time t. For a signal sampled with sampling period Δ, the 
scale s of the Morlet wavelet is related to the frequency 
f(Hz) as given in Eq. (5),

Hence, in order to analyse the LDF signals sampled at 
10  Hz and for a frequency range of 0.005–2.5  Hz using 
Morlet wavelet with fc 1 Hz, scale s was varied from 4 to 
2000.

3 � Results

The LDF experiments were carried out as detailed in 
Sect. 2. The acquired signals from healthy control and dia-
betic subjects were subjected to fractal analysis as well 
as wavelet analysis. The details of the results obtained for 
each analysis are as listed below.

3.1 � Fractal analysis

Hurst coefficient for the LDF signals was computed as 
per Sect.  2.2. Sample plots illustrating the computa-
tion of H in the case of healthy control as well as diabetic 
subjects are shown in Fig, 3a, b. In the diabetic group, 
H = 0.700 ± 0.0379 (mean ± SE), whereas in the healthy 
group, H = 0.810 ± 0.0044 (mean ± SE) as shown in Fig. 4. 
The Hurst coefficient is observed to be less in the case of 
diabetic subjects when compared to healthy control subjects. 
We observed the following correlation coefficient in the LDF 
time series of the diabetes subjects and in healthy subjects.

(4)(∈ (f1, f2)) =
1

t

t
∫

0

s2
∫

s1

1

s2
|g(s, t)|2dsdt

(5)f =
fc

�s
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3.2 � Wavelet analysis

Figure 5a, b shows the average WT coefficients of LDF sig-
nals with their five characteristic peaks in the correspond-
ing frequency bands in healthy control and diabetic sub-
jects, respectively.

To quantitatively measure the changes in dynamics in 
different frequency bands, the relative energy contribu-
tion of each band to the total average energy density in 
the band 0.0095–2.5 Hz was used and is observed to be an 
indicator of changes in underlying control mechanisms of 
microcirculation.

Wavelet analysis has revealed significant results between 
the different frequency bands associated with underlying 
blood flow control mechanism. The average relative power 
of different bands in the healthy controls and diabetic sub-
jects was analysed. It was found that the changes occurring 
in the metabolic band, neurogenic band, and cardiac band 
are significant and can be used to assess the dynamics of 
microcirculation in diabetic subjects. In the healthy control 
subjects, the average relative power in the metabolic and 
neurogenic bands is found to have reduced value as com-
pared to their diabetic counterparts, and an opposite trend 
was observed in the cardiac band. While these changes are 
found to be significant, there was no significant difference 
observed in the myogenic and respiratory bands between 
the two groups. Also, we observed that the ratio of rela-
tive energy in cardiac band to metabolic band and the ratio 
of cardiac band to neurogenic band differed possibly sig-
nificantly between diabetic and healthy control subjects. 
The percentage relative energy for each band/band ratios 
for healthy control subjects as well as diabetic subjects is 
shown in Fig. 6.

4 � Discussions

The diabetic group selected for the study varied in their 
degree of impairment, and hence, an increased standard 
error was observed in the group. In the fractal analysis, the 
diabetic group shows significant deviation (p < 0.05 by two-
tailed t test) in the Hurst exponent from the healthy con-
trol group. Some of the diabetic subjects showed H = 0.56 
which is close to Brownian motion indicating random walk 
like fluctuations, whereas for healthy control subjects, we 
have observed H > 0.8 consistently. H indicates the strength 
of correlation between successive elements in the LDF 
time series. The mean value of H for the diabetic group and 
healthy control group was >0.5 indicating positive correla-
tion between successive elements. However, the calculated 

Fig. 3   Plot of scaled windowed variance analysis, a healthy control 
subject, b diabetic subject

Fig. 4   Graph showing Hurst coefficient (mean ± SE) in healthy con-
trol and diabetic subjects
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H was more for the healthy control group than the diabetic 
indicating that the increments of the LDF time series are 
more positively correlated in healthy control subjects than 
in the diabetic subjects. The results indicate that flow pat-
tern in healthy control subjects is more correlated than that 
of diabetic subjects. This decrease in H in diabetic subjects 
could be due to the microcirculatory changes associated 
with diabetes. Also, some of the diabetic subjects showed 
H = 0.56 which indicates uncorrelated or random fluctua-
tions of the LDF time series suggesting loss of coordination 
of the mechanisms governing blood flow, namely meta-
bolic, neurogenic, myogenic, respiratory, and cardiac com-
ponents. Similar observations were made in case of wavelet 
analysis as mentioned Sect. 3.2, leading to an inference that 

the changes in the Hurst coefficient in LDF signals between 
the diabetic and healthy control group are attributed to the 
changes in the underlying microcirculation as indicated by 
wavelet analysis. The possible causes for the differences in 
various frequency bands of the LDF signal for the healthy 
control and diabetic subjects are further analysed as below.

4.1 � Neurogenic band

In our experiments, we have observed that for the healthy 
control subjects, the average relative energy in this band 
[0.02–0.06  Hz] was observed to be 0.1803  ±  0.0293, 
whereas for the diabetic group, the value was found to 
be 0.2653  ±  0.0356. The difference was observed to 

Fig. 5   Plot of time averaged 
wavelet transform coefficient, 
a healthy control subject, b 
diabetic subject
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be statistically significant with a p value of 0.0258. In 
humans, Stefanovska et al. [7, 29, 43] observed that intro-
duction of acetylcholine (vasodilator) into the subjects 
caused decrease in the relative energy of neurogenic band. 
Hence, the observed increase in the relative energy in the 
neurogenic band in diabetic group compared to healthy 
control subjects can be due to the vasoconstriction of the 
blood vessels. It is shown that diabetes increases the pro-
duction of vasoconstrictors mainly endothelin-1 which 
acts on vascular smooth muscle inducing vasoconstriction 
along with decrease in the production of endothelium-
derived NO thus impairing endothelium dependant vaso-
dilation [26, 48]. Also, studies show that patients with dia-
betes tend to have decreased cutaneous vasodilation and 
impaired sympathetic neural control [44, 49]. The above 
factors correspond to the increased relative contribution of 
neurogenic oscillations in the cutaneous perfusion in dia-
betic subjects.

4.2 � Cardiac band

We observed that in diabetic subjects, the relative energy 
contribution in the cardiac region [0.6–2  Hz] to the total 
blood flow was less when compared to healthy con-
trol subjects. For the healthy control subjects, the aver-
age relative energy was observed to be 0.5126 ±  0.0559, 
whereas for the diabetic group, the value was found to 
be 0.2953  ±  0.0525. A possible cause for this finding 
is that increased vessel resistance due to vasoconstric-
tion leads to decrease in the contribution of heart to total 

microcirculatory flow. It is also shown in the literature 
that injection of vasodilator causes an increase in the con-
tribution of cardiac component to the total blood flow due 
to vasodilatation [43, 45]. Hence, the decrease in relative 
energy in this band is attributed to increased vessel resist-
ance due to vasoconstriction. Also, this observed change 
was statistically significant (p = 0.0175).

4.3 � Metabolic band

In the frequency band from 0.0095 to 0.16  Hz, peak is 
observed at 0.01  Hz that corresponds to endothelial cell 
metabolic activity [7, 30]. Endothelial cells that line the 
inner surface of the blood vessels regulate vasomotor tone 
by production of vasodilator mediators. Therefore, varia-
tions in this band can indicate either the rate of release 
of various vasoactive substances or the response of the 
endothelial cells to these substances. Endothelial dysfunc-
tion associated with diabetes is characterized by impaired 
regulation of vasodilation due to decreased production of 
NO [3, 25, 36, 51]. NO plays a major role in vasodila-
tion and blood pressure regulation of blood vessels. For 
the healthy control subjects, the average relative energy 
was observed to be 0.1382 ± 0.0181, whereas for the dia-
betic group, the value was found to be 0.2444 ±  0.049. 
The observed increase in the relative energy contribu-
tion of this band in diabetic subjects compared to healthy 
control subjects was found to be statistically significant 
(p  =  0.0635) and expected to be due to the effects of 
endothelial dysfunction.

Fig. 6   Bar graph showing 
relative energy distribution in 
various bands/band ratios in 
diabetes and healthy control 
subjects
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4.4 � Band ratio

The ratio of relative energies in cardiac band to meta-
bolic band (healthy controls—4.1267  ±  0.7096: dia-
betic—1.7935  ±  0.7149; p  =  0.0988) and cardiac band 
to neurogenic band (healthy controls—3.4625  ±  0.7257: 
diabetic—1.6409  ±  0.7068; p  =  0.0425) was addition-
ally calculated and found to be a better prominent marker 
for differentiating diabetic subjects from the control group. 
Although the ratio of cardiac to metabolic band was not an 
evidently significant marker from the p values, we feel that 
there is a potential for exploring further in this direction by 
conducting experiments in a large subject group. This could 
potentially serve as an effective indicator of the disease 
stages after proper experimental trials on a large population.

The summary of results obtained in this study shows 
that the fractal nature of the LDF signals as described 
by Hurst coefficient differs considerably in diabetic and 
healthy control subjects. This change in fractal nature is 
due to the pathophysiological changes associated during 
the development of diabetes as shown by wavelet analysis 
of the LDF signals. The differences obtained in the cardiac, 
neurogenic, and metabolic band indicate that diabetes leads 
to the vasoconstriction of the capillaries causing reduced 
blood flow to the tissues.

5 � Conclusion

In this pilot study, microcirculatory changes associated 
with diabetes mellitus is studied employing temporal 
fractal analysis of laser Doppler signals. The results indi-
cate that Hurst coefficient which describes the strength of 
correlation between successive elements of the LDF time 
series showed statistically significant reduction in diabetic 
subjects compared to the healthy control group. For fur-
ther analysis, signals were acquired at greater duration and 
subjected to wavelet analysis to understand the changes 
in the underlying vascular control mechanisms associated 
with diabetes. The introduction of ratios between cardiac, 
myogenic, and neurogenic bands clearly differentiates the 
healthy control group from the patients’ group. Results 
from wavelet analysis were found to be in favour of the 
results from fractal analysis that yielded more detailed 
information. Hence, it is concluded that fractality of the 
Doppler signals could offer a promising tool to be used 
as another modality for preliminary screening of ailments 
involving microcirculatory changes hence can be used as a 
non-invasive tool for disease assessment in comparatively 
reduced test time.
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