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1 Introduction

The significance of brief episodes (<30 s) of paroxysmal 
atrial fibrillation (PAF), also referred to as occult PAF, 
is currently receiving considerable attention in clinical 
research [30]. Recent results from prolonged rhythm moni-
toring support independent association between brief epi-
sodes and future risk of stroke. It has been suggested that 
brief episodes may be coupled to the formation of atrial 
thrombus, and that brief episodes may be viewed as bio-
markers of prolonged episodes occurring outside of the 
monitoring period [30].

The impact of brief PAF episodes on thrombus forma-
tion is a recent ongoing debate, see, e.g., [14, 27], which 
prompts the need for detection techniques that could help 
to establish the clinical value of such episodes. Long-
term, continuous noninvasive monitoring is likely to 
improve the AF detection rate [6], but considering the 
often poor signal quality, it is important to develop robust 
detectors which minimize the time for manual review of 
the data.

Both noninvasive and invasive recording technology 
have been employed for prolonged rhythm monitoring, 
exemplified by the following two clinical studies. Using 
mobile cardiac outpatient telemetry, 56 patients with pre-
sumed cryptogenic ischemic stroke were monitored [34]. In 
23 % of the patients with atrial fibrillation (AF), 85 % of 
all episodes were brief. Using implantable cardiac monitor-
ing, 11 % of all patients with cryptogenic ischemic stroke 
had new onset PAF with 5-s episodes or longer [10]. The 
authors argued that subsequent strokes may be prevented 
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whether patients are monitored during their first month 
after stroke.

The poor agreement between methods for AF detection 
has recently been pointed out as an important limitation 
of clinical studies [30]. Although monitoring devices have 
been on the market for some time, no information is avail-
able on their accuracy to detect occult PAF. Thus, there is 
not only a need for validation of commercial devices, but 
also to develop methods for detection of occult PAF.

The vast majority of AF detectors explore RR interval 
irregularity through parameters which reflect randomness, 
variability, and complexity, e.g., [9, 12, 20, 29, 33]. While 
the detectors offer satisfactory performance with respect to 
longer episodes, occult PAF is precluded since a window 
length of at least 30 s is usually needed. An interesting RR-
based detector was recently proposed where the coefficient 
of sample entropy was employed to find episodes with as 
few as 12 beats [18]. When evaluating the performance 
of this coefficient on short duration ECGs, an area under 
the receiver operating characteristic (ROC) of 90.2 % was 
achieved when a 5-s window was used [19].

It is well known that AF detectors relying on informa-
tion on RR irregularity are prone to produce false alarms 
in rhythms with atrial premature beats (APBs) [1, 18]. In 
order to reduce the number of false alarms, information 
on P-wave absence and f-wave presence appears natural to 
include in the decision process. However, very few detec-
tors have been described in the scientific literature which 
explores atrial information: One of the few combining 
information on RR irregularity with PR interval variability 
and P-wave morphology [1]. The performance was only 
slightly better than that achieved by the same detector but 
without use of atrial information; all episodes shorter than 
1 min were excluded.

The AF detector proposed by Carvalho et al. [4, 8] 
appears to be the first with an architecture that jointly pro-
cesses information on RR irregularity, P-wave absence, and 
f-wave presence. An artificial neural network (ANN) was 
used as classifier, first trained on a huge dataset and then 
used with fixed values for detection. Similar to other detec-
tors, this detector requires that ventricular premature beats 
(VPBs) are first located and excluded. Using the MIT–
BIH AF database, the performance was not better than 
that achieved by the RR-based detector in [33]. A possible 
explanation to this result is that the decision process did not 
account for the prevailing noise level.

In the present study, a novel AF detector is proposed that 
embraces four parameters which characterize RR irregu-
larity, P-wave absence, f-wave presence, and noise level. 
All parameters, except for RR irregularity, are determined 
from a signal produced by the echo state network (ESN) 
described in [26]. This type of network offers a unified solu-
tion to the problem of QRST cancelation in the presence of 

VPBs and large variation in normal beat morphology; thus, 
no dedicated algorithm is needed for the handling of VPBs. 
The four parameters constitute the total information fed to 
the classifier based on fuzzy logic. Detector performance is 
studied on a large set of ECG test signals whose properties 
are easily controlled, e.g., with respect to episode duration, 
percentage of APBs, and noise level.

The paper is organized as follows. The detector is 
described in Sect. 2, followed by a description of the ECG 
database and the performance measures in Sect. 3. The 
results characterizing performance are presented in Sect. 4 
and compared to a detector which explores RR irregu-
larity. The generation of test signals is described in the 
“Appendix”.

2  Methods

The main processing steps of the proposed detector are 
shown in Fig. 1. The detector requires two ECG leads as 
input of which one needs to be positioned away from 
the atria, e.g., V6. A sliding window approach is taken to 
PAF detection: The window length is defined by the num-
ber of beats M, rather than by a time period, since a beat-
based definition seems more natural when detecting brief 
episodes.

2.1  Atrial activity characterization

Similar to other techniques for atrial activity extraction dur-
ing AF, the ESN-based technique was developed under the 
assumption that AF is present and, accordingly, a signal 
with f-waves is fed to the ESN [26]. That assumption is not 
valid here since the input signal may just as well contain 
P-waves. However, preliminary tests showed that the ESN 
is not only suited for cancelation of QRST complexes but 
also for P-waves. Therefore, the ESN is briefly described 
below, followed by the parameters characterizing P-wave 
absence and f-wave presence, both computed from the ESN 
output.

In the present application, the ESN can be viewed as an 
adaptive filter which produces an output signal ŝ(n) with 
the f-waves from the target signal x(n) when AF is present, 
whereas ŝ(n) mostly contains the noise of x(n) and PQRST 
residuals when AF is absent. The reference signal xr(n) is 
filtered by a time-variable transfer function, see Fig. 1. The 
output signal ŝ(n) is defined as the error e(n) between the 
target signal x(n) and the ESN output ŷ(n), being an esti-
mate of the PQRST or the QRST complex, i.e.,

The estimate ŷ(n) is obtained by

(1)ŝ(n)
△= e(n) = x(n) − ŷ(n).
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where go(·) denotes the output neuron activation function 
and wout(n − 1) the N × 1 time-varying output weight vec-
tor. The number of neurons in the reservoir is denoted N . 
The vector z(n) is the concatenation of the N × 1 reservoir 
state vector r(n) with the reference signal xr(n), its first 
derivative x′

r(n), and an impulse-like signal xs
r(n),

The signal xs
r(n) is identical to x(n) in a short interval of 

length 2D centered around the fiducial point ni of the ith 
beat; outside this interval xs

r(n) is set to 0 (the fiducial point 
is here defined by the QRS center-of-mass). Thus, xs

r(n) 
can be viewed as a variant of the impulse correlated refer-
ence input to the adaptive filter [16]. It should be noted that 
the definition in (3) differs from the one in [26] since the 
second derivative of xr(n) is replaced with xs

r(n) in order to 
achieve better noise immunity.

The output weights wout(n) of the ESN are updated 
using the recursive least squares (RLS) algorithm in com-
bination with least squares prewhitening. Prewhitening is 
defined by

where P(n) denotes the inverse of the correlation matrix 
of z(n). The update of P(n) is given by the following two 
equations:

(2)ŷ(n) = go(w
T
out(n − 1)z(n)),

(3)z(n) =
[

r(n) xr(n) x′
r(n) xs

r(n)
]T

.

(4)v(n) = P(n − 1)z(n),

(5)u(n) = P
T (n − 1)v(n),

(6)
k(n) = 1

� + �v(n)�2 +
√

�(� + �v(n)�2)
,

where P(0) = δ−1
I, δ is a small positive constant, I the 

identity matrix, and � a forgetting factor. The RLS part of 
the algorithm produces an update of the output weights,

where wout(0) = 0. The vector r(n) is updated by

where Win is a 3 × N input weight matrix, W an N × N 
weight matrix of the internal network connections, gr(·) a 
reservoir neuron activation function, and α a forgetting fac-
tor. The recursion in (9) is initialized with r(0) = 0.

P-wave absence (P) is quantified by first computing the 
squared error between two different PR intervals,

where nP and nR denote the onset and end of the PR inter-
val, respectively, both located at fixed distances from the 
fiducial points ni and nj, i �= j. Then, the squared error is 
averaged for all pairwise combinations of the M beats in 
the detection window,

The parameter P is close to 0 in rhythms with P-waves, but 
increases when f-waves are present. Since the F-waves of 

(7)P(n) = P(n − 1) − k(n)v(n)uT (n)√
�

,

(8)wout(n) = wout(n − 1) + e(n)u(n)

� + �v(n)�2
,

(9)

r(n) = αr(n − 1) + (1 − α)(gr(Wr(n − 1) + Winu(n))),

(10)eij =
nR
∑

n=nP

(

ŝ(ni − n) − ŝ(nj − n)
)2

,

(11)P =
M−1
∑

i=1

1

M − i

M
∑

j=i+1

eij.

Fig. 1  Block diagram of the proposed PAF detector. The echo state 
neural network is used for PQRST cancelation in the target lead x(n), 
here given by V1; the reference lead xr(n) is V6. The output ŝ(n) of the 
block labeled “PQRST cancelation” contains f-waves during AF, and 

otherwise noise and PQRST residuals. The ESN inputs and output 
are normalized and denormalized, respectively, according to standard 
procedure. See the text for definitions of signals and parameters



290 Med Biol Eng Comput (2015) 53:287–297

1 3

atrial flutter are largely canceled by the ESN, thanks to their 
much more stable pattern than the f-waves, the correspond-
ing value of P is close to 0. In contrast to [4], this approach 
to characterizing P-wave absence requires no P-wave tem-
plate, neither is it sensitive to variations in morphology 
since P-waves have already been canceled by the ESN.

f-wave presence (F) is quantified by the parameter 
known as spectral concentration [5, 21],

where Pŝ(ω) and Eŝ denote the power spectrum and energy, 
respectively, of ŝ(n) in the M beat long detection window. 
The integration interval Ωp is centered around the dominant 
spectral peak located within the interval [ωa,0, ωa,1] [5]. 
When f-waves are present, the dominant peak reflects AF 
frequency and F  becomes closer to 1, whereas it is closer 
to 0 for sinus rhythm (SR). The power spectrum Pŝ(ω) is 
obtained using Welch’s method (1-s cosine window with 
50 % segment overlap).

2.2  Ventricular activity characterization

RR interval irregularity (R) is quantified by the coefficient 
of sample entropy, defined by

where A and B denote the total number of RR interval pat-
terns of length m + 1 and m, respectively, that match within 
a certain tolerance r; for details, see the PAF detector 
described in [18]. The mean length of the RR intervals in 
the detection window is denoted m̄r.

2.3  Noise level estimation

The noise level is estimated by the root mean square (RMS) 
value Rŝ of ŝ(n), weighted by a ratio of spectral entropies. 
The numerator and denominator are computed in spec-
tral bands dominated by noise and f-waves, respectively, 
defined by the respective frequencies ωn and ωa. The noise 
parameter N , defined by

is small when Pŝ(ω) reflects AF, whereas it is large when 
motion artifacts and/or electromyographic (EMG) noise 
is present. The properties of N  are further investigated in 
Sect. 4.

(12)F = 1

Eŝ

∫

Ωp

Pŝ(ω) dω,

(13)R = − ln

(

A

B

)

+ ln(2r) − ln(m̄r),

(14)N = Rŝ ·

∫ ωn,1

ωn,0

Pŝ(ω) · log2 Pŝ(ω) dω

∫ ωa,1

ωa,0

Pŝ(ω) · log2 Pŝ(ω) dω

,

2.4  AF detection based on fuzzy logic

A Mamdani-type fuzzy inference method is employed for 
AF detection [22]. With fuzzy logic, numerical and linguis-
tic knowledge are combined, which makes it particularly 
useful in applications where subjective knowledge is avail-
able about the process. The present design comes with four 
inputs, i.e., P , F , R, N , a set of “if–then” rules, and one 
output O. By means of an input membership function, each 
input value is mapped (“fuzzified”) to a value that indicates 
the degree of belonging to a certain fuzzy set. For P , F , 
and R, the fuzzy sets relate to SR and AF, and the follow-
ing two input membership functions are employed:

and

The shape of µSR(x) and µAF(x) is defined by the param-
eters a and b. For N , the same type of input membership 
function is employed, but the fuzzy set relates instead to 
the noise level which is judged either to be low or high.

The set of if–then rules are then activated: In each rule, 
the antecedent is the fuzzified input value and the conse-
quent is the linguistic output that reflects the degree of con-
fidence of SR and AF. Each rule is composed of the four 
fuzzified parameters and combined with the AND operator. 
The output of each rule is defined by the Gaussian mem-
bership function,

where ck and σ 2 determine location (output specific) and 
width, respectively, and C is the number of linguistic out-
puts. For each rule, the degree of activated output is deter-
mined by the minimum value of each member. For simplic-
ity, all rules are assigned a weight equal to 1.

The inference of a fuzzy block is based on all rules, and 
therefore the output of the individual rules µk(y) is com-
bined using the maximum method for accumulation to pro-
duce the overall fuzzy output µo(y). The output value is 
obtained using the centroid defuzzification method, defined 
by

(15)µSR(x) =























1, x ≤ a

1 − 2
�

x−a
b−a

�2
, a ≤ x ≤ a+b

2

2
�

x−b
b−a

�2
, a+b

2
≤ x ≤ b

0, x ≥ b,

(16)µAF(x) = µSR(a + b − x).

(17)µk(y) = exp

[

− (y − ck)
2

2σ 2

]

, k = 0, . . . , C,

(18)
O =

∫ ymax

ymin

yµo(y)dy

∫ ymax

ymin

µo(y)dy

,



291Med Biol Eng Comput (2015) 53:287–297 

1 3

where ymin and ymax are the lower and upper limits, respec-
tively, of the overall fuzzy output. The output O is a value 
between 0 and 1 which reflects the likelihood that the 
detection window contains AF.

2.5  Detection threshold

Since a short detection window is likely to cause more false 
alarms, median filtering (whose length is equal to that of 
the sliding window, i.e., M) is applied to the output O for 
the purpose of suppressing outlier values (it is recalled that 
O is a signal that results from the sliding window compu-
tation). Paroxysmal AF is detected whenever the output of 
the median filter exceeds a fixed threshold η (0 < η < 1).

2.6  Parameter settings

All parameter values of the detector were determined 
through experimentation on ECG data which were not part 
of the performance evaluation. In some case, the parameter 
values were identical to those used in previous studies.

Since the goal of the present study is to detect 
occult PAF, the length of the sliding window was set 
to only M = 5 beats. The ESN was implemented using 
N = 100, � = 0.999, α = 0.8, and D = 50 ms. The PR 
interval was set to (nR, nP) = (50, 250) ms when comput-
ing P. The parameters F  and R were computed using the 
values given in [5] and [18], respectively. The parameter 
N  was computed with the integration interval [ωa,0, ωa,1] 
set to [3, 12] Hz, reflecting that the AF frequency is usually 
contained in this interval [28], whereas the noise interval 
(ωn,0, ωn,1] was disjunct and set to (12, 125] Hz.

A total of 16 fuzzy rules were used. The input member-
ship functions in (15) and (16) are defined by the param-
eters a and b, determining the extreme values of the func-
tions. The following values were used: (a, b) = (−3, 0.2) 
for R, (a, b) = (0, 0.6) for S, (a, b) = (0, 0.015) for P

, and (a, b) = (0, 2) for N . Equidistant locations were 
assigned to the Gaussian output membership functions in 
(17): ck = c0 + k∆c, c0 = 0, ∆c = 0.143, and C = 8; the 
motivation for choosing C is presented below. The set of 
linguistic outputs was defined by four values of SR and 
four values of AF, i.e., {0, 1, 2, 3} that reflect the likeli-
hood of SR or AF. For example, the output is labeled SR0 
when SR is present with low likelihood, and AF2 when 
AF is present with rather high likelihood. The width σ 
was set to 0.061. The integration interval in (18) was set to 
(ymin, ymax) = (−0.2, 1.2). The complete set of fuzzy rules 
is presented in Table 1. It should be noted that the guiding 
star when designing the fuzzy rules is simple: More weight 
is assigned to R and less weight to P and F  when the noise 
level N  is high, and vice versa when low.

The detection threshold η was fixed and set to 0.5, a 
choice based on the distributions of O for SR and AF, see 
the results below.

3  Performance evaluation

3.1  Development and test datasets

The dataset used for developing the proposed detector 
was a database previously described in [32], with standard 
12-lead ECGs from 211 patients clinically diagnosed with 
paroxysmal or persistent AF.

Due to the lack of annotated databases with occult PAF, 
test signals were generated for performance evaluation. 
The starting point was a set of 100 ECGs selected from the 
PTB Diagnostic ECG Database [3, 11], containing signals 
from 50 healthy subjects and 50 patients with myocardial 
infarction, all with SR, and lasting for about 2 min. The 
original sampling rate of 1,000 Hz was decimated to 250 
Hz to alleviate the computational demands of the ESN [26]. 
Leads V1 and V6 were selected as target and reference sig-
nals, respectively. The original ECG was then subjected 
to repeated concatenation until at least 1,000 beats were 
included.

In order to generate signals with PAF episodes, the con-
catenated ECGs were altered with respect to rhythm and 

Table 1  The set of 16 fuzzy rules used for AF detection

The columns R, F , and P display combinations of fuzzified input 
values, and column N  display the fuzzified noise level. The right-
most column displays the linguistic output of the different rules, rang-
ing from highly likely SR to highly likely AF

No. R F P N Linguistic output

1 SR SR SR Low SR3

2 SR SR SR High SR3

3 SR SR AF High SR2

4 SR SR AF Low SR2

5 SR AF SR High SR1

6 SR AF SR Low SR1

7 SR AF AF High SR0

8 AF SR SR Low SR0

9 AF SR SR High AF0

10 AF SR AF High AF0

11 AF AF SR High AF1

12 SR AF AF Low AF1

13 AF AF AF High AF2

14 AF SR AF Low AF2

15 AF AF SR Low AF3

16 AF AF AF Low AF3
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morphology. In PAF episodes, the signal was produced by 
adding the ventricular activity of the ECG and synthetic 
f-waves produced by a sawtooth model (once P-waves 
had been blanked). During SR, the original P-waves were 
modified to produce a more challenging test signal with 
larger morphologic beat-to-beat variability. The origi-
nal RR interval series was replaced by a series produced 
by a model of either SR or AF. Finally, EMG noise was 
added at different RMS values to produce the test signal. 
The “Appendix” provides more information on signal 
generation.

The capability of N  to characterize noise, but not 
f-waves, was investigated using 100 5-s segments each of 
f-waves extracted from the AF database in [32], and EMG 
noise extracted from the MIT–BIH Noise Stress Test Data-
base [24]. All 5-s segments were normalized with respect 
to their RMS value.

3.2  Performance measures

In the present study, the principal performance measure 
is detection accuracy, denoted A, defined as the number 
of correctly detected AF and SR episodes divided by the 
total number of episodes in a signal. Sensitivity is the 
number of correctly detected AF episodes divided by the 
total number of AF episodes, whereas specificity is the 
number of correctly detected SR “episodes” divided by 
the total number of SR episodes. An episode is consid-
ered to be correctly detected whether the overlap between 
annotation and detector output is at least 50 %. The sta-
tistical results are expressed as mean ± two-sided confi-
dence interval (95 %). All statistical results are based on 
100 test signals.

4  Results

Figure 2 illustrates the performance of the proposed 
detector: The two AF episodes are correctly detected, 
including the second episode immediately preceded by 
APBs and corrupted with EMG noise that drown the 
f-waves. It can be noted that N  is large when noise is 
present, while it is close to zero when PQRST residuals 
and f-waves are present (as is the case during the first 
15 s of the example).

To shed further light on how noise is characterized 
by the parameter N , it was not only computed for EMG 
noise but also for f-waves to determine the extent by which 
f-waves influence N . Figure 3 shows that N  is propor-
tional to the noise level, while it is essentially independent 
of f-wave amplitude.

Fig. 2  The performance of the proposed detector is illustrated on an 
ECG with two brief episodes of PAF. The first 15 s of the signal is 
noise-free, then followed by a 10-s burst of EMG noise. The second 

episode is preceded by two APBs. The output signal O is displayed 
with a thick line whenever the detection threshold is exceeded

0 1 2 3

f−waves

Noise(a)

50 µV

50 µV

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5(b)

f−waves

Noise

Fig. 3  a Example of EMG noise and extracted f-waves. b The 
parameter N  computed for segments with EMG noise and f-waves
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The range of each input membership function was deter-
mined by the distributions displayed in Fig. 4a–d, obtained 
from the AF database in [32]. While none of the param-
eters R, F , and P can individually discriminate AF from 
SR, Fig. 4f shows that their combination into O, with N  
taken into account, offers excellent discrimination for 
η = 0.5. Figure 4e indicates that the detection accuracy A is 
only mildly dependent on the number of linguistic outputs. 
Eight outputs were used since no further improvement was 
obtained with additional outputs.

Figure 5a displays A as a function of noise level when 
episodes with random length are analyzed. In order to 
show the added value of different features, the following 
combinations were compared: R, (R, P), (R, P , F), and 
(R, P , F , N ), i.e., O.

The results show that the decrease in A for O is just 0.01 
when the noise level increases from 20 to 100 µV, and O 
performs better than R for all noise levels. The accuracy of 
R is constant because the noise does not influence the RR 
interval pattern through falsely detected or missed heart-
beats. While P improves detection performance only for 
low noise levels (<30 μV), the contribution of F  remains 
significant up to a noise level of 90 µV. Figure 5b presents 
A as a function of noise level, but with 5 % of all beats 
being APBs. When comparing to the results in Fig. 5a, it 
is obvious that the performance of all detectors deteriorate 
when APBs are present; however, the deterioration is more 
pronounced for R as A drops from 0.97 to 0.88. The perfor-
mance of O remains superior to R, especially at low noise 
levels.

The requirement of a reference lead with negligi-
ble f-waves may seem as a major limitation of the pro-
posed method. The results in Fig. 5c indicate though that 
increased f-wave amplitude in the reference lead V6 does 
not deteriorate A when the amplitude in the target lead 
V1 is 30 µV. When the amplitude in V1 is very small, i.e., 
10 µV, A drops from 0.99 to 0.94.
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Fig. 5  Detection accuracy A as a function of noise level when a no 
APBs are present, and b when 5 % of all beats are APBs. c Detection 
accuracy A as a function of f-wave amplitude in the reference lead V6, 
presented for two f-wave amplitudes in the target lead V1

Table 2  The influence of 
episode length on detection 
accuracy (A), sensitivity (Se

), and specificity (Sp) in the 
absence of APBs, and when 5 % 
of all beats are APBs

The noise level is set to 50 µV

APBs in ECG Episode length

5 beats 10 beats 20 beats 30 beats

A Se Sp A Se Sp A Se Sp A Se Sp

No APBs

O 0.88 1.00 0.76 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

OR 0.82 1.00 0.64 0.96 1.00 0.92 0.98 1.00 0.97 0.99 1.00 0.99

5 % APBs

O 0.80 1.00 0.59 0.92 1.00 0.85 0.98 1.00 0.96 0.99 1.00 0.99

OR 0.76 1.00 0.52 0.83 1.00 0.66 0.89 1.00 0.79 0.93 1.00 0.87
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Table 2 displays the performance of the proposed detector 
for an increasing number of beats in the PAF episodes. The 
proposed detector was compared to the RR-based detector 
in [18], using the coefficient of sample entropy as decision 
parameter, here denoted OR; the detection threshold used 
in [18] was also used here. The results of Table 2 show that 
both O and OR are capable of detecting all AF episodes for 
the chosen threshold settings since the sensitivity is equal 
to 1. When no APBs are present, the accuracy of O remains 
high (0.88) also for episodes with as few beats as 5. When 
APBs are present, OR has much lower specificity than O.

The above results, obtained from a large set of test sig-
nals, are complemented by a number of ECG examples. 
Figure 6a illustrates that O has a shorter delay than OR 
when detecting an AF episode. Figure 6b, c illustrate that O 
is more robust to false alarms caused by sudden changes in 
the RR interval series, here associated with either APBs or 
respiratory sinus arrhythmia.

5  Discussion

The goal of this work is to develop a reliable method for 
detection of occult PAF. With such a detector in long-term 

monitoring, information on episode pattern can be pro-
duced which may help to shed light on clinical challenges 
such as cryptogenic ischemic stroke. The synergy of the 
four parameters and the a priori knowledge built into the 
decision model (cf. Table 1) is the main reason to why the 
proposed detector performs well. Yet, the structure of the 
present detector is simple since RR irregularity, P-waves, 
and f-waves are characterized by just one parameter each.

Both the detector in [4] and the proposed detector make 
use of atrial information, though in quite different ways. 
Firstly, an f-wave signal can be extracted with the ESN 
when physiological disturbances such as VPBs are present, 
thereby precluding the need for ectopic beat detection. Sec-
ondly, the inclusion of noise level in the decision process 
allows the proposed detector to determine whether P and 
F  can be relied on. The detection of brief episodes was not 
addressed in [4] since most episodes of the MIT–BIH AF 
database are much longer than 30 beats, nor was the perfor-
mance evaluated at different noise levels.

The proposed detector assumes that P-wave absence, 
f-wave presence, and noise can be quantified from ŝ(n). The 
feasibility of this assumption is illustrated by the follow-
ing two examples. Noise appearing in the target signal is 
not canceled by the ESN, but remains in ŝ(n), see Fig. 7a. 
On the other hand, noise present in the reference lead does 
not deteriorate f-wave extraction, see Fig. 7b. Other tech-
niques than the ESN may be considered for PVCs, e.g., 
averaged beat subtraction or spatiotemporal QRST cancela-
tion. These cancelation techniques suffer, however, from 

(a)

(b)

(c)

Fig. 6  Detection performance on ECGs with a a brief PAF epi-
sode, b several APBs (marked with arrows), and c respiratory sinus 
arrhythmia are analyzed. Note that b and c do not contain PAF epi-
sodes. A thick line of the output indicates that AF is detected

(a)

(b)

Fig. 7  Examples of f-wave extraction from an ECG when a the tar-
get lead or b the reference lead is noisy
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the disadvantage of requiring many beats for averaging, 
and therefore do not perform well when occasional PVCs 
occur. For this reason, we promote the ESN for PQRST 
cancelation since accurate f-wave extraction is required 
when the feature F  is used.

The results show that the proposed detector is robust 
to noise (Fig. 5a), performs well in the presence of APBs 
(Fig. 5b), and can detect occult PAF reliably (Table 2). The 
example in Fig. 2 suggests that the delay in detection is 
about three beats, and that an episode length of at least five 
beats is needed for detection. This example also suggests 
that the detector is operational already after five beats after 
the onset of the recording, and thus a lengthy initialization 
period is not required.

In recent, interesting paper on ECG signal quality dur-
ing arrhythmias, Behar et al. [2] explore skewness and 
kurtosis for noise quantification. These two parameters 
are not suitable though for signals with canceled ventricu-
lar activity, and therefore a novel noise parameter N  was 
proposed and tested. Still, the main insight of [2] is valid 
also here, namely that signal quality parameters should be 
rhythm-specific.

The use of fuzzy logic is attractive since basic knowledge 
on AF can be easily translated to a set of linguistic rules. The 
Mamdani-type fuzzy logic does not require training, and its 
implementation is easily reproduced. On the other hand, 
the performance of an ANN-based detector depends on 
the training dataset and, as a consequence, its performance 
is likely dropping when noisy data is fed to the ANN. The 
main challenge with fuzzy logic is the selection of appro-
priate membership functions and rules. Although the present 
choice of membership functions and rules was heuristic, the 
performance of O was still superior to that of OR. The num-
ber of linguistic outputs C and the detection threshold η are 
crucial parameters and were given special attention, cf. Fig. 
4e, f; the remaining parameters were determined heuristi-
cally from the development dataset.

Other decision techniques may be employed as well, 
e.g., linear discriminant analysis or artificial neural net-
works. However, a much larger dataset must then be used 
for training, especially when the noise level constitutes one 
of the input parameters, and therefore such techniques were 
not considered.

A limitation of the present study is that the proposed 
detector is not evaluated on an ECG database with occult 
PAF. Since the database must also have at least two ECG 
leads (one with negligible atrial activity, and the other con-
taining atrial activity), and no such database is yet available 
with annotations, an approach with test signals has been 
pursued which still provides valuable insight on perfor-
mance. For example, the influence of noise can be investi-
gated in situations when the noise level exceeds the f- and 

P-wave amplitudes. Although noise immunity is a central 
aspect in long-term monitoring of AF, it has not received 
much attention in the literature. It should be noted that 
the present type of test signals preserve the morphologic 
QRST variability of the original ECG and the relationship 
between different leads. An alternative approach to perfor-
mance evaluation may be to consider a database with PAF 
and manually “edit” all signals so that shorter (occult) epi-
sodes are created. However, the present approach offers 
better control of different signal properties and can produce 
signals with very challenging properties.

It is obviously desirable to involve more than two detec-
tors in a performance comparison; however, detectors in 
the literature use window lengths of at least 30 s and are 
thus unsuitable for occult PAF. The detector by Dash et al. 
employed a window of 128 beats, implying that PAF epi-
sodes shorter than 64 beats could not be detected [9]. A 
similar observation applies to the detector developed by 
Huang et al. [12] which employed a window of 100 beats. 
Hence, a comparison of performance with these two detec-
tors, not designed to detect brief PAF episodes, would be 
unfair and favor the present detector.

Furthermore, it should be noted that the proposed detec-
tor is developed exclusively for analysis of ECG signals. It 
is not applicable to PAF detection in intracardiac signals, 
e.g., studied in [25], since P- and f-wave information is 
explored.

6  Conclusions

This study shows that the combination of parameters char-
acterizing atrial activity, ventricular activity, and prevail-
ing noise level offers reliable detection of occult PAF. The 
results show that AF episodes as short as five beats can be 
detected, and the performance is essentially unchanged for 
noise levels up to 100 µV RMS.

The detector is expected to have clinical relevance since 
brief AF episodes can be reliably detected in asymptomatic 
cases and trigger an event recorder. The detector should 
also be suitable for integration in eHealth services where 
analysis of long-term recordings is offered.
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Appendix

This appendix describes the steps required for generating 
test signals with occult PAF; the interested reader is 
referred to the publications cited below for more 



296 Med Biol Eng Comput (2015) 53:287–297

1 3

information on each of the steps.1 The ECGs of the PTB 
database, which served as the starting point for test signal 
generation, were first subjected to baseline removal and 
QRST delineation [17].

Ventricular rhythm

The number of beats in SR and AF episodes was uniformly 
distributed in the interval [5, 30], unless otherwise stated, 
and thus the test signals contained about the same number 
of episodes of SR and AF.

The model in [23] was used to generate RR intervals 
during SR. The mean heart rate was set to 60 bpm and the 
standard deviation to 2 bpm, the respiratory rate to 0.25 Hz, 
and the low-frequency/high-frequency ratio to 1. During 
AF, an atrioventricular node model was used to generate 
RR intervals [7]. The mean arrival rate of atrial impulses 
was set to 6 Hz, the minimal refractory period to 0.25 s, the 
probability of an impulse to take the slower pathway to 0.6, 
the maximal refractory period prolongation to 0.1 s (identi-
cal for both pathways), and the difference between the two 
refractory periods to 0.2 s.

Ventricular morphology

The original T-waves were first resampled to a fixed width, 
and then, depending on type of rhythm, width-adjusted to 
match prevailing heart rate. During SR, the T-wave was res-
ampled relative the current RR interval using Bazett’s for-
mula, where the corrected QT interval was set to 420 ms. 
During AF, the QT interval was shorter than during SR, and 
set to a fixed value (250 ms). After an AF episode termi-
nated, the T-wave duration was gradually increased over 
the five next beats so as to produce a smooth transition 
from AF to SR. When needed, the TQ interval was padded 
with zeros.

Since APBs occur quite commonly in AF patients [35], a 
certain percentage of APBs was introduced in the test sig-
nal. The occurrence of an APB caused the preceding RR 
interval to be 25 % shorter and the following 25 % longer.

P-waves and f-waves

In lead V6, P-waves are usually monophasic in shape and 
therefore reasonably well modeled by the first Hermite 
function [13, 31]. The second and third Hermite functions, 
being biphasic and triphasic, respectively, were added with 
random weights (normal distribution, zero-mean, variance 
0.1) to make the morphology vary over time. Since P-waves 

1 Note: the code for test signal generation will be made available at 
Physionet (or similar) upon manuscript publication.

in V1 are often biphasic in patients with PAF [15], they 
were modeled by simply differentiating the corresponding 
P-wave in V6. The peak-to-peak P-wave amplitude was set 
to 50 µV in both V1 and V6. The PR interval length was 
uniformly distributed within the interval [175,185] ms.

The extended f-wave sawtooth model was used together 
with the parameter values in [26]. The amplitude in V1 was 
taken to be 5 times larger than that in V6 to reflect the fact 
that f-waves have much larger amplitude in V1 than in V6. 
This difference in amplitude was caused by the longer dis-
tance from the heart to the electrode site and an electrical 
vector that is much more scattered during AF.

Noise

Following summation of ventricular and atrial activities, 
EMG noise taken from the MIT–BIH Noise Stress Test 
Database [24] was added to produce the final test signal 
(the noise first rescaled to the desired RMS value). A num-
ber of test signals with different noise levels are displayed 
in Fig. 8.
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