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1  Introduction

Gene expression identification for fully sequenced genomes 
leads to the understanding of biological processes within 
any living organisms. The informational pathway in gene 
expression is as follows: The protein-coding information is 
transmitted from nucleus to cytoplasm by an intermediate 
molecule called mRNA. The information encoded in this 
molecule is translated into functional gene products known 
as proteins.

Measurement of gene expression provides clues about 
regulatory mechanisms, biochemical pathways and broader 
cellular function. Gene expression levels reside in the 
quantity of the mRNA sample found in each cell. Microar-
ray technology is known as a valuable tool used to identify 
genes in biological sequences and to determine their func-
tionality and their expression levels under different condi-
tions. The conduct of a microarray experiment starts with 
the transformation of the mRNA samples into complemen-
tary DNA (cDNA), to prevent the degradation of mRNA 
molecules. Further on, samples from two sources (cDNA 
from a target sample and cDNA from a reference sample) 
are labeled with two different fluorescent markers (cyanine 
3—Cy3 and cyanine 5—Cy5, respectively), attached and 
hybridized on to a solid surface array—glass slide, obtain-
ing a collection of DNA spots, known as a DNA micro-
array. After hybridization, the array is scanned using two 
light sources with different wavelengths for each marker 
(red and green), to determine the amount of labeled sample 
bound to each spot through hybridization process. The light 
sources induce fluorescence in the spots which is captured 
by a scanner, and a composite microarray image is pro-
duced, indicating the expression levels of each gene (spot) 
in both samples [34]. Thus, by estimating gene expression 
levels, microarray technology compares genes from normal 
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cells with abnormal or treated cells, determining and pro-
viding information for understanding the genes involved in 
different diseases [13].

Recent research developed several microarray image 
processing techniques, specific for cDNA microarray gene 
expression levels estimation. The classical flow of pro-
cessing a microarray image is generally separated in the 
following tasks: preprocessing, for improving image qual-
ity and enhancing weakly expressed spots, addressing and 
segmentation. The addressing step, known also as gridding 
or grid alignment, associates logical coordinates to each 
spot of the image, whereas segmentation classifies pixels 
either as foreground, representing the DNA spots, either as 
background. In the last step, spot intensity values and back-
ground intensities corresponding to each spot are computed 
and, based on the results, gene expression levels are esti-
mated and used for further interpretation.

In terms of automation, as reported in [6], microarray 
spot detection techniques can be classified as manual, semi-
automated or fully automated. In case of currently available 
software like ImaGene (Biodiscovery, Inc.), GenePix Pro 
(Molecular Devices, Inc.), ScanAlyze and SpotFinder, the 
procedure of grid alignment is performed interactively by 
the user, using a template-based approach which requires 
various parameters adjustments [5]. Automatic template 
adjustments were introduced by GenePix, Feature Extrac-
tion Software and QuantArray [6, 36], but even so, if grid 
geometry deviation is increased, the methods are not effi-
cient [5]. Nevertheless, for each type of microarray tech-
nology, different template definitions are necessary; thus, 
the methods are not fully automated. Regarding reliability, 
grid alignment methods should be able to determine spots 
with various shape and size in the presence of noise and 
artifacts introduced by microarray slide printing and by the 
hybridization process of the target material.

Various image processing techniques for automated grid 
alignment and spot detection were proposed for handling 
all the above issues. Mathematical morphology, a valuable 
tool for analyzing geometric structures, was used by Wang 
et al. [37] and Angulo et al. [4] for sub-grid detection and 
grid alignment. A hill-climbing approach was proposed in 
[33], where spot positions are determined using different 
probabilistic models for spot intensities distribution. Blekas 
et al. [10] proposed a Gaussian mixture model for accurate 
grid alignment, which lacks in terms of automation due 
to the prior requirements of the number of spots on rows 
and columns. A novel approach based on genetic algo-
rithms was used by Zaharia et  al. [38] for automatic grid 
alignment, providing better results than the Blekas et  al. 
method, mainly due to its robustness to noise and acciden-
tal image rotations. As reported in [7, 8], automatic grid-
ding for microarray images can be performed also using an 
SVM-based approach, by maximizing the margin between 

consecutive rows or columns of spots. A fully automated 
gridding method for microarray images has been also pro-
posed by Rueda et al. [32]; the method uses optimal mul-
tilevel thresholding followed by a refinement procedure 
to find the positions of the sub-grids in the image and the 
positions of the spots in each detected sub-grid.

Spot segmentation within microarray images addresses 
the classification of the foreground and background pix-
els in the target regions. Ideally, each microarray spot has 
the shape of a circle with a constant diameter for all spots. 
Unfortunately, the scanning process introduces distortions 
leading to variable sizes, variable contours (sickle donut or 
interrupted shapes) or spatial artifacts. Various image pro-
cessing techniques, classified in spatial and distributional 
methods [11], are proposed to deal with the mentioned 
segmentation-related problems. Adaptive pixel clustering 
techniques were used by [11, 17, 26, 30] for the segmen-
tation of microarray spots having variable contours. Alter-
nate methods, such as the snake fisher model or 3D spot 
modeling, were used in [21] and, respectively, [39] for spot 
segmentation. Markov random field modeling, used in [14, 
23], combines both observed intensity and spatial informa-
tion for spot segmentation. Image projections were success-
fully used both in foreground separation within microarray 
images [6] and in X-ray image segmentation [16]. A com-
putational method based on geometric measures [40] and 
the growing concentric hexagon algorithm [18] were also 
proposed for classifying background and foreground pixels.

We propose a novel approach for automatic grid align-
ment using shock filters applied on the vertical and hori-
zontal luminance function profiles. Our approach first 
detects grid positions and performs spot segmentation tak-
ing into account the detected rows and columns of spots. 
The novel contributions of the proposed approach are the 
following:

•	 fully automatic grid alignment using a PDE-based 
approach;

•	 microarray spot segmentation;
•	 lower computational complexity compared to state-of-

the-art approaches;
•	 accuracy and robustness to noise and artifacts.

In order to validate the proposed approach for automatic 
grid alignment and spot segmentation, we compare our 
results with the ones obtained by dedicated software pack-
ages and state-of-the-art approaches on images drawn from 
public microarray databases.

1.1 � Methods

Typically, the microarray scanning process delivers 
16  ×  bits grayscale images, TIFF format, in which spot 
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fluorescence levels are captured. Depending on the used 
microarray technology, the resulted microarray image con-
tains one or more sub-grids, with each sub-grid consisting 
in a two-dimensional array of spots. Image processing tech-
niques were used in order to determine the spot locations 
within each sub-grid, the spot sizes, the spot intensities and 
background intensity information, delivering them as raw 
data parameters.

The proposed methods for automatic microarray image 
analysis are detailed further on.

1.2 � Preprocessing

A common characteristic of microarray images delivered 
by existing scanners is the low expression levels of micro-
array spots. Thus, microarray image analysis starts with 
a logarithm point-wise transformation used to enhance 
weekly expressed spots. Consider the input microarray 
image I = {pi,j}, with pi,j is the pixel intensity value from 
row i and column j. The logarithm-transformed image is 
given by IL =

{

log2

(

pi,j + 1
)}

, with pi,j = 0 . . . 2n − 1, 
where n is the number of bits for luminance function rep-
resentation. We employ also a normalization step in order 
to insure that the intensity histogram fits the full dynamic 
range of the n—bits microarray image. Using a contrast 
stretching procedure, the normalized IL pixel intensity val-
ues are mapped into new values IS =

{

p′
i,j

}

, such that the 
new p′

i,j values are saturated considering 1  % of low and 
high intensities of IL. Accidental microarray image rotation 
introduced by the scanning process is detected and elimi-
nated using the Radon transform, as reported in [12, 32].

1.3 � Morphological filtering and microarray sub‑grid 
detection

In case of multiple groups of spots within the same micro-
array image, the sub-grid detection step estimates the loca-
tion of each group. First, image vertical (VP) and horizon-
tal profiles (HP) were computed by determining the mean 
pixel intensity value along rows and columns, respectively. 
The periodic features of these one-dimensional profiles 
were estimated using autocorrelation, which reveals the 
microarray spot size d. Using a disk structuring element of 
diameter d, morphological operators were applied on the 
preprocessed microarray image aiming the separation of 
microarray spot groups. Thus, after a morphological clos-
ing operator using a structuring element with a diameter 
d, the microarray spots within the same group were fused 
together while the borders of the spot groups are preserved. 
Once again the image vertical (VP′) and horizontal profiles 
(HP′) computation was performed and, by estimating pro-
files periodicity using autocorrelation, the number of spots 
groups on each row and column was determined together 

with spot group dimensions. Taking into account the mini-
mum values of the VP′ and HP′ profiles, together with the 
number of spot groups and their sizes, the positions of the 
sub-grid were automatically detected. It is to be mentioned 
that, prior to image closing, a top-hat filtering was applied 
on the microarray image in order to minimize the contribu-
tion of the background variations to the image horizontal 
and vertical profiles computation, which can lead to mis-
matched spot group detection in case of a strongly varying 
background. The detected spot groups, represented as rec-
tangles enclosing all spots within the same group, are illus-
trated in the Sect. 3.

1.4 � Automatic grid alignment

Grid alignment in case of microarray image processing 
aims to determine each microarray spot location by regis-
tering a set of horizontal and vertical lines which describe a 
two-dimensional array of spots. The existing software plat-
forms for microarray image analysis together with current 
research impose two approaches for grid alignment: tem-
plate-based and, respectively, data-driven approaches. In 
first case, a pre-defined template is overlaid on the micro-
array image and it is adjusted in order to match the spots 
in the microarray image of interest. The second approach, 
considered in our method, is based on image profile anal-
ysis and image processing techniques for automatically 
determining the microarray grid position.

Each microarray spot group localized by the sub-grid 
detection was first smoothed using a 2D convolution with 
a Gaussian kernel in order to reduce the noise influence on 
image projections. Further on, the profiles for each spot 
group of size M(width)  ×  N(height) were computed as 
described by (1) and (2), where VP and HP represent the 
vertical and horizontal profiles, respectively. We denote by 
pi,j the pixel intensity value from row i and column j within 
the microarray image.

The hyperbolic partial differential equation describing 
the one-dimensional (1D) shock filter was used for auto-
matic grid alignment. The equation:

was proposed by Osher and Rudin in [29], aiming blurry 
edge enhancement. The initial condition of the shock filter 

(1)VP(i) =
1

N

N−1
∑

j=0

pi,j

(2)HP(j) =
1

M

M−1
∑

i=0

pi,j

(3)
∂U

∂t
+ F(Uxx)|Ux| = 0
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is U(x, 0) =  U0(x), with the operator F fulfilling the fol-
lowing conditions: F(0) =  0 and F(s)•sign(s) ≥  0. (Note: 
Ux and Uxx represent, respectively, the first- and the second-
order derivatives). By choosing F(s) = −sign(s), we obtain 
the classical shock filter Eq. (4):

The discrete scheme described by (5) is used to apply 
the 1D shock filters on both horizontal and vertical micro-
array image profiles denoted by P:

with:

m(x, y) the “minmod” function:

and

By applying shock filters, image profiles evolve as 
described by the Eq. (4); an example can be seen in Fig. 1a 
where a section of the original profile and its correspond-
ing result after applying shock filtering are illustrated. The 
thin continuous line represents the microarray image pro-
file which evolves in the direction pointed by the arrows. 
The final result is represented by the thick continuous line, 
whereas dotted lines representing intermediate steps in the 
evolution of the image profiles. The shock filter creates 
strong discontinuities at the inflexion points; thus, based 
on the resulted profiles, grid alignment was performed. 
Pairs of perpendicular lines were drawn over the picture as 
shown in Fig. 1b, considering the inflexion points on both 
the horizontal and vertical image profiles. The resulted 
grid is constructed as illustrated in Fig.  1c, with the grid 
lines locations computed as average positions between the 
coordinates (2i, 2i + 1) and (2j, 2j + 1) of the vertical and, 
respectively, horizontal lines.

For images containing one group of spots, Fig.  1c, the 
increased number of spots in a single column or line deter-
mines strong discontinuities at inflexion points within the 
image profiles Fig.  1a, which determine the correct grid 
lines. On such images, delivered by Agilent microarray 
scanners and included in our first data set, accurate results 
can be obtained using the previously described approach. 
Images containing multiple groups of spots having weakly 
expressed spots within a spot group (Fig.  1d) can lead to 
the detection of multiple inflexion points (Fig. 1d, e). For 
accurately handling these situations, we employed an 

(4)Ut = −sign(Uxx)|Ux|

(5)P(i)n+1 = P(i)n − �t ·
∣

∣DP(i)n
∣

∣ · sign(D2P(i)n),

(6)
DP(i)n = m(�+P(i)n, �−P(i)n)

D2P(i)n = (�+�−P(i)n)

(7)m(x, y) = [sign(x) + sign(y)] · min(|x|, |y|)

(8)�± = ±(P(i ± 1) − P(i))

autocorrelation function-based refinement procedure. Let 
P(i) with i =  1…N be the image profile for a spot group 
of size N after applying the shock filters and d the profile 
periodicity determined using autocorrelation, as described 
by equation:

In Fig.  1e, a section of the image profile is illustrated 
for the marked region with weekly expressed spots from 
Fig.  1d. The strong discontinuities determined using the 
shock-filtered P(i) profile, which delineate each line of 
spots, are denoted by the positions (2j − 1, 2j) and repre-
sented with dashed lines. The dotted lines over the P(i) pro-
file, denoted by the (e1, e2) pairs, represent the grid lines 
positions in case of multiple inflexion points are involved 
in delineating lines of spots. These pairs (e1, e2) were 
determined as follows: Considering the nearest computed 
discontinuity (2j − 1, 2j) and the profile periodicity d, the 
closest inflexion points to the estimated (2j − 1+d, 2j + d) 
positions represent the (e1, e2) pairs.

1.5 � Spot segmentation

Once grid alignment is performed, the subsequent task is 
to separate each spot from its local background within the 
overall microarray grid. Let n and m be the number of spots 
on horizontal and vertical axis within the microarray image. 
As illustrated in Fig. 2a, ILine(i) and ICol(j) with i = 1…n, 
and j = 1…m represent microarray sub-images determined 
in the grid alignment process, each containing one line and, 
respectively, one column of microarray spots. For the ILine 
and ICol sub-images, the horizontal image profile HP(ILine) 
and the vertical image profile VP(ICol) were computed. The 
PDE formalism was used once again, this time as a pre-
processing step for spot segmentation. We applied shock 
filtering on the horizontal profiles and vertical profiles for 
each sub-image representing spot lines and spot columns, 
respectively. The resulted profiles, represented by dotted 
lines in Fig.  2b, mark the pairs of inflexion points (A, B) 
and (A′, B′), corresponding to the beginning and the end of 
each microarray spot, within each spot line and spot col-
umn. Thus, as shown in Fig. 2b, the pairs (A, A′) and (B, 
B′) define a rectangular area enclosing each microarray 
spot (i, j). The final step for the background segmentation is 
the determination of the ellipse E with the maximum area, 
inscribed in the rectangular area associated with a micro-
array spot. One can argue that the rectangular area could 
be rotated and not aligned on vertical and horizontal axes. 
Our method does not handle these cases; nevertheless, the 
circular nature of the microarray spots makes unnecessary 
to consider rotated rectangles areas. Various approaches of 

(9)ac(t) =

N
∑

i=1

P(i)P(i − t)
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shock filter formulation such as [27] are available, where 
image denoising is also taken into account. Without loss of 
generality, our approach can also be used in cases where 
circular or elliptic shape detection is necessary [15, 31]. 
Visual results of the proposed spot segmentation approach 
together with its computational complexity estimation are 
included in the Sect. 2.

1.6 � Output measures

The results obtained by our novel method for grid align-
ment and spot segmentation were compared with state-of-
the-art results, and the results delivered by existing soft-
ware platforms. The compute and output measures used to 
validate our results are presented in the subsequent.

Fig. 1   Microarray grid alignment. a Image profile evolution based on 
partially differential equations, b detected microarray grid lines based 
on the determined inflexion points, c overview of the detected grid 

in case of real-life microarray image, d microarray spot group with 
weekly expressed spots, e grid lines determined by the autocorrela-
tion-based refinement procedure
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A classical quality measure for the grid alignment step 
is the percentage of grid lines which separates spots cor-
rectly, marginally or incorrectly [7, 32]. The mass centers, 
mean intensity and the coefficient of determination of each 
spot, proposed by Agilent Feature Extraction and GenePix 
Pro software platforms, can be used also to validate both 
the grid alignment and the spot segmentation results. A 
detailed comparison of our results with the ones computed 
with competing methods on images drawn from public 
databases, using all the aforementioned quantitative meas-
ures, is presented in the next section.

2 � Results

In order to assess the accuracy and reliability of the pro-
posed methods for automatic microarray image process-
ing, we use the GEO (Gene Expression Omnibus) and the 
SMD (Stanford Microarray Database) public databases. 
The proposed method is applied on microarray images 
with different scanning resolutions and different spot lay-
outs. Two types of images are considered and analyzed: 
images containing multiple sub-grids (groups of spots) and 
images having a single grid. Our first data set consists of 
10 6,100 × 2,160 pixels size microarray images delivered 
by Agilent Scanners, having only one spot group contain-
ing 22,575 spots. Three types of images, corresponding to 
both Cy2 and Cy5 channels, can be distinguished within 
this set: images which correspond to a study of liver treat-
ments on “mus muscullus” known as house mouse; images 
corresponding to sesame oil treatment for blood pres-
sure on “mus musculus”; and images expressing protea-
some inhibitor treatment for breast cancer. The second 
data set extracted from the SMD database contains 10 

5,550 × 1,910 pixels size microarray images with 48 spot 
groups, 324 spots per each group. The data set represents 
a study of the global transcriptional factors for hormone 
treatment of “Arabidopsis thaliana” samples. Our third 
data set includes a set of 8 images from the GEO database, 
corresponding to an “Atlantic salmon head kidney” study. 
Each microarray image of 5,897 × 2,170 pixels size con-
tains 48 spots groups with 182 spots per each group. For 
the last-mentioned two data sets, the same images as the 
ones referenced in [32] were selected, an extended data set 
being obtained.

In case of state-of-the-art approaches proposed in [7, 
32], quality assessment of the image processing techniques 
for automatic microarray grid alignment is performed 
using the resulted gridded image. Thus, [7] evaluates each 
spot as being marginally, perfectly and incorrectly grid-
ded, depending on the percentage of its pixels contained 
in the detected grid, whereas [32] determines the percent-
age of grid lines that separate spots marginally, perfectly 
or incorrect. To our knowledge, the results reported in [32] 
were not compared with the results drawn from the pub-
lic databases. The information regarding the microarray 
spot segmentation introduced by our proposed PDE-based 
approach allowed us to perform an in-depth comparison of 
our results with the results delivered by existing software 
packages, on images from the GEO and SMD databases.

In case of our first data set, grid alignment was accu-
rately performed, each spot residing in its detected grid 
cell. In our previous work [9], for the same data set, we 
determined spot locations as the center of each grid cell. 
The supplementary spot segmentation information allows 
us to perform an in-depth comparison of our results with 
those included in the GEO database. As described in [1], 
the Feature Extraction software package locates each spot 

Fig. 2   Microarray spots segmentation. a Selection of Iline and Icol 
sub-images containing each one line and one column of spots, respec-
tively, corresponding to the marked microarray spot (i, j), b the hori-

zontal and vertical shock-filtered profiles HP(Iline) and VP(Icol) for 
the Iline and Icol, respectively, together with the pairs (AA′) and (BB′) 
which define the rectangular area enclosing the microarray spot (i, j)
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i by computing its center of mass on the scanned microar-
ray image, denoted by pairs (XGi, YGi). Let Ii,j be the pixel 
intensities for each spot enclosed in a squared area of size 
m × n defined by our proposed approach. The pairs (Xi, Yi) 
representing the obtained mass center for each spot were 
computed as shown in Eq. (10).

The mean euclidian distance d between the mass cent-
ers included in the GEO database and the ones obtained by 
our approach, together with the standard deviation, were 
estimated in case of each microarray image. In Table  1, 
results of the aforementioned comparison are listed on a 
subset of ten microarray images. For the whole data set, all 
spots reside inside the determined grid cells. For the whole 
population of spots, we obtained a mean distance d of 0.226 
pixels, whereas the standard deviation of the mean distance 
over the whole population of spots was 0.254. Moreover, for 
98.89 % of the total number of spots within the first data set, 
the distance between computed mass center and the mass 
centers determined by Feature Extraction was less than 1 
pixel. We show in Fig. 3 visual results of the proposed seg-
mentation method for the case of GSM102718; these results 
are consistent with the computed quality measures.

In case of the second data set, the grid alignment step was 
evaluated using the same quality measures as the ones from [7, 
32]. Table 2 shows comparative results between our approach 
and the method described in [32], for images from the SMD 
database. The average accuracy for the whole data set, consid-
ering the percentage of grid lines that separates spot perfectly, 
was 99.39, 1.3 % higher than the state-of-the-arts methods.

Failure to detect some spot regions due to the extremely 
contaminated microarray image is reported in [32] for the 
AT-20392-ch1 microarray image. An example for such 
a situation is shown on the sub-image from Fig.  4c, the 
marked group of spots not being detected by the grid align-
ment method proposed in [10]. For the same microarray 
image, the results obtained by our proposed approach can 
be visualized in Fig.  4c, e. Despite the presence of large 
bright artifacts due to the slide printing process, grid align-
ment was correctly performed even in the vicinity of the 
artifacts. Moreover, spot segmentation was also performed 
as shown in Fig. 4e, where the elliptic shape inscribed in 
the rectangle area represents the microarray spot segmented 
from the background. For evaluating the segmentation 
accuracy, we use the images included in our second data 
set and the same experimental protocol used to quantify 
results obtained by the GenePix platform in [20]. For a 
better understanding, we present in the subsequent a brief 
description of the qualitative measures, parameters and 
results delivered by the GenePix platform. We assume the 
reference sample is labeled with Cy3, and the test sample 

(10)Xi =
1

∑

Ii,j

∑m

j=0

(

∑n

i=0
i · Ii,j

)

if Ii,j ⊂ E

is labeled with Cy5. The dynamic range for the fluorescent 
intensity measurements for both Cy3 and Cy5 channels of 
the digitized microarray image is I from 0 to 65,535 gray 
levels. The microarray spot characteristics are given by the 
following parameters: spot location (x, y), median inten-
sity values of all pixels representing each spot in case of 
both Cy3 and Cy5 channels (cy3_med, cy5_med), median 
intensity of background intensity values of all pixels that 
fall within the local background of each spot from both 
Cy3 and Cy5 channels (b_cy3_med, b_cy5_med). Let Icy3(i) 
and Icy5(i) denote the fluorescence intensity levels for each 
pixel i within the rectangle area enclosing each microar-
ray spot from the Cy3 and, respectively, Cy5 channels. The 
rectangle area includes both local background and microar-
ray spot pixels. Considering the aforementioned spot char-
acteristics, three different ratios quantities are computed by 
GenePix for evaluating whether changes in the intensity 
levels of the reference and test samples are significant: The 
Ratio of Medians computes the ratio of the background 
corrected median intensity values from the whole spot; the 
Median of Ratios calculates a median value of the ratios 
ICy3/ICy5 intensity for each pixel within a microarray spot; 
and the Regression Ratio(Rgn R) represents an independ-
ent measure defined by the slope of the least-squares best 
fit regression line of the fluorescence intensity values for 
each pixel against each other [e.g., ICy3(i) versus ICy5(i)]. 
The regression ratio indicates individual feature quality. 
Considering the regression pixels used to calculate the 
Rgn R, the coefficient of determination (Rgn R2) for the 
least-squares regression fit of a microarray spot is defined 
as the square of the correlation coefficient and ranges val-
ues between 0 and 1 [20]. In general, higher Rgn R2 values 
indicate higher spot quality and tight correlations between 
the different ratio measurements (ratio of medians, median 

Table 1   Results of the proposed method in case of the first data set

The mean Euclidian distance (in pixels) between the determined mass 
center and the ones drawn from public database for the microarray 
spots enclosed within each image from the first data set

Experiment ID Mean euclidian dis-
tance d

% d < 1 Standard 
deviation σ

GSM102718 0.170 99.514 0.154

GSM102721 0.212 99.478 0.302

GSM102722 0.194 99.112 0.201

GSM135598 0.248 99.018 0.226

GSM135599 0.243 99.509 0.165

GSM135560 0.248 97.883 0.315

GSM207313 0.360 97.554 0.529

GSM207315 0.052 99.670 0.094

GSM207316 0.274 98.924 0.298

GSM207320 0.263 98.214 0.256
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of ratios and regression ratio). For validating our approach, 
we correlated the coefficients of determination computed 
by our approach with the ones included in the SMD data-
base for the entire population of microarray spots within 
each microarray image. Let Rgn RPDE

2(i) be the obtained coef-
ficient of determination for the spot i using our approach 
and Rgn R2

SMD(i) be the coefficient of determination drawn 
from SMD database for the same spot i. The correlation 
coefficient together with the mean difference between 
our results and the public SMD results is described by 
Eqs. (11) and (12), respectively. Moreover, considering the 
whole population of spots within a microarray image, the 

dispersion of the difference between the two coefficients of 
determination from the average is given by the computed 
standard deviation SD (see Table 2—segmentation section).

An average Pearson correlation coefficient of 0.945 
together with an average difference of 0.070 and an average 

(11)r value = r

(

Rgn R2
SMD, Rgn R2

PDE

)

(12)
Average difference

= mean(abs(Rgn R
2
SMD(i) − Rgn R

2
PDE(i)))

Fig. 3   Visual results of the spot segmentation method in case of GSM102718 microarray image

Table 2   Results of the proposed grid alignment and segmentation in case of the second data set

The accuracy of the proposed grid alignment method for each image within the second data set determined by the percentage of spots perfectly, 
marginally or incorrectly aligned; the accuracy of the proposed segmentation approach determined by the Pearson correlation coefficient, aver-
age difference and the standard deviation between the computed coefficients of determination and the ones drawn from the SMD database

Experiment ID Grid alignment Segmentation (Rgn R2)
 PDE versus GenePix

Incorrectly (%) Marginally (%) Perfectly (%)

Omtg PDE Omtg PDE Omtg PDE r value Av. Diff. SD

AT-20385-ch1 4.30 0.23 0.46 0.11 95.24 99.66 0.958 0.059 0.069

AT-20385-ch2 2.83 0.34 0.09 0.23 97.08 99.43

AT-20387-ch1 2.90 0.46 0.14 0.57 96.96 98.97 0.915 0.102 0.092

AT-20387-ch2 0.52 0.20 0.11 0.48 99.37 99.32

AT-20391-ch1 0.64 0.23 0.17 0.34 99.19 99.45 0.928 0.093 0.088

AT-20391-ch2 0.32 0.23 0.26 0.34 99.42 99.43

AT-20392-ch1 4.10 0.37 0.33 0.23 95.57 99.40 0.973 0.041 0.062

AT-20392-ch2 0.21 0.37 0.25 0.57 99.54 99.06

AT-20395-ch1 0.41 0.34 0.12 0.11 99.47 99.56 0.951 0.059 0.077

AT-20395-ch2 0.98 0.23 0.31 0.11 98.71 99.66
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standard deviation of 0.077 was obtained by comparing the 
coefficients of determination obtained by our approach, and 
the ones delivered by GenePix.

For the third data set, we include in Table  3 quantita-
tive results of the proposed grid alignment, showing an 
improvement compared to the OMTG approach presented 

Fig. 4   Visual results in case of our grid alignment and segmenta-
tion methods in case of AT-20392-ch1 image in the presence of slide 
printing artifacts. a Spots group detection, b grid alignment for a 

selected spot group with weekly expressed spots, c grid alignment for 
a selected spot group containing large artifacts, d, e spot segmenta-
tion within the aforementioned spot groups

Table 3   Results of the proposed grid alignment and segmentation in case of the third data set

The accuracy of the proposed grid alignment method for each image within the third data set determined by the percentage of spots perfectly, 
marginally or incorrectly aligned; the accuracy of the proposed segmentation approach determined by the Pearson correlation coefficient, aver-
age difference and the standard deviation between the computed spots mean intensities values and the ones drawn from the GEO database

Experiment ID Grid alignment Segmentation 
(

Īspot

)

 PDE versus GEO results
Incorrectly (%) Marginally (%) Perfectly (%)

Omtg PDE Omtg PDE Omtg PDE r value Av. Diff. SD

GSM15898-ch1 0.58 0.32 0.16 0 99.26 99.68 0.990 0.047 0.056

GSM15898-ch2 1.00 0.16 0.21 0.32 98.79 99.52 0.989 0.049 0.068

GSM16101-ch1 0.00 0.16 0.32 0.32 99.68 99.52 0.972 0.036 0.063

GSM16101-ch2 1.57 0.48 0.06 0.14 98.37 99.38 0.964 0.045 0.051

GSM16389-ch1 0.79 0.32 0.12 0.29 99.09 99.39 0.943 0.087 0.084

GSM16389-ch2 0.57 0.30 0.04 0.16 99.39 99.54 0.985 0.058 0.062

GSM16391-ch1 0.00 0.14 0.24 0.32 99.76 99.54 0.984 0.048 0.059

GSM16391-ch2 0.14 0.16 0.13 0 99.73 99.84 0.992 0.042 0.054
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in [32]. Regarding spot segmentation, our results were 
compared with the ones drawn from the GEO database. 
Taking into account that the coefficients of determination 
are not included within the GEO data repository, the mean 
intensity of each microarray spot i, denoted by Īspot(i), 
was used for evaluation. By mean spot intensity Īspot(i), 
we understand the mean intensity of all pixels that fall 
within the microarray spot i with subtracted mean back-
ground intensity for the spot in question. For each micro-
array image, the resulted mean spots intensities ĪPDE

spot  were 
correlated with the ĪGEO

spot  intensities drawn from GEO data 
repository. An overall r = 0.977 Pearson correlation coef-
ficient was obtained for the whole data set. Considering the 
aforementioned mean spots intensities were mapped into 
[0, 1] interval, the mean difference Av. Diff. and the stand-
ard deviation SD were also computed for each microarray 
image (see Table 3).

2.1 � Computational complexity

We estimate the computational complexity both for the 
state-of-the-art approaches and for our proposed approach 
for automatic grid alignment and segmentation, consider-
ing an M × N pixels size image.

The autocorrelation, commonly used for microarray grid 
alignment [2, 5, 35], has reduced complexity, but, on the 
other hand, has major disadvantages such as failure to cor-
rectly align the microarray grid in case of irregular image 
profiles and spots with different radii. Morphological 
operators, used in [4, 37] for automatic microarray image 
addressing, have a computational complexity of O(2SeMN) 
where Se is the size in pixels (approx. 103) of the structural 
element for dilation and erosion. As far as the SVM-based 
approaches [7, 8] are concerned, the computational com-
plexity is O(MN(M +  k)), one order of magnitude lower 
than the one associated with the genetic algorithm [38], as 
reported in [32]. The parameter k represents the number of 
selected microarray spots to train the SVM, in the case of 
real microarray images this order being 103. For the fully 
automatic microarray grid alignment performed using an 

optimal multilevel threshold approach [32], the reported 
computational complexity is O(tsN

2), where ts denotes the 
threshold set size.

For our method, the computational cost for the grid 
alignment procedure, including the refinement procedure, 
is given by the upper bound function f(M, N)  =  2MN · 
s  +  8p(M  +  N)s, with s representing one computational 
step and p denoting the number of iteration necessary for 
the profiles evolution. The order of growth for the com-
putational cost is O(f(M, N))  =  2MN  +  p(M  +  N) and 
represents the computational complexity of the proposed 
method. As denoted by Table  4, reduced computational 
complexity is achieved in spite of the iterative nature of 
the shock filters, taking into account that shock filters are 
applied only on 1D image profiles.

The computational complexity of our PDE-based seg-
mentation procedure was estimated as follows. Let α and β 
represent the number of microarray spots on each line and 
columns, respectively, and d the average microarray spot 
diameter. The average width for a line or a column of spots 
is 2d. We computed for each spot line and spot column, the 
horizontal and vertical image profiles, respectively, with 
the total complexity of 2αdM  +  2βdN  =  4MN. Shock 
filters were further on applied on each of the determined 
profiles having a complexity of pαM +  pβN, where pαM 
represents p iterations performed on a number of α profiles 
(i.e., one profile for each line of spots), each profile hav-
ing the size M. The previous estimations, together with the 
computational cost for grid alignment, led to the order of 
growth for the total computational cost for segmentation of 
6MN + p(αM + βN).

As reported in [11], the pixel clustering approach 
achieves lowest computational complexity by using a 
k-means clustering algorithm which has a time complex-
ity of O(rkMN). Spot segmentation using mathematical 
morphology [3] has a computational cost  ≫SeMN, due to 
the morphological filtering by area opening with a struc-
tural element of the size of spot Se used to detect the initial 
markers for the watershed transform. Taking into account 
Markov random field modeling for image segmentation 

Table 4   Computational complexity of the proposed approach for grid alignment and segmentation

The proposed PDE-based approaches for grid alignment and segmentation are compared with the state-of-the-art methods in terms of computa-
tional complexity

Autocorr. [2, 5, 35] Hill Climbing [33] Mathematic Morphology [4, 37] SVM [7, 8] OMTG [32] PDE

Grid alignement

O(M + N) O(M2N2) O(2SeMN) O(MN(M + k)) O(tsN
2) O(2MN + p(M + N))

Pixel Clustering [11] Watershed transform [3] Markov random field modeling 
[14, 22]

Snake fisher model [21, 41] PDE

Segmentation

O(rkMN) O(SeMN) O(mMNlog(M2N2/m) O(n2MN) O(6MN + (p + d)(αM + βN))



109Med Biol Eng Comput (2015) 53:99–110	

1 3

[14], the computational cost is mMNlog(M2N2/m), with m 
being the number of arcs within the minimum cut problem 
on a graph with MNU nodes and mU arcs, as reported in 
[22]. The computational complexity of image segmentation 
using active contours can be reduced to n2MN, as reported 
in [41]. The n factor represents the size of a Gaussian 
kernel ≪ MN.

In Table 4, an overall view on the resulted computational 
complexity of our method with regard to state-of-the-art 
approaches for microarray image processing was presented. 
As illustrated by these results, our proposed approach has 
reduced computational complexity for both microarray 
image addressing and segmentation, being a strong candi-
date to be integrated in future software packages. Moreo-
ver, the reduced computational complexity of the proposed 
approaches for automatic grid alignment and segmenta-
tion is of high interest in case of application specific future 
devices for microarray image processing, as the ones pre-
sented in [9, 25]. By adding robust processing methods for 
gene expression microarray analysis and interpretation [19, 
24, 28], future devices for medical applications which inte-
grate the complete gene expression analysis chain can be 
developed.

The proposed methods are also evaluated with regard to 
their computational time, in order to have an in-depth view 
on the computational complexity. The workstation used for 
evaluation is built around an Intel i5, 3.3  MHz processor 
with 4 GB of RAM. In case of the AT-20385 5,550 × 1,910 
pixel size microarray image, with 48 spot groups, each 
group including 324 spots, grid alignment is performed in 
14 s, while the segmentation procedure lasts for 35 s. Con-
sidering the same microarray image and the same process-
ing platform, snake fisher model and k-means clustering 
were used for the segmentation of each microarray spot. 
The total computational time, including the grid alignment 
procedure, was 132 s for the k-means pixel clustering pro-
cedure and 340  s for the active contours-based approach. 
Using a similar workstation as processing platform, in [7] 
grid alignment is achieved in 10 s, in case of a 450 × 450 
pixel size image block containing 870 spots.

3 � Discussion

Automation and reliability are open subjects in microar-
ray image processing. For speeding up the analysis pro-
cess, it is desirable that grid alignment and spot inten-
sity extraction to be performed in an automated manner, 
without user intervention. Moreover, user intervention 
in microarray image processing brings up the need of a 
workstation, a processing platform together with a bioin-
formatician, increasing the cost of a microarray experi-
ment. Fully automated image processing techniques are 

the first step for including the image processing part of 
the microarray experiment within the scanner level, which 
would significantly reduce the costs of a microarray 
experiment. Reduced complexity of the image processing 
algorithms will ease their integration into the microarray 
scanner. Our proposed PDE-based approach for auto-
matic microarray image processing showed significantly 
reduced computational complexity compared with the 
state-of-the-art methods. Timing considerations detailed 
on the Sect. 2 were consistent with the estimated compu-
tational complexity.

Our proposed PDE-based grid alignment procedure per-
fectly determined grid cells for each microarray spot within 
the first data set. In case of the second and third data sets, 
our results showed improvement of grid alignment com-
pared with the OMTG methods. The percentage of per-
fectly identified spots characterizes grid alignment for each 
microarray image. For the second data set, the averaged 
percentage of perfectly identified spots is 1.3 % higher than 
the one resulted by applying the OMTG method. In case of 
the third data set, the results do not show significant grid 
alignment improvement compared with the OMTG method 
(the averaged percentage of perfectly identified spots is 
0.3  % higher). Nevertheless, the images within the third 
data set have a different layout than the two other data sets. 
Thus, by successfully applying the proposed method on 
different data sets which include microarray image having 
different layouts, the generality of our PDE-based approach 
for microarray image processing is proven.

In order to provide information on the results rele-
vance and reliability, the results delivered by our proposed 
approach for spots segmentation were compared with the 
ones delivered by Agilent Feature Extraction and GenePix 
Pro software platforms, drawn from GEO and SMD data 
repositories. The low average difference and standard devi-
ations between the coefficients of determination, mass cent-
ers and mean spots intensities, in addition to the increased 
Pearson correlation coefficients revealed by the performed 
comparisons, showed that the proposed approach delivers 
accurate and reliable results.

4 � Conclusions

In this paper, a novel partial differential equation-based 
approach was proposed for fully automatic microarray 
grid alignment and spot segmentation. The luminance 
function profiles of the microarray image are evolved 
using a hyperbolic PDE, which marks the inflexion points 
over the profiles. Further on, using an autocorrelation-
based refinement procedure, the correct grid lines are 
determined based on the detected inflexion points. Moreo-
ver, by applying the PDE formalism on the horizontal and 
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vertical profiles of each line and column of spots, respec-
tively, segmentation was also achieved. The proposed 
approach was tested on real-life microarray images with 
various spots layouts, drawn from SMD and GEO public 
data repositories. Reduced complexity and a high degree 
of accuracy in the presence of noise and artifacts were 
obtained compared with state-of-the-art methods for grid 
alignment and segmentation in case of microarray image 
processing.
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