
1 3

Med Biol Eng Comput (2015) 53:179–186
DOI 10.1007/s11517-014-1215-1

ORIGINAL ARTICLE

Adaptive common average filtering for myocontrol applications

Hubertus Rehbaum · Dario Farina 

Received: 19 July 2013 / Accepted: 20 October 2014 / Published online: 12 November 2014 
© International Federation for Medical and Biological Engineering 2014

for an independent and unimpaired life, artificial limbs 
have been developed over the past decades. These initia-
tives include hand prostheses that can be controlled by the 
user through the activity of the remnant muscles above the 
amputation. These systems provide the possibility to con-
trol multiple degrees of freedom so that the movement 
can mimic well that of the human hand [20]. The control 
methods for prostheses using signals recorded using elec-
tromyography (EMG) are based on either direct control, or 
pattern classification, or regression [5, 10].

In myocontrol applications, the quality of the EMG sig-
nal is one of the most important factors for performance. 
Both for classification and regression approaches, the noise 
level and the spatial selectivity of the input EMG signal 
substantially impact the performance. Therefore, extensive 
work has been devoted in the past to increase the quality 
and information content of the control signal [6, 8, 20].

Previous preprocessing methods for EMG have focused 
on the reduction in common noise and in cross talk. These 
methods include spatial filtering that can be performed with 
bipolar, double-differential [1, 3, 13], Laplacian or other 
two-dimensional configurations [4, 19]. Spatial filters for 
EMG have usually a high-pass spatial transfer function 
that eliminates the spatial DC and reduces the influence of 
distant sources (see [4, 19] for details). Additionally, time-
domain filters are often used to eliminate the power line 
interference [16], to reduce motion artifacts [7] and arti-
facts from electrocardiography (ECG) [21].

For multi-electrode systems, the common average ref-
erence (CAR), also known as virtual reference (VR) [15], 
has also been used in EMG applications [7, 12], although 
this approach is most often implemented in electroencepha-
lography (EEG) recordings [14, 17]. The CAR filtering is 
based on a sample-by-sample subtraction from each chan-
nel of the average signal value over all channels. As other 
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1  Introduction

The loss of a limb, especially of an arm or hand, causes a 
severe worsening of the quality of life. To regain the ability 
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spatial filters for EMG processing, CAR has a high-pass 
transfer function that eliminates the spatial DC.

In EEG analysis, the CAR filter is used to remove domi-
nant noise components present in all channels and thus 
enhances the signal-to-noise ratio (SNR) [15]. For EEG 
signals, the common noise has usually greater power than 
the signal component of interest; thus, the CAR filter has 
a strong effect in improving SNR [14]. However, when 
the CAR is applied to EMG signals, it may actually intro-
duce undesired components and negatively affect the shape 
of the recorded EMG as discussed in [15]. In contrast to 
EEG, the common noise in EMG recordings is indeed usu-
ally smaller than the signal component. Thus, the virtual 
reference of the CAR is not dominated by the common 
noise components, but additionally contains the inverted 
signal of the channels with large EMG activity. The effect 
of the CAR filter on EMG may thus be even a reduction 
in spatial selectivity (Fig. 1), which is usually negative for 
myocontrol.

In this paper, we present an extension of the CAR 
approach based on an adaptive calculation of the common 
mean value on a subset of EMG channels. We will refer to 
this new method as adaptive common average reference 
(ACAR). The effectiveness of the proposed ACAR will be 
demonstrated on myocontrol applications, including both 
pattern recognition and regression-based control.

2 � Methods

2.1 � Adaptive common mean reference (ACAR)

The proposed ACAR algorithm is based on the assumption 
that the signal intensity on all channels is greater than the 
common noise, for instance, when the power line noise has 

been reduced by a comb filter or the technical design of 
the EMG equipment. This is generally the case for EMG 
recordings, as shown in Fig. 1a. Additionally, we make the 
assumption that the signal power of more distant sources is 
smaller than that of closer sources. Using these hypotheses, 
ACAR is based on the calculation of the common mean 
only from a subset of channels. By selecting this subset in 
a manner that the channels with EMG activity (and there-
fore information content) are excluded, the resulting mean 
reference signal is dominated by the common noise, which 
needs to be eliminated.

Considering a signal S  ∊  RK×N with K channels and 
N samples, the signal is separated in non-overlapping 
windows

of length L, where j denotes the order of the windows. For 
each window, we compute the channel-wise signal intensity

where

is the sum over absolute values (average rectified value). 
Based on �pj, a subset of κj channels Λj ⊆ {1, 2, …, K} with 
the lowest signal intensity is selected. For this channel selec-
tion, several approaches can be used. A simple method is to 
select the ⌈K/2⌉ channels with the lowest intensity (further 
denoted as K/2 criteria). Alternatively, it is possible to set 
a threshold on the intensity estimate, either dynamic (i.e., 
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Fig. 1   a Raw multi-channel EMG signal (16 monopolar channels). b 
The same signal filtered using the classic common average reference 
(CAR) method. For the first EMG burst (approximately from 1 to 2 s 

of the recording), signal components are added by CAR in channels 
1–4, which are originally not active. A similar effect is visible for the 
second burst of activity for channels 5–16
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mean or median across the channels) or fixed. In any case, Λ 
should always contain more than one channel to avoid sus-
ceptibility toward a single channel. For the dynamic thresh-
old, this implies a second override step to use the three chan-
nels with lowest intensity if the dynamic threshold results 
in less than three channels for Λj. Finally, the sample-wise 
mean value is calculated for the selected channel subset as:

where

and subtracted from all channels in Wj

The filtered signal S* =  [Wj
*,  Wj

*,  …,  Wj
*] can then be 

obtained by concatenating all processed windows. The 
resulting filter is a spatial filter changing its transfer func-
tion over time.

2.2 � Quantitative evaluation of noise reduction 
and selectivity

To quantify the common noise reduction and the increase 
in signal selectivity, the proposed filter has been applied to 
EMG data recorded (sampling rate of 2,048 Hz) from the 
forearm muscles of four healthy male subjects (age range 
25–37), with 16 monopolar electrodes, placed as 8 pairs 
of 2 equidistantly in a circular manner around the proxi-
mal third of the forearm [18]. This setup is shown in Fig. 2. 
All measures have been performed under the approval of 
the local ethics committee. Out of the 16 electrodes, two 
were located above the flexor and two above the exten-
sor muscles of the wrist. The metrics used were chosen 
according to [19], where wrist flexor and extensor muscles 
were used as agonist/antagonist pair. As the ACAR fil-
ter is designed for the use in myoelectric applications, the 
subjects contracted their muscles voluntarily up to MVC 
instead of using stimulation, as was done in [19]. Based on 
the acquired data for maximal flexion and extension, two 
signal-to-noise ratio (SNR) indexes were calculated.

To assess the within-channel SNR, the data of the 
same channel were used to calculate the signal power for 
the relaxation phase Pagonist,relax and for full contraction 
Pagonist,MVC, leading to the factor as follows:
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The between-channel SNR was calculated using the data 
of one agonist and one antagonist channel for the same full 
contraction as follows:

For both cases, a greater SNR represents a better sig-
nal quality for the agonist channel. The calculation was 
done for 200-ms windows, each subject performing four 
contractions for both wrist flexion and wrist extension. 
This resulted for each method in two pairs of SNRwithin 
and SNRbetween, one for wrist flexion and one for wrist 
extension.

Based on the above indexes, the ACAR filter was tested 
using different channel selection criteria. Based on this, the 
criterion that was found to be most promising was com-
pared with unfiltered raw data, the bipolar filter, and the 
CAR filter.

The results were statistically tested using two-factor 
ANOVAs, with the preprocessing method and the subject 
as factors. A significance level of α = 0.05 was used for all 
tests.

2.3 � Impact on myocontrol based on pattern classification

The performance of the ACAR was also evaluated on clas-
sical pattern classification methods for myocontrol, to 
prove the impact to applied research. For this purpose, four 
time-domain features (RMS, wave length, zero crossing, 
and slope sign changes; [9] ) extracted from the 16 chan-
nels (window length of 400 samples) were obtained from 
the unfiltered EMG and the EMG filtered with CAR and 
ACAR, using the same electrode setup as above. The data 
were recorded from seven able-bodied subjects (2 female, 
5 male, age range 25–57) for six wrist dynamic movements 
(flexion, extension, abduction, adduction, supination, and 

(8)SNRbetween =
Pagonist,MVC

Pantagonist,MVC

digitalized
16-channel
monopolar

surface EMG
8 pairs of 2 elec-
trodes, recorded
as 16 analog
channels

EMG-Amplifier
and 

A/D converter

EMG-USB2

Fig. 2   EMG recording setup used for the evaluation studies. The 16 
electrodes were placed as 8 pairs of 2 equidistantly around the proxi-
mal third of the subject’s forearm. Therefore, only 4 pairs are visible 
in the figure, while the other 4 are placed on the opposite, not visible 
side of the arm
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pronation), each performed 4 times for 4 s at approximately 
50  % MVC force. A feedback was provided to the sub-
ject using a motion tracking system (XSens MTx, XSens, 
Enschede, the Netherlands), estimating the wrist angles in 
the six different directions. For quantitative comparison 
of the approaches, the separability index (SI, larger indi-
cates better performance) and the mean semi-principal 
axes (MSA, lower indicates better performance) [2] were 
used. Additionally, the quotient of SI and MSA (distinct-
ness coefficient DCOFF  =  SI/MSA, larger indicates bet-
ter performance) was introduced as a further performance 
metrics.

2.4 � Impact on regression‑based myocontrol

Additionally to the classification scheme, the impact of the 
proposed filter was also tested for EMG regression meth-
ods. For this purpose, the online target-hitting task using the 
nonnegative matrix factorization (NMF) online myocontrol 
algorithm for wrist flexion/extension and rotation has been 
used, as described in [18]. This algorithm is a regression 
system to estimate the angles for the two degrees of free-
dom. The estimates for the two degrees of freedom were 
translated into the control of a virtual arrow on the screen, 
with the flexion/extension angle of the wrist mapped to the 
horizontal position and the wrist rotation angle mapped to 
the rotation of the arrow.

Using both degrees of freedom simultaneously, the 
arrow tip had to be placed into target circles. This interface 
is shown in Fig. 3. Four male subjects (age range 25–39) 
participated in this study. A 16-electrode setup, as described 
above, was mounted on their dominant arm to record cali-
bration data. Then, the regression system was calibrated 
using the recorded calibration data unfiltered, filtered with 

CAR and filtered with ACAR. Once calibrated, the regres-
sion algorithm was applied for online control. For each of 
this three preprocessing configurations, the subjects were 
asked to hit 20 standardized targets, distributed in the con-
trol range, that all required simultaneous and proportional 
control to be accomplished. As described in [18], for each 
target, the subjects had to position the arrow tip within the 
circle and stay in it for 300 ms. If the subject did not man-
age to accomplish this task within 20 s, the target-reaching 
task was considered failed. Consequently, the time to reach 
the targets as well as a completion rate was recorded and 
used as performance metrics.

3 � Results

3.1 � Quantification of noise reduction and selectivity

The results of the impact of the selection criteria are shown 
in Fig. 4 for a representative subject. Besides the CAR and 
ACAR with K/2 method, also the mean and the median 
threshold within each 25-sample window were tested. Both 
K/2 and the median criteria yielded equally good results, 
which were found also for the other subjects.

Additionally, the impact of the window length L for 
the K/2 selection criteria is shown for the same subject in 
Fig. 5. The K/2 method was used in this case due to its sim-
plicity and similar performance to other selection meth-
ods (Fig.  4). The analysis for the other subjects showed 
very similar results. The selection method and the window 
length did not impact the performance when analyzed sta-
tistically over all subjects (all p > 0.05). Therefore, the K/2 
method with 25-sample window length was the only one 
tested in the following.

The comparison among methods for common noise 
reduction and signal selectivity is shown in Fig. 6. Over all 
subjects, both the within-channel SNR and the between-
channel SNR were the highest for the ACAR method (K/2 
method, 25 samples) for both wrist flexion and extension. 
For the between-channel SNR, which represents the chan-
nel selectivity, the ACAR exceeded the CAR by a mini-
mum of 6 dB for all subjects.

The statistical analysis for the comparison resulted in a 
strong significance for all four metrics (all p ≪ 0.05).

3.2 � Myocontrol based on pattern classification

The feature spaces for a representative subject calculated 
from the unfiltered EMG signal as well as the signal filtered 
with CAR and ACAR are presented in Fig.  7, where, for 
graphical representation, only the first two principal compo-
nents of the feature space are shown. The clusters for each 
wrist movement are represented by the different colors.

Flexion/Extension

Rotation

Target
Circle

Fig. 3   Paradigm for evaluating the regression-based EMG con-
trol. The subject can control the position of the black arrow using 
simultaneously wrist flexion/extension and wrist rotation to position 
the tip of the arrow into the target circle. An example of successful 
positioning is shown by the gray arrow. In the setup, the area shown 
is mapped to the controllable range of the subject. For a detailed 
description, see [11, 18]



183Med Biol Eng Comput (2015) 53:179–186	

1 3

For all subjects, the three metrics (MSA, SI,  
DCOFF) were calculated and are presented in Fig.  8. 
Generally, the MSA values, as a measure of cluster 

density, were the lowest for either the unfiltered data or 
ACAR, while the highest SI was obtained by ACAR or 
CAR. Finally, the DCOFF as a combination of SI and 
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MSA always yielded the highest values for the ACAR 
preprocessing.

3.3 � Regression‑based myocontrol

The resulting performance metrics of the online control 
task for the four subjects are shown in Fig. 9. For the sub-
jects S1 and S2, the completion rates increased equally 
using CAR or ACAR in comparison with the unfiltered 
EMG signal. For subject S4, the completion rate was the 
highest using ACAR, while using the unprocessed EMG 

signal, only 6 out of 20 targets were completed. In fact, the 
controllability of the online paradigm for this subject with-
out CAR or ACAR was very poor. For the very experienced 
subject S3, all three preprocessing methods yielded 100 %. 
However, for all subjects, the ACAR preprocessing resulted 
in the most stable control experience. This controllability 
is represented by the time to reach the target (Fig. 9b). For 
all subjects, the mean time to reach the target as well as the 
standard deviation was the lowest for the ACAR preproc-
essing, followed by the CAR algorithm.

For subject S4, the unfiltered EMG signal yielded a 
similar mean time to reach as for ACAR, while the stand-
ard deviation was about double. However, since this sub-
ject was able to complete only 30 % of the targets, specifi-
cally those that were the closest from the initial position 
and therefore easier to reach, the unfiltered EMG obviously 
performed poorer than both CAR and ACAR.

The statistical analysis of the time to reach the target on 
all data acquired indicated an evident significance (p < 0.05).

4 � Discussion

A new time-varying spatial filter for myocontrol applica-
tions has been proposed. The filter is based on the subtrac-
tion from each channel of the mean value of the subset of 
channels with minimal signal intensity.

The tests on the channel selection criteria for the pro-
posed ACAR filter identified the K/2 criterion as adequate 
and simple. The median and mean criteria require an 
additional thresholding without significant improvement. 
Regarding the window length, 25 samples (equals 12.2 ms) 
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were identified as a good trade-off for SNR improve-
ment and response time of the filter. An increased window 
length might give a slightly better performance in terms 
of signal quality, but would be less appropriate for quick 
control changes. Using this configuration set, the ACAR 
filter has been shown superior for gain in signal quality 
to all other tested filters. These include also the bipolar 
recording, which is the current state of the art in industrial 
applications.

Furthermore, we have also shown a gain in class separa-
bility when using the ACAR filter on the feature space for 
pattern classification. As stated by [2], an increasing SI, as 
identified for the CAR and ACAR, is due to more distinct 
classes in the transformed feature space, resulting from 
either more dense clusters or greater distances between 
classes. For the presented results for SI, the CAR and 
ACAR can be used to increase the separability of the con-
tractions in comparison with unfiltered data. Additionally, 
the MSA is reduced for all subjects when using the ACAR 
in comparison with CAR. This indicates that the clusters 
are both more compact and better distributed in the feature 
space for ACAR filtering. In comparison with the unfiltered 
data, the MSA was slightly increased, but an increasing 
MSA can be compensated by a proportional increase in SI, 
to ensure separability between the classes. These combined 
effects of SI and MSA can be expressed by the DCOFF, 
according to which the ACAR outperformed the other 
methods.

Finally, the evaluation of the proposed ACAR algorithm 
in an online performance task with 20 targets resulted in a 
significant increase in controllability. In this evaluation, all 

subject performed best with the ACAR as part of the pre-
processing chain. As the ACAR filter increases the separa-
bility while reducing the noise, the subjects experienced a 
more smooth control of the arrow, resulting in a faster and 
more reliable completion of the tasks.

5 � Conclusion

In this paper, the ACAR filter has been presented as an 
adaptive approach to improve the signal quality of monop-
olar recordings by significantly reducing the common noise 
level and increasing the spatial selectivity. This improve-
ment has been quantified using an SNR measure and com-
paring it to three other methods commonly used in myo-
control. In contrast to other preprocessing methods, the 
ACAR filter does not need training or adjustments and is 
based on simple calculations suitable for online applica-
tions. The impact of the increased signal quality and sepa-
rability has then been presented for classical EMG pattern 
classification, where the ACAR preprocessing generated 
an increased separability and distinctness of the different 
gesture classes in the feature space. Furthermore, the sig-
nal improvement was visible in the online regression con-
trol, with the simultaneous and proportional control of two 
degrees of freedom. As the latter approach leads toward a 
more natural control, the increased performance underlines 
the benefit and advantage of the proposed algorithm.

While this paper is focused on myocontrol applications, 
the ACAR filter might also have potential in other EMG 
applications.
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