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further decrease to 20 % of the error due to blood-to-inter-
stitial glucose kinetics.
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1  Introduction

New scenarios in the treatment of type 1 diabetes (T1D) 
have been opened in the early 2000s by the introduction of 
continuous glucose monitoring (CGM) sensors [34]. CGM 
sensors are small portable devices whose core is a transcu-
taneous electrode, implanted in the subcutaneous tissue of 
the arm or abdomen, where a glucose oxidase electrochem-
ical reaction occurs generating a current signal reflecting 
concentration of interstitial glucose (IG). This current sig-
nal is then converted, almost continuously (1–5 min sam-
pling period), to glucose concentration levels by using a 
transformation law with parameters tuned via a calibration 
procedure exploiting reference glucose concentration val-
ues periodically collected by using independent portable 
fingerstick devices. CGM sensors presently in the market 
can be used for several consecutive days (up to 7) [9, 19, 
24, 26].

CGM sensors can be employed for several purposes. 
An offline analysis of CGM recordings allows a better 
understanding of how glucose concentration is managed 
in a given individual, evidencing dangerous hypo/hyper-
glycemic events that traditional self-monitoring blood glu-
cose (SMBG), consisting in only 3–4 fingerstick samples 
per day, could not detect, and a quantitative investigation 
of the risks associated to altered glucose variability [6, 17, 
22, 30, 32]. Real-time CGM applications are even more 

Abstract  It is clinically well-established that minimally 
invasive subcutaneous continuous glucose monitoring 
(CGM) sensors can significantly improve diabetes treat-
ment. However, CGM readings are still not as reliable as 
those provided by standard fingerprick blood glucose (BG) 
meters. In addition to unavoidable random measurement 
noise, other components of sensor error are distortions due 
to the blood-to-interstitial glucose kinetics and systematic 
under-/overestimations associated with the sensor calibra-
tion process. A quantitative assessment of these compo-
nents, and the ability to simulate them with precision, is of 
paramount importance in the design of CGM-based appli-
cations, e.g., the artificial pancreas (AP), and in their in 
silico testing. In the present paper, we identify and assess 
a model of sensor error of for two sensors, i.e., the G4 
Platinum (G4P) and the advanced G4 for artificial pancreas 
studies (G4AP), both belonging to the recently presented 
“fourth” generation of Dexcom CGM sensors but differ-
ent in their data processing. Results are also compared 
with those obtained by a sensor belonging to the previous, 
“third,” generation by the same manufacturer, the SEVEN 
Plus (7P). For each sensor, the error model is derived from 
12-h CGM recordings of two sensors used simultaneously 
and BG samples collected in parallel every 15 ±  5  min. 
Thanks to technological innovations, G4P outperforms 7P, 
with average mean absolute relative difference (MARD) 
of 11.1 versus 14.2 %, respectively, and lowering of about 
30  % the error of each component. Thanks to the more 
sophisticated data processing algorithms, G4AP resulted 
more reliable than G4P, with a MARD of 10.0  %, and a 
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challenging and include the generation of preventive alerts 
to anticipate hypoglycemic or hyperglycemic threshold 
crossing [3, 12, 33, 36], and artificial pancreas (AP) sys-
tems [7, 8, 14, 18, 28, 31]. In spite of promising results and 
presence of large room for further applications and devel-
opments, CGM devices are still not as accurate as standard 
blood glucose (BG) meters, as evidenced in studies com-
paring CGM versus BG references frequently measured 
via laboratory instruments [11, 21]. Recently, some stud-
ies reported methods to describe and quantify CGM sensor 
error [4, 15, 23, 25]. In particular, in [15], three inaccuracy 
components were identified: distortion due to blood-to-
interstitial glucose (BG-to-IG) kinetics, systematic under/
overestimations (with time-varying amplitude) due either 
to errors in sensor calibration, and random measurement 
noise. A better understanding and a quantitative assessment 
of these components are of crucial importance in the design 
of CGM-based applications and in their in silico testing, 
e.g., in the design of AP control algorithms [35].

In the present paper, we aim to assess the error for two 
new CGM devices belonging to the “fourth” generation of 
sensors manufactured by Dexcom, the G4 Platinum (G4P) 
[5], which appeared in the market in 2012, and the advanced 
G4 for artificial pancreas studies (G4AP) [16], presently 
available for investigational use only. G4P and G4AP 
replace a previous, “third” generation, CGM sensor of the 
same manufacturer, the SEVEN Plus (7P) released in 2009 
[1]. All these three CGM devices consist of a 7-day trans-
cutaneous sensor, a transmitter, and a receiver, and measure 
glucose in the interstitial fluid every 5 min [1, 5, 16]. The 
transmitter sends an electrical signal to the receiver, where 
it is processed into a glucose value and adjusted based on 
twice-daily calibration using self-monitoring of blood glu-
cose (SMBG). As described in [16], G4P and G4AP utilize 
a glucose oxidase sensor technology improved with respect 
to that used in the 7P, as well as updated transmitter and 
receiver hardware. Compared to G4P, the G4AP employs 
more sophisticated denoising and calibration algorithms to 
improve accuracy, day-to-day reliability, and consistency 
from sensor to sensor [16]. To model sensor error, in the 
present paper we develop an approach recently proposed in 
[15] for the 7P and usable in presence of multiple CGM 
datastreams collected by sensors working in parallel. The 
methodology will be briefly described in Sect. 2, while in 
Sect. 3 we will apply it to G4P and G4AP datasets where 
two sensors were simultaneously used in 36 subjects moni-
tored for 7 days and reference BG samples were collected 
in parallel every 15 ± 5 min in days 1, 4, and 7 [5, 16]. The 
error model obtained for G4P and G4AP will be also com-
pared with that obtained from data of 9 subjects wearing 
the 7P undertaken to a similar monitoring, showing that, 
thanks to technological innovations, G4P outperforms 7P, 
with average mean absolute relative difference (MARD) 

of 11.1 versus 14.2 %, respectively, and lowering of about 
30  % the error of each component. Thanks to the more 
sophisticated data processing algorithms, G4AP is more 
reliable than G4P, with a MARD of 10.0 %, and a further 
decrease to 20 % of the error due to BG-to-IG kinetics. A 
discussion of the insights emerged from the analysis will 
be reported in Sect. 4, while some conclusions will end the 
paper in Sect. 5.

2 � Methods

2.1 � Databases

The 7P database is taken from a larger pivotal study con-
ducted in 2008 by Dexcom Inc., see [1] for more details. 
The considered 18 subjects wore simultaneously two 7P 
sensors with needles placed on the two different sides of 
the abdominal region. Subjects were instructed to calibrate 
their CGM device twice per day and to come to the clinic 
either on day 1, 4, or 7 for a 12-h period of glucose moni-
toring in which BG samples were measured approximately 
every 15 ± 5 min using YSI (Yellow Springs, OH) glucose 
analyzer. However, only 9 subjects and only day 1 of moni-
toring can be used for the analysis of the present paper. 
In fact, as specified in [15] and in the next subsection, the 
method assumes that the portion of data under analysis 
does not contain any calibration and this requirement was 
not satisfied by the other nine subjects (who were hospital-
ized either in day 4 or in day 7).

The G4P and G4AP database is taken from a larger piv-
otal study conducted in 2011 by Dexcom Inc., see [5, 16] 
for details. The considered 36 subjects wore simultane-
ously two G4P sensors at the same time on the abdominal 
region. Similarly to the 7P protocol, these subjects were 
instructed to calibrate their CGM device twice per day and 
to come to the clinic three times, on days 1, 4, and 7 for a 
12-h period in which BG samples were measured approxi-
mately every 15 ± 5 min using YSI. All data of 36 subjects 
were suitable for the analysis. Note that the G4AP data-
base is obtained processing the raw sensor data of the G4P 
database with more sophisticated signal processing algo-
rithms, using the simulated prospective procedure docu-
mented in [16].

All study protocols were reviewed by the FDA through 
the Investigational Device Exemption process and 
approved by the institutional review boards of all partici-
pating centers. All subjects provided witnessed, written 
informed consent prior to enrollment. Table 1 summarizes 
subjects’ demographic characteristics in terms of disease 
category (type 1 or type 2 diabetes), sex, age, body mass 
index (BMI), and glycosylated hemoglobin (HbA1c). More 
details can be found in [1, 5, 16].
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2.1.1 � Remark 1

Note that the 7P database used here is not the one adopted 
in [15], which is different, in terms of number of sensors 
used, protocol, and data acquisition, to the available G4P 
and G4AP datasets. For sake of easiness of comparison, 
a 7P dataset collected with modalities similar to those 
employed for the G4P and G4AP datasets has been chosen.

2.2 � The sensor error model

2.2.1 � Overall model description

The adopted sensor error model and the identification strat-
egy used to estimate its unknown parameters are those 
already described in [15] and applied therein to the 7P. 
Briefly, a schematic general representation of how sensor 
error affecting the output of n different CGM sensors work-
ing in parallel is generated is shown in Fig.  1 (n =  2 for 
the data of this paper), where each of the three components, 
BG-to-IG kinetics, calibration error, and random measure-
ment noise, is described by a dedicated block. As it will be 

discussed later in Sect. 2.2.3, the availability of n different 
CGM sensors working in parallel is key for the identifica-
tion of the random measurement noise components [15]. 
The specific equations usable to describe these components 
are reported in the subsection below, while the identifica-
tion of the unknown parameters is discussed in Sect. 2.2.3.

2.2.2 � Model of the three error components

As shown in Fig. 1, the BG signal is transformed into the 
IG signal according to the BG-to-IG kinetics process, 
which can be modeled using the linear time-invariant two-
compartment model of [29]. This model allows relating BG 
and IG by the following differential equation:

where τ is a time constant. We assume that, in each indi-
vidual, the influence of BG-to-IG kinetics is the same in 
all the n parallel sensor recordings. The time constant τ is 
unknown and is estimated in each subject as described in 
Sect. 2.2.3.

Then, as displayed in the second layer of the block-
scheme of Fig. 1, the IG signal is measured independently 
by the n sensors generating the IGSi, i =  1 … n, signals. 
The relationship between IG and IGSi is modeled as:

where ai(t) and bi(t) represent, respectively, the gain 
and offset of the i-th sensor. As apparent from the cho-
sen notation, sensor gain and offset are time-varying; this 
allows taking into account time-variant under-/overestima-
tions produced by the sensor. In order to obtain a flexible 

(1)˙IG(t) =
1

τ
(BG(t)− IG(t))

(2)IGSi(t) = ai(t)IG(t)+ bi(t)

Table 1   Demographic information for the datasets used in this study

Age, HbA1c and BMI are reported as mean ± SD value

SEVEN Plus G4 Platinum/G4AP

Diabetes type 9 T1D 32 T1D, 4 T2D

Sex 6 m, 3 f 19 m, 17 f

Age (years) 48.2 ± 10.3 39.5 ± 14.4

HbA1c 7.6 ± 1.6 % 7.8 ± 1.4 %

BMI 29.4 ± 3.1 kg/m2 28.7 ± 6.1 kg/m2

BG(t) IG(t)

BG-to-IG
kinetics

Sensor 1
(calibration error)

...

IGS1(t)

IGS2(t)

IGSn(t)

+

Random measurement 
noise v1(t)

+

Random measurement 
noise v2(t)

+

Random measurement 
noise vn(t)

CGM1(t)

CGM2(t)

CGMn(t)

... ...

Sensor 2
(calibration error)

Sensor n
(calibration error)

Fig. 1   Schematic description of how n simultaneous CGM data-
streams are modeled. From left to right, the BG signal is transformed 
into IG signal through the BG-to-IG kinetics; the IG signal is meas-

ured by each of the n CGM sensors, generating for the i-th sensor 
the IGSi profile, affected by a calibration error; finally, the measured 
CGMi is affected by additive random measurement noise vi
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description for gain and offset, polynomial models are 
used:

where {aik, k = 0 … m} and {bik, k = 0 … l} are unknown 
model parameters. Also, the degrees of the polynomials, m 
and l, are treated as unknown parameters. The identification 
procedure is described in the next subsection.

Finally, we assume that the output of each of the n CGM 
sensors, CGMi(t), is affected by additive measurement 
noise vi(t):

where vi(t) is assumed to be composed by two signals: (i) 
a common component cc(t), assumed to be present in the 
same realization in all the n residual profiles of the single 
subject, largely imputable to possible suboptimal modeling 
of previous steps (e.g., BG-to-IG kinetics) and other com-
mon effects not directly taken into account; (ii) a sensor-
specific component ssci(t), which is specific to the i-th 
sensor and not correlated with sscj(t), j ≠ i. Both cc(t) and 
ssci(t) are modeled as an autoregressive (AR) process:

where the model parameters {αik, k =  0 … q} and {βik, 
k = 0 … p} and the orders q and r are unknown and identi-
fied as described below, and w1(t) and wi2(t) are zero-mean 
white noise processes.

2.2.3 � Identification of the unknown parameters

An a priori identifiability analysis performed analytically 
(computations not reported for sake of paper readability) 
demonstrated that all the considered models are uniquely 
identifiable [27]. In practice, the estimation of the unknown 
parameters is performed in two steps.

In step #1, we estimate the polynomial degrees m and l 
of ai(t) and bi(t) using the Bayesian information criterion 
(BIC). Via nonlinear least squares, we obtain the values 

(3a)ai(t) =

m∑

k=0

aikt
k

(3b)bi(t) =

l∑

k=0

bikt
k

(4)CGMi(t) = IGSi(t)+ vi(t)

(5a)cc(t) =

r∑

k=0

βkcc(t − k)+ w1(t)

(5b)ssci(t) =

q∑

k=0

αikssci(t − k)+ wi2(t)

of τ and of the coefficients of ai(t) and bi(t). Formally, we 
denote as:

the BIC value for the combination of m =  M and l =  L, 
where d is the total number of CGM data available in each 
subject from all the n sensors; p = (M + L + 3), the num-
ber of parameters; and RSS, the residual sum of squares 
calculated as:

in which di is the number of CGM samples of the i-th sen-
sor and η is the uncorrelated version of the measurement 
noise v of (5), obtained using a population whitening fil-
ter and needed to apply BIC. As suggested in [15], we 
will consider only the following candidate combinations 
of m and l: m  =  l  =  0 (“constant”), where parameters 
are assumed to be time-invariant (i.e., no time-variance); 
m = l = 1 (“linear”), i.e., both the gain and the offset vary 
in time following a linear trajectory; m =  l =  2 (“quad-
ratic”), i.e., a quadratic time-evolution is considered; and 
m =  l = 3 (“cubic”), i.e., time variations obey to a cubic 
law. In the specific, to assess the optimal orders m and l, we 
will look at the differences in BIC value:

Note that a positive difference in ΔBIC means that the 
higher-order model performs better than the lower one (for 
instance, ΔBIC(m = l = 0,m = l = 1) > 0 means that the “linear” 
performs better than the “constant” model).

In step #2, as demonstrated in [15], thanks to the avail-
ability of multiple sensors, we can dissect the random meas-
urement noise into the common component cc(t) and the sen-
sor-specific component ssci(t), and estimate their unknown 
parameters. Starting from the residual profile resi(t):

the cc(t) is derived as follow:

while the realization of the ssci(t) is extracted as:

and both fitted by the AR models of (5a) and (5b), where 
the orders r and q and their coefficients {αik, k = 0 … q} 
and {βik, k = 0 … r} are estimated using the BIC criterion 
as well.

(6)BICm=M,l=L = d ln (RSS)+ p ln (d)

(7)RSS =

n∑

i=1

di∑

j=1

η2ij

(8)�BIC(m=l=P,m=l=P+1) = BICm=P,l=P − BICm=P+1,l=P+1

(9)resi(t) = CGMi(t)− IGSi(t)

(10)ĉc(t) =
1

n

n∑

i=1

resi(t)

(11)ŝsci(t) = resi(t)− ĉc(t)
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3 � Results

3.1 � G4P and G4AP error components

3.1.1 � BG‑to‑IG kinetics

Figure 2 depicts the distribution of estimated τ values in G4 
(green) and G4AP (orange) datasets. The continuous line is 
the probability density function derived from the data of the 
histogram via nonparametric kernel density estimation. It is 
apparent how the estimated τ values vary among individuals, 
in line with the results already reported in [15] for the 7P. 
With regard to the numerical values of τ, for the G4P data-
set the average value resulted 9.7  min (standard deviation 
SD = 3.6 min), while for the G4AP dataset the average value 
was 7.7  min (SD =  3.0  min), which is significantly lower 
(p < 0.01). Since the G4AP dataset is obtained from the G4 
one using, prospectively, different signal processing algo-
rithms [16], this reduction in τ values should be interpreted 
as result of a better filtering of raw sensor data performed 
in G4AP. In fact, for each individual the effect of BG-to-IG 
kinetics on τ does not change between the two datasets.

3.1.1.1  Remark 2  The distribution of the estimated τ val-
ues reported in Fig.  2 is relative to the orders m and l of 
the polynomials ai(t) and bi(t) identified as best according to 
the BIC criterion, i.e., m = l = 1 for day 1, and m = l = 0 
for both day 4 and day 7 (see next section for details). No 

significant differences on the distribution of the estimated τ 
values have been observed changing m and l.

3.1.2 � Calibration error

Differently from [15], in which only a 12-h time window 
was available, the datasets employed in this work allow 
characterizing the sensor error in three 12-h time win-
dows located in days 1, 4, and 7, where YSI reference BG 
measurements are available. The characterization of the 
sensor error in these time windows is important since the 
3 days are representative of three specific pictures of sensor 
behaviors: just after the insertion (day 1), standard working 
modality (day 4), and close to end of life (day 7). Figure 3 
shows a summary of the results (top G4P, bottom G4AP) 
for the selection of the orders m and l, respectively, for the 
polynomials ai(t) and bi(t) of the (3a) and (3b) describing 
the sensor gain and offset, in day 1 (left), day 4 (middle), 
and day 7 (right) of monitoring. For each day, the box-
plots of ΔBIC values of m = l = 0 versus m = l = 1 (left), 
m = l = 1 versus m = l = 2 (middle), and m = l = 2 versus 
m =  l = 3 (right) models are shown. The diamond repre-
sents the mean value.

With regard to the G4P sensor (top line panels in 
Fig.  3), starting from day 1 (left panel), the use of poly-
nomials ai(t) and bi(t) of order 1 (m = l = 1) is necessary 
for a correct modeling of the calibration error. In fact, 
on average, the mean BIC value for m =  l =  1 is signif-
icantly lower than that for m =  l =  0 (p =  0.001), with 
BICm = l = 1 ≤ BICm = l = 0 (i.e., ΔBIC(m = l = 0,m = l = 1) > 0) 
in 70  % of the cases. The incremental improvement 
passing to m =  l =  2 is not so evident, being the reduc-
tion on average BIC not significant (p  =  0.188) and 
BICm =  l = 2 ≤ BICm =  l = 1 in about 50 % of the subjects. 
This means that the use of a second-order polynomial could 
be necessary to describe the sensor error in some cases, but 
not on average. Finally, m = l = 3 is not convenient, being 
the average BICm = l = 3 significantly higher than the lower-
order model (p < 0.01). In conclusion, results evidence that 
G4P sensor presents a time-variant calibration error during 
day 1 and that the choice of m = l = 1 for the polynomials 
ai(t) and bi(t) is preferable. This result is expected, being 
known that, during day 1, CGM sensors usually suffer a 
relative lack accuracy due to sensor variability. Focusing 
now on day 4 (middle panel), none of the BIC distributions 
is significantly lower than the others. In fact, starting from 
the m = l = 0 versus m = l = 1 model comparison, even if 
ΔBIC(m =  l = 0,m =  l = 1) > 0 in 59 % of the cases, evidenc-
ing that in some subjects time-variance of gain and offset is 
still present, the use of m = l = 0 for the polynomials ai(t) 
and bi(t) is sufficient for a satisfactory description of the 
calibration error, being the average BICm = l = 0 values not 
significantly different from those of BICm = l = 1 (p = 0.19). 
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Fig. 2   Distribution of estimated τ values for G4P (green) and G4AP 
(orange) datasets relative to the orders m and l of the polynomials 
ai(t) and bi(t) identified as best according to the BIC criterion, i.e., 
m =  l = 1 for day 1, and m =  l = 0 for both day 4 and day 7. The 
continuous line is the probability density function derived from the 
data of the histogram via nonparametric kernel density estimation 
(color figure online)
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Also in this case, the use of polynomials of higher orders 
(i.e., second or third) is not convenient. Finally, conclusions 
similar to those drawn for day 4 can be applied to day 7, 
where a constant approximation of ai(t) and bi(t) is selected 
as optimal (right panel).

Moving to the G4AP sensor (bottom line pan-
els in Fig.  3) and focusing on day 1 (left), order 1 for 
the polynomials ai(t) and bi(t) is still assumed as the 
most convenient, being BICm =  l =  1 significantly lower 
than BICm  =  l  =  0 (p  =  0.02). However, the percent-
age of cases in which ΔBIC(m =  l =  0,m =  l =  1)  >  0 (i.e., 
BICm = l = 1 ≤ BICm = l = 0) reduces to 59 % (from 70 % 
of G4P), meaning that the enhanced signal process-
ing of G4AP is able to better compensate the time-
varying effects of calibration error. On both day 4 

(middle) and day 7 (right), order 0 for both polynomi-
als ai(t) and bi(t) is sufficient for a satisfactory descrip-
tion of the calibration error. Of note that, in day 4, 
ΔBIC(m =  l =  0,m =  l =  1)  >  0 in 53  % of the cases (from 
59 % of G4P), evidencing also in this case an improve-
ment, even if slighter, in compensation of the time-vary-
ing effects of calibration error.

Table  2 summarizes, in terms mean  ±  SD, the esti-
mated model parameter values for the selected orders only 
(m = l = 1 for day 1, m = l = 0 for both day 4 and day 7) 
for both G4 and G4AP sensors. Of note is that all model 
parameters are identified with an elevated precision (the 
percent coefficient of variation, CV, is <20 % in almost all 
cases), confirming that the considered models are practi-
cally identifiable.
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sents the mean value. Note that a positive value of ΔBIC means that 
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3.1.3 � Random measurement noise

After having compensated the delay due to BG-to-IG 
kinetics and sensor filtering, and time-variant under-/over-
estimations due to calibration error, the next last step is 
to consider the residuals, i.e., what remains unexplained 
after the two previous steps. Thanks to the availability 
of n CGM sensors in parallel (here n = 2), the modeling 
technique of [15] estimates if the residuals are realiza-
tions of sensor-specific component ssc(t) only or if there 
is also a common component cc(t), reflecting possible 
suboptimal modeling of previous steps (e.g., BG-to IG 
kinetics) and other common effects not directly taken into 
account. The analysis of the residuals highlights, for both 
G4P and G4AP, the presence of a common component 
in all the 3 days considered. This confirms what already 
concluded in [15], suggesting that the model employed so 
far is not perfect, e.g., the modeling of BG-to-IG kinet-
ics can be improved using suitable tracer data [2]. With 
regard to the specific description of these two compo-
nents, the analysis evidenced that both can be optimally 
described by an autoregressive (AR) process of order 2 
in all the 3  days of monitoring. This is in line with the 
results previously achieved on 7P [15]. Table  3 summa-
rizes the results of such an investigation, which reports 
the median variance value of the AR(2) processes identi-
fied on the common and the sensor-specific components 
for each of the 3 days. The first interesting result is that 
the variance of the common component reduces in G4 
(but not significantly) and hardly changes in the G4AP, 
which is expected, being both suboptimal modeling of 
previous steps and other effects not directly taken into 
account by the employed models common to all sensors. 
The second result is that the variance of the sensor-spe-
cific component reduces significantly during the moni-
toring. More precisely, in the G4P case, the variance of 
AR(2) process describing the sensor-specific component 
is reduced significantly passing both from day 1 to day 4 
(13.1–11.7 mg2/dl2, p < 0.001) and from day 4 to day 7 
(11.7–5.8  mg2/dl2, p =  0.02). Similarly, the variance of Ta
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Table 3   Median variance values of AR(2) processes describing the 
common and the sensor-specific components in G4P and G4AP sensor

Day Component Median variance (mg2/dl2)

G4P G4AP

1 Common 45.7 31.8

Sensor-specific 13.1 12.3

4 Common 36.3 31.0

Sensor-specific 11.7 8.9

7 Common 26.6 28.2

Sensor-specific 5.8 5.9
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AR(2) process describing the sensor-specific component 
in G4AP sensor significantly decreases passing both from 
day 1 to day 4 (12.3–8.9 mg2/dl2, p < 0.001) and from day 
4 to day 7 (8.9–5.9 mg2/dl2, p = 0.02). Finally, the median 
variance of both common and sensor-specific components 
of the G4AP is always comparable, or lower, than that of 
G4P sensor, even if the difference is never statistically 
significant.

3.2 � Comparison of G4P and G4AP with 7P

3.2.1 � Comparison between the components

With regard to the time constant of the BG-to-IG kinetics 
model, the average τ value in the 7P dataset is 12.0  min, 
which is significantly higher not only than the values found 
for G4P and G4AP, 9.7 and 7.7 min, respectively (p < 0.01 
for both), but also higher than those reported in the litera-
ture for 7P, around 7–8 min [15, 20]. The fact that 7P data 
were available for day 1 only is not critical, since no dif-
ferences between average τ values estimated separately in 
day 1, 4, and 7 were evidenced in both G4P and G4AP. We 
can then speculate that the main cause of this discrepancy 
is the too limited number of subjects of the 7P dataset, 
which does not allow a robust estimation of the 7P average 
τ value. Therefore, it becomes difficult to draw any solid 
conclusion on this comparison.

As concerns the calibration error, comparing G4P and 
G4AP results with that obtained on 7P dataset, on both 
fourth generation sensors time-variance of gain and off-
set is still present. However, it is possible to affirm that 

the calibration error is time-variant in day 1 of monitoring 
only, in which a polynomial of degree 1 for ai(t) and bi(t) 
is necessary, with G4AP better suited than G4P for time-
variance compensation.

Finally, let us focus on the random measurement noise 
and, in particular, on the common and sensor-specific 
components. If we compare the distributions of the vari-
ances of G4P and G4AP (median value in Table  2) with 
those obtained for the 7P dataset (median values 57.9 and 
28.9  mg2/dl2 for the common and sensor-specific compo-
nents, respectively, aligned with those reported in [15]), 
there is a significant reduction in all variances (7P vs. G4P 
and 7P vs G4AP, p < 0.01), the only exception being the 
variance of common component of 7P versus G4P in day 
1. This result shows that, with respect to 7P, both G4P and 
G4AP present a decrease in the variance of both the com-
ponents of the random measurement noise, showing an 
increased general performance of the sensor in terms of 
accuracy and precision of the output.

3.2.2 � MARD evaluation

Figure 4 shows a schematic representation of the distribu-
tion of the error of the three sensors (7P, G4P, and G4AP) 
in terms of mean absolute relative distance (MARD). 
From left to right: the global MARD, calculated compar-
ing CGMi versus YSI signals; the MARD due to BG-to-IG 
kinetics and sensor data processing, calculated compar-
ing YSI versus IG signals; the MARD of calibration error, 
obtained comparing IG versus IGSi signals; and the MARD 
of the random measurement noise, which derives from the 
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Fig. 4   Mean absolute relative difference (MARD) of 7P (blue), G4P 
(green), and G4AP (orange). From left to right, the global MARD, 
calculated comparing CGMi versus YSI signals; the MARD due to 
BG-to-IG kinetics and sensor data processing, calculated comparing 
YSI versus IG signals; the MARD of calibration error, obtained com-

paring IG versus IGSi signals; and the MARD of the random meas-
urement noise, which derives from the comparison of IGSi versus 
CGMi signals. The diamond represents the mean value (color figure 
online)
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comparison of IGSi versus CGMi signals. As shown in [5], 
the MARD of the G4P is lower than that of the 7P sen-
sor, as demonstrated by the significant reduction of the 
median value of MARD from 14.1 % of 7P to 11.2 % of 
G4P (p = 0.036, nonparametric Wilcoxon rank-sum test). 
Here, thanks to the dissection of the sensor error using the 
proposed modeling approach, we can further demonstrate 
that all sensor error components have been significantly 
reduced: the delay due to the BG-to-IG kinetics and sensor 
filtering from 6.8 to 4.4 % (p < 0.001); the calibration error 
from 14.1 to 9.4 % (p = 0.031); and the random measure-
ment noise from 5.4 to 3.7 % (p = 0.003). On average, all 
the components have been reduced of more than 30 %.

When comparing G4P and G4AP, the improvement 
achieved by G4AP reported in [16] is also confirmed. The 
global MARD of the G4AP is significantly lower than that 
of the G4P sensor, passing from a median value of MARD 
from 11.2 to 10.0 % (p =  0.047). The dissection into the 
different sensor error components evidences a significant 
reduction in the error attributed to the BG-to-IG kinetics 
and sensor filtering, from 4.4 % of G4P to 3.4 % of G4AP 
(p < 0.001). This confirms that the new signal processing 
algorithms employed in the G4AP are able to filter raw data 
better than in G4P, significantly reducing the delay due to 
filtering. With regard to the calibration error component, 
and the random measurement noise error component, no 
reduction in median MARD is present.

4 � Discussion

Thanks to the availability of BG references measured in 
parallel to n = 2 CGM sensor datastreams during three dif-
ferent days of monitoring, we have been able to character-
ize sensor error components in all the key use scenarios of 
the sensor, i.e., just after the insertion (day 1), during stand-
ard working modality (day 4), and close to end of use (day 
7). The analysis highlighted that the behavior of the CGM 
sensor evolves during the monitoring. In day 1, significant 
variability in both sensor gain and offset is present, while 
during day 4 and 7 this component tends to be marginal. 
In addition, the measurement noise component appears to 
decrease day after day. This result brings new insights into 
CGM sensor error modeling, since the models proposed so 
far in [4, 15, 25] were, in a certain sense, “global,” i.e., the 
CGM sensor error model of day 1 was identical to that of 
day 7 and insensitive to inter-day sensor variability.

With regard to the analysis of the time constant τ of the 
BG-to-IG kinetics model, results confirm the finding of 
[15], i.e., τ is subject specific and it varies from subject to 
subject. It is worth noting that the estimation of τ is likely 
slightly biased because of the delay of CGM with respect 
to IG due to hardware/software sensor processing, which 

however does not change between sensors of the same 
technology. As far as numerical values are concerned, we 
showed that, thanks to improved filtering and calibration 
algorithms for data processing, G4AP is able to achieve a 
better performance (in terms of accuracy) than G4P sensor, 
significantly reducing of about 2 min (from 9.7 to 7.7 min) 
the delay with respect of BG concentration. As concluded 
in [15], the model of the BG-to-IG kinetics is still the 
weakest link of the model and needs to be improved when 
suitable data for model identification will become available 
[2]. For instance, the distribution of the τ value for G4AP 
presents a second peak at 12  min, which is unexpected 
and probably due to a suboptimal modeling of BG-to-IG 
kinetics.

Moving to the analysis of the optimal order m and l 
for polynomials ai(t) and bi(t) of the calibration error, the 
results are similar for both G4P and G4AP. The first note is 
that a third-order polynomial is never necessary. Focusing 
on day 1, polynomials of order 1 appear to be preferable, 
even if a quadratic one could be needed in some cases. With 
regard to days 4 and 7, polynomials of order 0 appear to 
be sufficient for a satisfactory description calibration error, 
confirming that the time-variance of calibration parameters 
tends to decrease during the monitoring.

Other interesting observations can be drawn from the 
analysis of the variances of the common and sensor-spe-
cific components. First, the variance of the common com-
ponent does not change during the monitoring, confirm-
ing that this systematic error due to suboptimal modeling 
(likely of the BG-to-IG kinetics) or other common effects 
not directly taken into account is independent from the day 
of monitoring. Second, for both sensors, the sensor-specific 
component variance decreases during the monitoring, evi-
dencing that the uncertainty on the output of the sensor is 
greater just after the insertion.

Furthermore, the dissection of sensor error pointed out 
that both G4P and G4AP present for each of the three 
error components a significant reduction with respect to 
the 7P, while the improvement of G4AP with respect of 
G4P is less evident, being statistically significant for the 
overall and BG-to-IG kinetics errors only. This result is 
expected, because 7P and G4P/G4AP are sensors of dif-
ferent generations and thus based on different technology, 
while G4P and G4AP share the same technology and differ 
on software data processing only. The availability of other 
larger G4P and G4AP datasets (presently not available to 
us) would be useful to confirm the results. In general, as 
already discussed in [15], the largest source of CGM inac-
curacy remains the error deriving from calibration.

Some observations on 7P dataset and results are also 
necessary. The first observation concerns the MARD out-
comes relative to 7P sensor, which are slightly higher 
than those obtained, with a different dataset, in [15]. This 
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difference can be attributed both to the different protocol 
used during the hospitalized day and, more likely, to the dif-
ferent day of acquisition of YSI reference data with respect 
to the start of CGM data acquisition. In fact, in the 7P data-
set considered in this work, YSI values are available in day 
1 only, while in the dataset used in [15] they are available 
in day 3 only; as demonstrated by several papers regarding 
the accuracy of 7P sensor, e.g., [1, 5], the accuracy in day 
1 is often worse than in the other days of monitoring. The 
second observation concerns a possible bias in comparison 
with 7P versus G4 sensors MARD values. In fact, MARD 
values of the 7P sensor are calculated on day 1 of monitor-
ing only, while those of G4P and G4AP sensors are relative 
to days 1, 4, and 7. As mentioned before, being the accu-
racy for day 1 often worse than in the subsequent days of 
monitoring, a bias could be present. However, in practice, 
this bias is very limited and does not affect the results of 
the comparison, being the reported overall median MARD 
(14.1  %) in line with that calculated on the whole 7-day 
monitoring and reported in recent studies (e.g., 14.0 % of 
[5]). Finally, it may seem that the results for the 7P sensor 
error model are incomplete, being available for day 1 only. 
We believe that the absence of 7P results for days 4 and 7 is 
not critical for the comparison with G4 and G4AP for two 
main reasons: (i) it has been widely demonstrated that G4P 
sensor performs better than the 7P in all days of monitoring 
[5] and (ii) since the 7P sensor has been replaced by the 
G4 generation sensors in all open-loop and close-loop trials 
involving Dexcom sensors, a more exhaustive analysis of 
the 7P sensor error would be, at the present time, of minor 
interest.

5 � Conclusions

A detailed dissection and quantitative description of CGM 
sensor error are important when designing new CGM-based 
applications, e.g., glucose predictors and artificial pancreas 
control algorithms, and in in silico testing of diabetes tech-
nologies and treatments. In this work, we have analyzed 
and modeled the error components of two recent CGM sen-
sors produced by Dexcom Inc., the G4P and the G4AP, and 
compared them with what can be obtained for a sensor of 
previous generation, the 7P. The analysis gave new insights 
into CGM sensor error description by evidencing its time-
variance during the monitoring, and could be considered a 
basis on which to create a new CGM sensor error model to 
be included, e.g., in the UVA/Padova T1D simulator [10], 
in order to simulate longer reliable scenarios. To complete 
such a model, further investigation is however needed. In 
fact, at the present time, only models for days 1, 4, and 7 
are available, while for the other days are missing. Further 
work may concern the analysis of correlation of sensor 

error before and after a calibration when suitable datasets 
become available and the application of more sophisticated 
iterative techniques for the identification of model param-
eters will allow performing the estimation all model param-
eters in a single step [13].
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