
1 3

Med Biol Eng Comput (2014) 52:1073–1093
DOI 10.1007/s11517-014-1203-5

REVIEW ARTICLE

A review of ultrasound common carotid artery image and video 
segmentation techniques

Christos P. Loizou 

Received: 30 November 2013 / Accepted: 22 September 2014 / Published online: 5 October 2014 
© International Federation for Medical and Biological Engineering 2014

of the CCA. Future work on the segmentation of the CCA 
will be focused on the development of integrated segmenta-
tion systems for the complete segmentation of the CCA as 
well as the segmentation and motion analysis of the plaque 
and or the IMC from ultrasound video sequences of the 
CCA. These systems will improve the evaluation, follow 
up, and treatment of patients affected by advanced athero-
sclerosis disease conditions.

Keywords Ultrasound imaging · Carotid segmentation · 
Despeckle filtering · Ultrasound video

1 Introduction

Accurate, reliable, efficient, and precise measurements 
of the geometry of the common carotid artery (CCA) 
are important for assessing and managing the progress 
of carotid atherosclerosis as well as assessing the risk of 
stroke [27]. The intima–media thickness (IMT) of the CCA 
(see also Fig. 1) is the most common indicator of the devel-
opment of cardiovascular disease (CVD) [84]. An increase 
of the IMT has been correlated with the incident of stroke 
events [3, 27, 84]. It has also been documented that the risk 
of stroke increases with the severity of carotid stenosis and 
is reduced after carotid endarterectomy [3]. The degree 
of internal carotid stenosis is the only well-established 
measurement that is used to assess the risk of stroke [22], 
and it is therefore used as a validated measure to decide 
whether carotid endarterectomy is indicated or not [38, 
71]. It was reported that in stroke, high-risk patients with 
asymptomatic internal carotid artery stenosis >60–70 % 
carotid endarterectomy reduced the risk of stroke from 2 to 
1 % per year [3, 22]. Thus, if patient subgroups with suf-
ficiently higher than average risk, despite optimal medical 

Abstract The determination of the wall thickness 
[intima–media thickness (IMT)], the delineation of the ath-
erosclerotic carotid plaque, the measurement of the diam-
eter in the common carotid artery (CCA), as well as the 
grading of its stenosis are important for the evaluation of 
the atherosclerosis disease. All these measurements are also 
considered to be significant markers for the clinical evalu-
ation of the risk of stroke. A number of CCA segmentation 
techniques have been proposed in the last few years either 
for the segmentation of the intima–media complex (IMC), 
the lumen of the CCA, or for the atherosclerotic carotid 
plaque from ultrasound images or videos of the CCA. The 
present review study proposes and discusses the methods 
and systems introduced so far in the literature for perform-
ing automated or semi-automated segmentation in ultra-
sound images or videos of the CCA. These are based on 
edge detection, active contours, level sets, dynamic pro-
gramming, local statistics, Hough transform, statistical 
modeling, neural networks, and an integration of the above 
methods. Furthermore, the performance of these systems is 
evaluated and discussed based on various evaluation met-
rics. We finally propose the best performing method that 
can be used for the segmentation of the IMC and the ather-
osclerotic carotid plaque in ultrasound images and videos. 
We end the present review study with a discussion of the 
different image and video CCA segmentation techniques, 
future perspectives, and further extension of these tech-
niques to ultrasound video segmentation and wall tracking 
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intervention, could be reliably identified, then carotid sur-
gery could be performed in those that are likely to benefit 
[3, 22, 71]. It has also been shown that IMT and plaque for-
mation is a risk factor for stroke [72, 101], coronary artery 
disease [34], and myocardial infarction [8]. Carotid endar-
terectomy remains the gold standard, whereas carotid stent-
ing retains its role in symptomatic patients at high risk of 
stroke [38]. Stenosis in the CCA is generated through the 
build-up of atherosclerotic carotid plaque formation (see 
also Fig. 1), which is due to progressive intimal accumu-
lation of lipid, protein, and cholesterol esters in the blood 
vessel wall [113], which reduces blood flow significantly. 
Thus, monitoring the wall and plaque changes as well as 
the characteristics of the arterial wall in the CCA [52] and 
its elasticity [58] may have significant clinical relevance for 
the assessment of future cardiovascular events. It may also 
provide useful information for the assessment and manage-
ment of the atherosclerotic disease.

The measurements and follow up of the IMT, the athero-
sclerotic carotid plaque, the CCA diameter, as well as grad-
ing of the artery stenosis, are imperative and are routinely 
assessed with high-resolution ultrasound imaging and 
video of the CCA [71]. Usually, delineations of the CCA 
are performed manually by medical experts [3, 22, 71, 84], 
but it was shown that these are subject to errors and have 
large variability between different experts, different equip-
ment, and different datasets [30, 31, 45, 48–50, 52, 56, 58, 
60, 65, 66]. Therefore, automated methods for the accurate 
and reliable delineation and measurement of the IMT [45, 
48, 50, 52, 58, 65, 66], the atherosclerotic carotid plaque 
[30, 49, 60], and the CCA diameter [56] from ultrasound 
images or videos are required.

There is today an increasingly growing interest for the 
development of automated computer-based software sys-
tems for the segmentation of the CCA from ultrasound 
images and videos that can be integrated in the real clini-
cal praxis. There are a number of methods proposed in the 
last 12 years either for the segmentation of the intima–
media complex (IMC), the atherosclerotic carotid plaque, 
or the CCA diameter from ultrasound images and/or vid-
eos of the CCA, which are presented in Tables 1, 2, 3, 4. 
We also present an integrated system [56], for the complete 
segmentation of ultrasound images of the CCA. The sys-
tem incorporates all above techniques such as that it allows 
the complete ultrasound image segmentation of the CCA. 
More specifically, the method proposed in [56] allows the 
segmentation of the IMC, the extraction of the atheroscle-
rotic plaque, the delineation of the CCA diameter, and the 
grading of its stenosis. Nowadays, there are a few known 
commercial software-imaging systems supporting IMC 
segmentation available from different research groups [10, 
103], which are based on snakes [9, 10, 15, 16, 39, 103], 
zip-lock snakes [102], gradient vector flow [107], dynamic 
programming (DP) segmentation [103], [45], neural net-
works [62], as well as integrated approaches [66, 68]. 
Recently, two different commercial software systems for 
ultrasound image [59], and video [57] analysis of the CCA, 
have been developed, can be downloaded, and used in the 
clinical praxis.

The bifurcation and the internal carotid artery are at 
more risk in atherosclerosis, due to stronger hemody-
namic stresses in the bifurcation and branching zones [22, 
38, 71], but it is difficult to visualize the double-line pat-
tern in these locations. Therefore, IMT measurements in 

Fig. 1  Ultrasound image of the CCA and illustration of the intima–
media complex (IMC) and the atherosclerotic carotid plaque at the 
far wall of the CCA, the lumen diameter, and the maximum carotid 
stenosis. The IMC consists of the intima band (Z5), the media band 

(Z6), and the far wall adventitia band (Z7). The IMT is defined as 
the distance between the blood–intima interface line and the media–
adventitia interface line. See also [45]
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the CCA are preferred in the development of segmentation 
algorithms and in clinical practice [31]. It has been shown 
that increased IMT reflects early stages of atherosclerosis 
and CVD risk, especially in older adults without a history 
of CVD [72]. Higher blood pressure and changes in shear 
stress are the potential causes of intimal thickening, which 
may cause a local delay in lumen transportation of poten-
tially atherogenic particles that favors the accumulation 
of substances in the arterial wall and consequent plaque 
formation [101]. It is also found that type 1 diabetes is a 
significant risk factor for increased CCA IMT in children 
[37]. The measurements of the IMT in the prediction of the 
degree of atherosclerosis and the risk of stroke have been 
demonstrated by different studies [31, 101], [8–10, 15, 16, 
30, 31, 34, 45, 48–50, 52, 56, 58, 60, 65, 66, 103, 113], 
where it was confirmed that the increase of the IMT value 
above 0.9–1.0 mm is indicative of a significant increase for 
the risk of stroke.

In Sect. 2, we present the clinical significance and chal-
lenges of the CCA segmentation measurements. Section 3 
presents evaluation metrics for the segmentation methods, 
while Sect. 4 presents different segmentation methods pro-
posed in the literature. In Sect. 5, we discuss and compare 
the different segmentation methods. Finally, Sect. 6 con-
cludes and outlines future challenges and trends in CCA 
ultrasound image and video segmentation.

2  Clinical significance and challenges of the CCA 
segmentation

2.1  Clinical significance

A B-mode ultrasound image presented in Fig. 1 shows the 
IMC at the far wall of the CCA (echo zones Z5–Z6), as 
a pair of parallel bands, an echodense, and an echolucent 
band. Band Z5 and the leading edge of band Z7 (adven-
titia) are denoted as I5 and I7 and define the IMT of the 
far wall. With this understanding, the determination of 
the IMT at the far wall of the CCA becomes equivalent to 
accurately detecting the leading echo boundaries I5 and I7. 
The lumen–intima (I5) and media–adventitia (I7) intensity 
interfaces of the far wall of the CCA are preferred for IMT 
measurements [8, 45, 103]. It has been shown that the def-
inition of the IMT as shown in Fig. 1 corresponds to the 
actual histological IMT [39, 43, 45]. Figure 1 also shows 
an atherosclerotic carotid plaque at the far wall of the 
CCA, the position of maximum lumen stenosis, as well as 
the lumen diameter, which is usually measured in an area 
where no atherosclerotic carotid plaques are present [22, 
38, 71].

In practice, however, detecting the boundaries of 
the IMC and the atherosclerotic carotid plaque is often 

complicated by the presence of ultrasound imaging arte-
facts, such as speckle [46], making IMT [48], plaque 
[49], and CCA stenosis [56] measurements difficult to be 
accomplished. Furthermore, the observation of the IMC 
and plaque borders becomes more difficult as the age of 
patients increases, due to the presence of acoustic holes 
(echo-dropouts) in the adventitia layer [43, 104]. The 
intimal band may appear as a thin low-contrast struc-
ture, and therefore, it is difficult to reliably draw bounda-
ries because smoothing can move the structure edges or 
make them disappear [64]. Traditionally, the IMT and the 
atherosclerotic carotid plaque are measured by manual 
delineation of the intima, the adventitia layer at the far 
wall, and the near wall of the CCA [45, 64, 103, 104]. 
Manual tracings of the lumen diameter (see Fig. 1, band 
Z4) and the IMT (see Fig. 1, bands I5 and I7) require 
substantial experience; it is time-consuming and varies 
according to the training, experience, and the subjective 
judgment of the experts [71, 30, 45, 48–50, 56, 60, 65, 
66]. The manual measurements suffer therefore from con-
siderable inter- and intra-observer variability [45, 103, 
104]. It was furthermore reported in [75–77, 97] that the 
accuracy of manual tracings is not reproducible and that 
manual tracings suffer from high intra- and inter-user 
variability. More specifically, in [76], 26 CCA ultrasound 
images were delineated by 5 clinical experts and signifi-
cant different inter-reader differences were found, which 
may affect correct evaluation of the CVD risk. In contrast, 
it was shown in [77] that the application of automated 
computer-based analysis of the CCA may reduce vari-
ability. In [75, 97], it was shown that there are inter- and 
intra-reader bias when manually tracing the borders of the 
artery.

The importance of the IMC, the CCA segmentation, 
and stenosis measurements has been indicated in 1986 by 
Pignoli et al. [74], who concluded that B-mode imaging is 
a very useful approach for the measurement and visuali-
zation of the IMC and plaque at the far wall of the CCA. 
Increased IMT was demonstrated to have a strong correla-
tion with the presence of atherosclerosis elsewhere in the 
body and may thus be used as a descriptive index of indi-
vidual atherosclerosis [43]. As vascular disease develops, 
local changes occur in arterial structure, which thicken the 
innermost vessel layers (IMC). As disease progresses, the 
IMT initially increases diffusely along the artery and then 
becomes more focal, forming discrete lesions or plaques, 
which gradually grow and obstruct blood flow. Further-
more, these plaques can become unstable and rupture with 
debris transported distally by blood to obstruct more dis-
tal vessels. This is particular so if plaques develop internal 
pools of lipid covered only by a thin fibrous cap [8, 43]. In 
[5], it was also documented that carotid IMT and plaque 
are important in vascular disease risk prediction.
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2.2  Challenges in CCA segmentation

The problems that are associated with the computer-
assisted border tracing segmentation procedures (also 
presented in Tables 1, 2, 3, 4) are the following: (1) They 
do not take into consideration the speckle noise or the 
image intensity normalization in the ultrasound images 
[64], or videos [54, 55, 58]. (2) They are sensitive to the 
initial snake contour [10], or initial seed points, which 
need to be placed manually [111]. If the initial contour 
is placed far away from the boundary of interest, then 
the snake will not be attracted [10]. (3) Some weighting 
factors that should be tuned due to the varied character-
istics of the ultrasound instrumentation must be entered 
manually or empirically [64, 103, 106, 111]. Some other 
weights may be adjusted by a training procedure, which 
might be long and requires expert tracing [45, 61]. (4) 
The snake is implemented as a close contour [15, 105, 
111] that might not be very suitable for the IMC seg-
mentation. (5) They require manual correction after 
automatic tracing [10, 61, 64, 103]. (6) In a number of 
cases, there were no ground truth segmentation delinea-
tions from experts to compare with the computer-assisted 
methods [10, 64]. (7) Different measurement procedures 
were used between the manual and the automated snakes 
segmentation methodologies [10, 45, 61, 103]. (8) Dif-
ferent criteria were used for assessing the performance of 
the segmentation algorithms [10, 111]. (9) They are eval-
uated on a limited number of images or videos, where the 
intra- and inter-observer variability could not be assessed 
[61, 106]. In order to take into considerations some of the 
above challenges, ultrasound image and video normaliza-
tion followed by speckle reduction filtering [46, 48, 49, 
58] were proposed. These techniques are described in 
Sect. 4.1.

3  Evaluation metrics for the segmentation methods

In order to evaluate their segmentation methods, different 
authors compare them with the manual delineation results, 
made by specialists (usually one or two), which are con-
sidered to be the ground truth. The following performance 
evaluation metrics may be used:

The mean absolute difference (MAD) can be estimated 
using the manual and automated measurements as follows 
[45, 52, 58, 66]:

where N is the number of points included in the two bound-
aries (manual and automated) and n is the index indicating 
the number of points defined on each boundary. In the case 
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where the two boundaries do not have the same number of 
points, then one of them can be interpolated. This metric 
is particularly suitable when the borders of the artery wall 
are horizontal, and they do not include curved segments, 
in which case, the MAD is overestimated. The equation in 
(1) can be used also to estimate the error between the two 
measurements as follows:

where P is the total number of processed images deline-
ated, and Manualn and Automatedn are the manual and 
automated measurements for each image.

The parameters IMTmean, IMTmin, IMTmax, and IMT-

median, as well as the intra- and inter-observer error [45, 
103], se = σIMT/

√
2, with σIMT, the standard deviation of 

the automated measurements, were used to evaluate the 
segmentation method. The coefficient of variation, CV %, 
which describes the difference as a percentage of the 
pooled mean value (IMTpooled_mean) [45, 103] can be used 
as follows:

The Wilcoxon matched pairs rank sum test [20], which 
calculates the difference between the sum of the ranks 
of two independent samples, is used in order to identify 
whether for each set of measurements, a significant dif-
ference (S) or not (NS) exists between the manual and the 
automated, at p < 0.05. Additionally, the correlation coef-
ficient, ρ, between the manual and the automated measure-
ments is investigated, which reflects the extent of a linear 
relationship between two data sets [9].

Furthermore, the Hausdorff distance (HD) [9] between 
the two curves (m: manual and a: automated) could be cal-
culated. It reflects the maximum mismatch between the 
manual and the snakes segmented areas, where small val-
ues for the HD are favorable HD = max{dm, da}. The major 
limitation of HD is that only distances between points are 
measured. Therefore, this measure is significant when the 
two boundaries have almost the same number of points. In 
order to assess the intra-observer variability between differ-
ent experts, the manual measurements are repeated after a 
period of time.

In some cases, the polyline distance (PLD) [94] may 
also be computed, which has been shown [65] to be a more 
reliable and robust indicator of the distance between two 
given boundaries [85], which truly represents the distances 
between boundary shapes along the artery. The basic idea is 
to measure the distance of each vertex of a boundary to the 
segments of the other boundary [65]. Similar metrics such 
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as the PLD were also employed in [62], such as the mean 
absolute distance (MAD) and the center line distance (CLD).

Bland–Altman plots [7], with 95 % confidence intervals, 
were also used to further evaluate the agreement between 
the manual and the automated segmentation measurements. 
Regression analysis [20] was also used to demonstrate the 
relationship between the manual and the automated seg-
mentation measurements. Furthermore, box plots for the 
manual and the automated measurements can be plotted, 
as well as the Pearson’s correlation coefficient, ρ, between 
these measurements which investigate their agreement. 

In some cases, histograms of the measurements are also 
plotted, as well as error histograms [17], in order to fully 
characterize the IMT estimation errors. In [10], the mean 
squared error was used to evaluate the segmentation 
method. This performance metric does, however, allow for 
determining underestimations or overestimations of the 
IMT and therefore does not represent an optimal choice. A 
number of other evaluation metrics for image segmentation 
can also be found in [99, 114].

In some other studies, where the segmentation of the 
atherosclerotic carotid plaque was proposed (see also 

Table 2  An overview of IMC segmentation techniques in 2D ultrasound video of the CCA

DP Dynamic Programming, USV Ultrasound carotid videos, AIC Automatic initial contour, UI user interaction, MC Manual correction possible, 
IMTmean ± std Mean IMT ± standard deviation in mm, N Number of subjects investigated, MAD Mean absolute distance, CV Coefficient of 
Variation, BA Bland–Altman plots

Investigator Segmentation 
method

Year Input AIC UI MC IMTmean ± std 
[mm]

Performance 
metrics

Processing time/
frame [s]

IMT error [mm] N

Zahnd et al. [112] DP 2013 USV Yes No No 0.74 ± 0.09 MAD – 0.029 ± 0.027 82

Ilea et al. [36] Model based 2013 USV Yes Yes No 0.60 ± 0.10 MAD 80 (8 in 1st 
frame) and 72 
for 28 frames

0.007 ± 0.176 40

Loizou et al. [54] Snakes 2013 USV Yes Yes Yes 0.72 ± 0.22 MAD, 
CV = 13 %, BA

20 0.008 ± 0.02 10

Cheng et al. [11] DP 2010 USV Yes No No 0.56 MSE – 0.0668, 0.0583 3

Table 3  An overview of plaque segmentation techniques in 2D and 3D ultrasound imaging of the CCA

USC ultrasound carotid images, IVUS intra-vascular ultrasound, AIC automatic initial contour, UI user interaction, MC manual corrections possi-
ble, TPF; TNF true-positive and true-negative fractions, FPF, FNF false-positive and false-negative fractions, KI Williams index, O Overlap, Sp 
specificity, P precision, MAD mean absolute difference, BA Bland–Altman plots, CV coefficient of variation, ISD inter-slice distance, N number 
of subjects investigated
a In [49] TNF = (80.89 ± 1.9) %, FPF = (5.86 ± 1.8) %, FNF = (15.59 ± 1.1) %

Investigator Segmentation method Year AIC UI MC TPF (%) Performance metrics Processing time/frame 
[secs]

N

Loizou et al. [49] Snakes 2007 Yes Yes Yes (82.70 ± 2.1)a KI = 80.66 %, 
O = 66.6 %, 
Sp = 0.937, P = 0.926

17 80

Delsanto et al. [17] K-means fuzzy gradient 2007 No No – – – 20 56

Rocha et al. [79] Dynamic Programming 2010 Yes No No 95 MAD, BA 47

Golemati et al. [28] Hough transform 2007 No – – (97.5 ± 1.0) – 0.04 4

Hamou et al. [32] Canny edge detection 2004 No – – – – – 2

Abdel-Dayen et al. [1] Morphological based 2004 No – – – – – 2

Abolmaesumi et al. [2] Kalman filtering 2000 No – – – – – 1

Guerrero et al. [29] Star Kalman 2007 No – – – – – –

Slabaugh et al. [91] Region Active Contour 2009 No – – – – – –

3D Studies

Zahalka et al. [111] Geometrically deform-
able model

2001 Yes Yes Yes TPF = 95 – 25 69

Cheng et al. [12] Level set 2012 Yes No No 96.7 ± 1.7 – – 36

Ukwatta et al. [100] Level sets 2013 No – – 94.4 ± 2.2 CV = 5.1 %, 
ISD = 0.2 ± 0.1 mm

103.2 21

Gill et al. [26] Balloon 2000 No No No – – – 2
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Table 3), different other performance metrics were applied. 
These include the receiver operating characteristic (ROC) 
analysis [63], which assesses the specificity and sensitiv-
ity of the segmentation methods by the true-positive frac-
tion (TPF), false-positive fraction (FPF), true-negative 
fraction (TNF), and false-negative fraction (FNF) [49, 58, 
63]. Ratios of overlapping areas can also be assessed by 

applying the similarity kappa index KI [24] and the overlap 
index [81]. Furthermore, the specificity Sp = 1 − FPF and 
the precision P can also be calculated to describe the ROC 
characteristics of the segmentation methods, as well as the 
inter-slice distance [100]. Finally, in [13], statistical met-
rics to evaluate the difference of local vessel wall thickness 
of the CCA in 3D ultrasound images between manual and 

Table 4  An overview of plaque segmentation techniques in 2D ultrasound video of the CCA

USV ultrasound videos, AIC automatic initial contour, UI user interaction, MC manual corrections possible, TPF, TNF true-positive and true-
negative fraction, KI Williams index, O overlap, HD Hausdorff distance, MPD mean point distance, N number of subjects investigated

Investigator Segmentation 
method

Year Input AIC UI MC TPF Performance metrics Processing time/
frame [s]

N

Loizou et al. [58] Snakes 2013 USV Yes Yes Yes (86.1 ± 8.0) % TNF = (84.3 ± 7.5) %, 
KI = 85.3 %, 
O = 75.4 %

9 43

Destrempes et al. 
[19]

Bayesian model 2011 USV No No No (83.7 ± 8.3) % TNF = (83.7 ± 8.3) %, 
KI = 84.8 %, 
O = 74.6 %, 
HD = (1.24 ± 0.4) mm, 
MPD = (0.24 ± 0.08) 
mm

30 33

Fig. 2  a Normalized despeckled ultrasound image of the CCA from 
an asymptomatic subject at the age of 54, with manual delineation of 
the IMC from the expert (IMTmean = 0.67 mm), b automated segmen-
tation of the IMC by snakes [48, 50] on the normalized despeckled 
ultrasound image (despeckled with the DsFlsmv filter) of the CCA 
of a (IMTmean = 0.68 mm, IMTmax = 0.91 mm, IMTmin = 0.43 mm, 
IMTmedian = 0.66 mm), c Normalized despeckled ultrasound image 
of the CCA from an symptomatic subject at the age of 63, with an 

atherosclerotic carotid plaque at the far wall of the artery IMC (IMT-

mean = 0.91 mm), and the near wall, and manual delineations from 
the expert, d Complete segmentation [56] of the CCA on the nor-
malized despeckled ultrasound image of c (IMTmean = 0.936 mm, 
IMTmax = 1.01 mm, IMTmin = 0.77 mm, IMTmedian = 0.966 mm, 
lumen diameter = 6.84 mm, lumen diameter at maximum point ste-
nosis = 5.44 mm, plaque major axis (width) = 13.58 mm, and plaque 
minor axis (height) = 1.97 mm)
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automated segmentations were proposed. The difference of 
the measurements produced maps with which the segmen-
tation method can be evaluated.

4  Automated CCA segmentation techniques

There are a number of segmentation techniques that have 
been developed so far for the ultrasound image or the video 
segmentation of the IMC (see Tables 1, 2) and the athero-
sclerotic carotid plaque (see Tables 3, 4). These techniques 
can be grouped into edge- and gradient-based, DP, snake- 
and level set-based, Nakagami modeling, Hough transform, 
neural networks, and integration of the above techniques. 
The methods presented in Tables 1, 2, 3, 4 have been 
grouped based on the number of subjects (N) investigated. 
Before proceeding with the segmentation of the structure 
of interest, some authors proposed automated procedures 
using morphology features [65], the Hough transform 
[28], or parametrical template matching [82], for recogniz-
ing and creating a guidance zone around the IMC, or the 
atherosclerotic carotid plaque. The idea is that the area of 
interest can be cropped; thus, the size of the image to be 
segmented can be significantly smaller.

4.1  IMC image segmentation techniques

Pignoli et al. [74] were the first to introduce a comput-
erized method for the IMC segmentation in ultrasound 
images of the CCA. They measured the IMT at the far 
wall of the CCA by considering the intensity profile of 
the far wall when moving from the center of the vessel to 
the wall borders. Four years later, Touboul et al. [96] pro-
posed an IMT segmentation method based on edge detec-
tion, which was used and applied in several clinical and 
epidemiological studies [98]. A good agreement with the 
manual measurements was found with a correlation coef-
ficient of 97 %.

In Fig. 2a, we present a normalized despeckled ultra-
sound image of the CCA from an asymptomatic subject 
aged 54, with the manual delineation of the IMC from the 
expert, while in Fig. 2b, we show the automated segmenta-
tion of the IMC by snakes at the far wall on the normalized 
despeckled ultrasound image of the CCA in Fig. 2 a. The 
automated segmentations were performed using the snakes-
based segmentation system proposed in [48].

In the following, we describe the most performing tech-
niques for the CCA IMC segmentation in 2D and 3D ultra-
sound imaging, which are also summarized in Table 1.

Destrempes et al. [18] introduced a semi-automated 
segmentation method to segment the IMC, by taking into 
consideration various dynamical properties of the tissue, 
such as the elasticity distribution (elastogram), which was 

modeled by a mixture of three Nakagami distributions. The 
method required manual intervention. Different assump-
tions were taken for the segmentation of the CCA in [18], 
which offers limited applicability to the method, particu-
larly when calcified plaques are presented. Additionally, 
the authors did not take into consideration the speckle noise 
in the image. Mollinari et al. [67] used a multi-resolution 
edge snapper which was based on an additional external 
energy term (edge snapper, FOAM), which prevented pre-
mature collapses of the snake contour. Delsanto et al. [17] 
proposed a user-independent system combined approach 
for the IMC segmentation, based on local statistics and 
snakes. The CCA was automatically located by clustering 
the image into a bidimensional histogram and computing 
the mean and standard deviation values of the image pix-
els in a 10 × 10 neighborhood by considering the image 
column-wise and by identifying the lumen using a uni-
modal histogram. Speckle noise caused problems for the 
proper IMC segmentation in about 10 % of the cases. The 
technique was also applied in curved vessels with non-hor-
izontal appearance. In [23], a first-order absolute moment 
(FOAM) edge operator [65] was used as an additional term 
in the snake’s energy for the segmentation of the IMC. The 
technique was robust to curved vessels. Full automation is 
precluded by the need for a manual selection of an ROI in 
the CCA image. Loizou et al. [48, 50] used snakes to seg-
ment the IMC [48], the intima, media, and the adventitia 
layers [50] of the CCA by incorporating additional terms 
in the snake energy functional. Furthermore, initial snake 
contour estimation, image normalization [47], and speckle 
noise reduction filtering [46] were employed. A limitation 
is the presence of acoustic shadowing, which hinders the 
visual and automatic analysis in ultrasound images [45, 50, 
103].

In all studies performed by our group [46–50, 52, 
54–59], the images and videos used were recorded at the 
Cyprus Institute of Neurology and Genetics, in Nicosia, 
from asymptomatic (at risk of atherosclerosis) or sympto-
matic subjects. The symptomatic subjects were at risk of 
atherosclerosis and have already developed clinical symp-
toms, such as a stroke or a transient ischemic attack, while 
the asymptomatic did not develop any clinical symptoms. 
Two different ultrasound scanners were utilized in this 
study to acquire the images of tag image file format (*.tif) 
and videos of audio–video interleave format (*.avi), respec-
tively. The two scanners used were the ATL HDI-3000 
and the ATL HDI-5000 (Advanced Technology Laborato-
ries, Seattle, USA). Before proceeding with the segmenta-
tion, the images and/or videos [54, 55, 58] were intensity-
normalized based on the method introduced in [21]. This 
improves image compatibility by reducing the variabil-
ity introduced by different gain settings, different opera-
tors, different equipment, and facilitates ultrasound tissue 



1081Med Biol Eng Comput (2014) 52:1073–1093 

1 3

comparability [21, 95]. For the images, algebraic (linear) 
scaling is performed by linearly adjusting the image so that 
the median gray-level value of the blood was 0–5, and the 
median gray level of the adventitia (artery wall) was 180–
190 [21]. Although the degree of interaction is still crucial 
in the segmentation process, to the best of our knowledge, 
no automated method exists for achieving image intensity 
normalization of the CCA. Further details can be found on 
image [5, 39, 41, 46–50, 56, 64, 74–77, 97, 104, 111] and 
video [54, 55, 58] normalization in publications made by 
our group.

Following image or video normalization, speckle reduc-
tion filtering in images and videos can be applied for reduc-
ing multiplicative noise. Despeckle filtering increases the 
visual perception evaluation and the accuracy of automated 
segmentation algorithms [20]. Several studies performed by 
our groups on ultrasound images [46, 47] and videos [5, 55, 
58] for the despeckling of the CCA showed that the most 
appropriate despeckle filtering method for ultrasound images 
and videos of the CCA is the DsFlsmv filter (despeckle filter 
linear scaling mean variance), first introduced in [44]. The 
DsFlsmv filter can be applied to each image, while for the 
videos, the same filter is applied to each consecutive frame 
prior to the CCA segmentation. A complete description of 
the DsFlsmv filter for images can be found in [46, 47, 59], 
while for videos can be found in [46, 57]. An example of the 
application of the DsFlsmv filter is shown in Fig. 2, which 
was applied after image intensity normalization on the whole 
image. Before proceeding with the automated segmentation, 
vascular experts are delineating manually (using the mouse) 
the IMC [48, 50], the plaque [49], and the diameter [56] on 
ultrasound images [5, 39, 41, 46–50, 56, 64, 74–77, 97, 104, 
111], or videos [54, 55, 58] of the CCA after image normali-
zation and despeckle filtering. The manual delineations can 
be performed using a system implemented in MATLAB® 
by our group where the measurements are made between 
1 and 2 cm proximal to the bifurcation of the CCA on the 
far wall [74]. Before running the image or video segmenta-
tion algorithm, IMC and plaque initialization procedures for 
positioning the initial snake contour in the image [49], or in 
the first video frame [54, 58], may be applied. The procedure 
will locate the approximate area of interest (IMC and plaque 
borders) where segmentation should be applied. An initiali-
zation method for the IMC was proposed in [48], while two 
different initialization methods for the atherosclerotic carotid 
plaque were introduced in [58]. A normalized despeckled 
image of a CCA video is shown in Fig. 3a. It is also assumed 
that the CCA is properly imaged in the video according to 
the standard clinical guidelines.

Active contours with ROI selection and speckle reduc-
tion filtering were applied in [88] and compared with a DP 
segmentation method [87], proposed by the same authors 
(see also Table 1). It was shown that the active contour 

[88]-based method performs better. In [73], active contours 
and level sets were combined to segment the IMC with ini-
tial contour estimation and speckle reduction filtering. The 
results were slightly better than the results reported in [48] 
and [50]. In [103], a DP method was presented, but it was 
operator dependent, required time to segment the IMC, 
while also speckle noise was not taken into considera-
tion. Lara et al. [62] applied neural networks performing 
binary classification to estimate the IMC contours where 
also multilayer preceptors were employed. A multi-scale 
DP approach was proposed by Liang et al. [45], which was 
time-consuming with large differences between manual 
versus automated IMT measurements. The method pro-
posed in [45] was later developed by Sundholm et al. [93], 
into a semi-automated CCA border detection software. In 
[92], a gradient-based semi-automated ultrasound border 
detection technique that facilitates clinical measurement 
of ultrasound carotid IMT was proposed where relatively 
small CV % was reported (CV % = 5.4 and 3.4 % for 
the manual and the automated methods). Furthermore, it 
was shown in [92] that the automated IMT measurements 
were faster, more reproducible, accurate, and independent 
of the operator skill. The method proposed in [92] did not 
perform on a real CCA wall segmentation, but rather was 
a computer system to aid and improve IMT estimation. 
Furthermore, no discussion was made about noise robust-
ness. In [108], the Hough Transform and dual snakes were 
applied for the segmentation of the IMC. The method has 
robustness against ultrasound artefacts (although speckle 
reduction filtering was not applied) and gave better results 
than traditional snake model and DP-based methods. The 
segmentation fails when atherosclerotic plaques and small 
structures are presented primarily due to the presence of 
speckle noise. A model-based approach was proposed in 
[35], which relies on a suite of image processing algo-
rithms. It embeds a statistical model to identify the two 
interfaces that form the IMT without any user intervention. 
The method was based on a spatially continuous vascular 
model and consists of several steps including data pre-
processing, edge filtering, model selection, edge recon-
struction, and data refinement. It was found to be robust in 
accurately estimating the IMT. Fraire et al. [25] introduced 
a gradient-based segmentation method for the IMC, which 
was applied on 43 ultrasound images of the CCA. The 
variation and the repeatability coefficients were better for 
the automated than the manual measurements. In [83], an 
automated algorithm to estimate CCA diameter and IMT 
in ultrasound images was proposed. The method also pro-
vides a visual scan quality feedback aimed to inform the 
sonographer about the adequacy of the insonation plane. 
In [10], snakes were used with initial snake contour esti-
mation, which required user interaction, and the snake was 
attracted far away from the boundaries of interest in case 
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Fig. 3  Manual (left column) and automated (right column) video seg-
mentation of the CCA for the IMT and carotid diameter [54], at the a 
1st (IMTman = 0.85 mm, diameterman = 6.69 mm, IMT = 0.99 mm, 
diameter = 6.9 mm), b 50th (IMTman = 0.90 mm, diameterman =  
7.31 mm, IMT = 0.93 mm, diameter = 7.51 mm), c 100th (IMTman =  

0.92 mm, diameterman = 6.98 mm, IMT = 0.95 mm, diameter =  
7.21 mm), and d 150th (IMTman = 0.90 mm, diameterman =  
7.11 mm, IMT = 0.93 mm, diameter = 7.31 mm) video frames of the 
video
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of curved segments and when speckle noise was present. 
In another study [30], an active contour and a Balloon 
model were used to segment the IMC where low agree-
ment between manual and automated measurements was 
reported. Additionally, they reported a large manual ver-
sus automated segmentation CV % (14 vs 12.8 %). The 
authors reported problems with speckle noise, irregular 
boundaries, and curved segments where the snake was not 
well attracted. Mojsilovic et al. [64] extended Wendelhag’s 
approach in [103], using DP with cost function optimiza-
tion and applied histogram equalization for increasing the 
image contrast. Selzer et al. [90] performed a study for 
measuring automatically the IMT based on an edge-track-
ing procedure and reported a CV % of 4.03 and 3.46 % for 
the IMT measured at maximum and minimum diameter of 
the CCA, respectively. In [28], a method based on Hough 
transform was proposed, which required user interaction in 
order to produce the final segmentation boundary. Further-
more, the method took a long time to segment the IMC. 
An IMC segmentation approach with initial contour esti-
mation based on a discrete dynamic contour was proposed 
in [61], which was derived from the entropy image using 
an initial circle matching procedure. In another study [6], a 
frequency implementation of active contours was proposed 
for the segmentation of the artery walls, while in [106], 
segmentation was achieved utilizing intensity inhomoge-
neity correction. Finally in [110], an active shape model 
was used in 3D CCA ultrasound images where large IMT 
differences with the manual tracings were reported due to 
weak image edges and speckle noise.

4.2  IMC video segmentation techniques

There are only a few studies proposed in the literature 
for the video segmentation of the IMC [11, 36, 54, 112], 
which are presented in Table 2. More specifically, in [112], 
the association between atherosclerosis risk factors and 
the cyclic variation of the IMT during the heart beat was 
investigated, by extracting the IMC from ultrasound video 
sequences using a DP method. The method proposed in 
[112] may provide a relevant diagnostic aid for atheroscle-
rosis screening in clinical studies. In [36], a model-based 
CCA segmentation method was introduced, for the seg-
mentation of the IMC, from ultrasound videos of the CCA. 
In [54], the IMC was segmented from ultrasound carotid 
videos using video despeckle filtering [55], and it was 
based on a snake segmentation method. Finally, in [11], a 
dual DP technique was applied for the video segmentation 
of the IMC for both far and near walls of the CCA.

In Fig. 3, we present manual (left column) and auto-
mated (right column) video segmentations of the CCA 
for the IMT and the carotid diameter, at the (a) 1st, (b) 
50th, (c) 100th, and (d) 150th video frames of the video, 

respectively. The automated IMC video segmentations 
were generated using the integrated segmentation system 
proposed in [54]. The video was acquired from a male 
asymptomatic subject aged 63 at risk of atherosclerosis.

4.3  Atherosclerotic carotid plaque image segmentation 
techniques

In Table 3, we present the methods developed so far for the 
segmentation of the atherosclerotic carotid plaque in CCA 
ultrasound imaging. Loizou et al. [49] applied an integrated 
snakes-based segmentation method, which incorporates auto-
mated initial contour estimation, image normalization, and 
despeckle filtering. In [17], a k-means gradient method to 
segment the carotid plaque based on a user-independent algo-
rithm was proposed where it was shown that the segmentation 
error is lower than 1 pixel for both the lumen–intima interface 
and for the media–adventitia interface. In [79], the adventi-
tia of the CCA was detected with an algorithm that searches 
for the best fit of a cubic spline to the adventitia contour. The 
lumen boundary is then estimated by another algorithm that 
uses the information of the adventitia location and combines 
DP in the presence of plaques, it has a strong computational 
load, and it is unable to capture deep concavities and sharp 
saliences. Another limitation is the difficulty in integrat-
ing global smoothing constraints, which could help improve 
the poor response at degraded parts of the lumen boundary. 
The method proposed in [79] was also later applied in [80] 
for the automated detection of the lumen in CCA B-mode 
images using a Gaussian smoothed filter and then a dynamic 
programming scheme, which extracts the dominant paths of 
local minima of the intensity and the dominant paths of local 
maxima of the gradient magnitude with the gradient pointing 
downwards. Similar results were reported in [79], but with 
a greater accuracy (99.5 %). The authors in [28] applied the 
Hough transform to automatically extract straight lines and 
circles from sequences of B-mode ultrasound images of lon-
gitudinal and transverse sections, respectively, of the CCA. 
Hamou et al. [32] proposed a method that was based on the 
Canny edge detector to detect the plaque regions, prior his-
togram equalization, in longitudinal 2D CCA ultrasound 
images. Abdel-Dayen et al. [1] used a morphological approach 
for the carotid contour extraction for longitudinal ultrasound 
images of the CCA, incorporating speckle reduction filtering, 
contour quantization, morphological contour detection, and a 
contour enhancement stage. Abolmaesumi et al. [2] introduced 
an algorithm based on the star algorithm improved by Kalman 
filtering, for extracting the CCA boundaries from transversal 
ultrasound images. Guerrero et al. [29] used a modified star 
Kalman approach to determine vessel contours and ellipse 
parameters using an extended Kalman filter with an elliptical 
model. Results indicate that mean errors between segmented 
contours and expert tracings are on the order of 1–2 % of the 
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maximum feature dimension and that the transverse cross-
sectional vessel area was within 10 % of that determined by 
experts. Slabaugh [91] presented an ultrasound-specific seg-
mentation approach that addresses both the spatial correlation 
of the data, as well as its intensity distribution by applying a 
region-based active contour.

In [111], an automated initial contour identification, fol-
lowed by application of a geometrically deformable model, 
was proposed in 3D ultrasound CCA images. A fully auto-
mated segmentation method based on media–adventitia and 
lumen–intima boundary priors was proposed in [12] and also 
earlier in [40], for the segmentation of atherosclerotic carotid 
plaque in 3D CCA ultrasound images. The method combined 
image intensity with structure information in both initializa-
tion and a level set evolution process. Evaluation results 
indicated that the algorithm yielded total plaque volume 
differences of (−5.3 ± 12.7) mm3 and (−8.5 ± 13.8) mm3 
and absolute true-positive volume (TPV) differences of 
(9.9 ± 9.5) mm3 and (11.8 ± 11.1) mm3 between the two 
experts. Moreover, high correlation coefficients in generat-
ing TPV (0.993 and 0.992) between algorithm results and 
both sets of manual results were obtained. Ukwatta et al. in 
[100] used level sets to segment the plaque, which yielded 
high accuracy and repeatability. Initialization of the algo-
rithm required the observer to choose anchor points on each 
boundary on a set of transverse slices. The lumen–intima 
boundary was segmented by constraining its evolution 
using the already segmented surface of the media–adventitia 
boundary, in addition to the global region-based information 
and the anchor points. Gill et al. [26] used a dynamic balloon 
model represented by a triangulated mesh, which was manu-
ally placed, for the segmentation of atherosclerotic plaque in 
3D images (error = 0.3 mm between the manual and auto-
mated segmentations).

We present in Fig. 2c a normalized despeckled ultra-
sound image of the CCA from a symptomatic subject aged 
63, with an atherosclerotic carotid plaque at the far wall 
and manual delineation from the expert of the plaque, IMC 
(IMTmean = 0.91 mm), and the near wall segmentation. 
In Fig. 2d, we present the complete automated segmenta-
tion of the CCA on the normalized despeckled ultrasound 
image from Fig. 2c, (IMTmean = 0.936 mm). The auto-
mated segmentation was performed by the system pro-
posed in [49].

4.4  Atherosclerotic carotid plaque video segmentation 
techniques

Table 4 presents only two different studies [19, 58] that 
were found in the literature for the ultrasound video seg-
mentation of the atherosclerotic carotid plaque. In [58], 
an integrated segmentation system for the segmentation of 
atherosclerotic carotid plaque in ultrasound video based on 

snakes was introduced, whereas in [19], a Bayesian model 
based on motion estimation was proposed.

Figure 4 presents an example of video plaque segmenta-
tion with a large plaque appearing at the CCA at the 50th, 
60th, 70th, and 150th normalized despeckled video frames 
of the video, respectively. It is the case of a 64-year-old 
male symptomatic subject, with a stenosis of 50–60 % and 
a stent on the right CCA. More specifically, we have the 
manual (left column) and the automated (right column) 
video segmentations of the CCA for the plaque and carotid 
diameter, in (a) 50th, (b) 60th, (c) 70th, and (d) 150th video 
frames of the video, respectively.

4.5  Integrated CCA image segmentation systems

There is only one study in the literature [56] that proposes an 
integrated system for the complete segmentation of the CCA 
bifurcation in ultrasound images. The CCA bifurcation is 
sequentially segmented into different distinct areas namely the 
IMC, lumen diameter, and the atherosclerotic carotid plaque. 
The system was based on image intensity normalization, 
despeckle filtering, initial contour estimation, and morphology 
segmentation prior to the application of the snakes segmenta-
tion algorithm. Furthermore, user interaction and manual cor-
rections were possible. The algorithm was evaluated on 20 
longitudinal ultrasound images of the CCA bifurcation with 
manual segmentations available from a neurovascular expert. 
The manual mean ± std measurements were for the IMT: 
(0.96 ± 0.22) mm, lumen diameter: (5.59 ± 0.84) mm, and 
internal carotid artery origin stenosis (48.1 ± 11.52) %, while 
the automated measurements were for the IMT: (0.93 ± 0.22) 
mm, lumen diameter: (5.77 ± 0.99) mm, and internal carotid 
artery stenosis (51.05 ± 14.51)  %, respectively. We also 
found a true-positive fraction, TPF = (95.2 ± 7.1) %, a 
true-negative fraction, TNF = (98.1 ± 6.3) %, a Williams 
index, KI = 86 %, an overlap index, O = 79.3 %, specific-
ity, Sp = 0.98, and a precision, P = 0.945 %. No significant 
differences were found between all manual and the automated 
segmentation measurements.

4.6  Diastolic and systolic states of the CCA

In Fig. 5, we illustrate an M-mode generation proce-
dure as proposed in [52, 54, 58]. Figure 5a presents the 
first normalized and despeckled (with DsFlsmv) frame 
of a B-mode ultrasound video of the CCA, while Fig. 5b 
shows the segmentation of the plaque boundaries and the 
near wall of the CCA by snakes. The video was acquired 
from a symptomatic male subject aged 66. In Fig. 5c, 
we show the extracted CCA plaque, while in Fig. 5d, the 
despeckled M-mode image generated from the CCA video 
for a selected perpendicular B-mode line (shown in the 
left upper side of Fig. 5d). Figure 5e presents the initial 
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M-mode diastolic and systolic artery states superimposed 
on the original M-mode image at the far and near walls, 
respectively. Finally, in Fig. 5f, we show the CCA diameter 

change with step diagram and systolic and diastolic frames 
of the video with maximum carotid diameter during disten-
sion (*) and maximum carotid diameter during contraction.

Fig. 4  Manual (left column) and automated (right column) video 
segmentation of the CCA [58] for the plaque and the carotid diam-
eter, at the a 50th (IMTman = 0.85 mm, diameterman = 6.69 mm, 
IMT = 0.99 mm, diameter = 6.9 mm), b 60th (IMTman = 0.90 mm, 
diameterman = 7.31 mm, IMT = 0.93 mm, diameter = 7.51 mm),  

c 70th (IMTman = 0.92 mm, diameterman = 6.98 mm, 
IMT = 0.95 mm, diameter = 7.21 mm), and d 150th (IMTman =  
0.90 mm, diameterman = 7.11 mm, IMT = 0.93 mm, diame-
ter = 7.31 mm) normalized despeckled video frames of the video
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5  Discussion

Accurate and precise CCA segmentation in ultrasound 
imaging and video is imperative for evaluating and follow-
ing up the risk of stroke in asymptomatic or symptomatic 
patients at risk of atherosclerosis. We have presented in 
this review paper the most widely used techniques for the 
segmentation of the CCA in ultrasound images and videos, 
which are summarized in Tables 1, 2, 3, 4. Those are usu-
ally presented as integrated software systems and are either 
semi or fully automated.

As shown in Table 1, a large number of segmentation 
techniques have been developed for the segmentation of 
the IMC in CCA ultrasound images. The best performing 
method in terms of the error between the manual and the 
automated IMT measurements may have an IMT bias lower 
than (0.001 ± 0.035) mm [23], followed by −0.005 mm 
[25] and (0.008 ± 0.02) mm [50], whereas the average error 
bias for the most automated techniques presented in Table 1 
is lower than 10 µm. In terms of the number of images pro-
cessed, the recent study by Destrempes et al. [18] outper-
forms the rest of the methods, followed by Molinari et al. 
[67], Delsanto et al. [17], Faita et al. [23], and Loizou et al. 
[48, 50]. In the majority of the proposed techniques, a one 
or two evaluation metrics were used to evaluate the segmen-
tation method with the exception of [48] and [50], where 
additional metrics were employed. Finally, the higher degree 
of automation with less user interaction (see column UI in 
Table 1) is given by the methods [6, 35, 62, 67, 83, 106, 110]. 
In a recent review study performed on IMT segmentation 
techniques for CCA ultrasound imaging [65], it was shown 
that the best performing studies in terms of the MAD as well 
as the measurement errors were in [48, 50, 67], whereas in 
[17], a low IMT measurement error was demonstrated, but 
the technique in [17] avails a lower degree of automation.

The degree of user interaction is still crucial to obtain 
optimal IMT measurement performance. In a review study 
[70], on CCA IMT ultrasound image segmentation tech-
niques, nine different segmentation studies were compared. 
The authors conclude that none of the existing techniques 
was superior in all aspects and recognized the need for 
further investigation on adaptive IMC segmentation tech-
niques, which will provide higher accuracy, robustness, 
automation, and reduced processing time. In another study 
[109], the authors discussed a few commonly used meth-
ods for IMT segmentation and measurements. Furthermore, 
in [6], the authors presented a frequency domain imple-
mentation of active contours method, aiming to reduce 
the inter-observer variability and the subjectivity of the 
IMT measurements in a number of images. They found a 
maximum deviation of 3.4 pixels (0.0248 mm) for the IMT 
when compared to the manual tracings. In [25], IMT meas-
urements were performed on 43 subjects using a software 

tool incorporated on a commercialized ultrasound scan-
ner. It was found that the average time span for manual 
versus automated (−/−) measurements was 57.3 s/2.52 s, 
the CV % was 5.54 %/6.34 %, and the absolute differ-
ence 0.1 mm/0.05 mm, respectively. The inter-observer 
error showed no systematic error, while the variation and 
the repeatability coefficients were better for the auto-
mated than the manual measurements. Finally, in [65] and 
[86], a review of segmentation techniques for ultrasound 
image segmentation was presented. It should be further-
more noted that a number of other studies were reported 
in the literature with results for the manual or automated 
segmentation of the IMC, which are not presented in 
Table 1 and are here below shortly presented. More specifi-
cally, in [4], IMT was assessed on 126 ultrasound images 
using the QLAB software with 0.547 ± 0.095 mm, and 
0.524 ± 0.068 mm of manual and the automated segmen-
tation measurements. The bias between the two measure-
ments was 0.023 ± 0.052 mm. Inter- and intra-observer 
coefficients were greater for the automated system (0.94 
and 0.99 vs 0.72 and 0.88). A morphology contrast-based 
CCA lumen segmentation method taking into consideration 
the characteristics of the CCA lumen was presented in [89].

Table 2 shows that only very few semi-automated tech-
niques have been developed so far for the ultrasound video 
segmentation of the IMC. Moreover, the best perform-
ing video IMC segmentation method in terms of the error 
between the manual and the automated IMT measurements 
has an IMT bias lower than (0.007 ± 0.176) mm [36], fol-
lowed by (0.008 ± 0.02) mm [54]. It is also shown that the 
average error is lower when compared to the errors reported 
for the image segmentation of the IMC (see Table 1). The 
videos that were investigated were 82 [112], 40 [36], 10 
[54], and 3 [11], respectively, whereas in [54], additional 
performance metrics were used for the evaluation of the 
segmentation method. The best automation is so far given 
by the study in [54]. More specifically in [54], the authors 
proposed and evaluated an integrated system for the seg-
mentation of IMC and the lumen diameter in longitudinal 
ultrasound videos of the CCA. The method was based on 
frame normalization, speckle reduction filtering (DsFlsmv), 
and snakes segmentation. The algorithm was initialized 
in the first video frame of the cardiac cycle, by an auto-
mated initialization procedure, and the borders of the far 
wall and near wall of the CCA were estimated. The IMC 
and the carotid diameter were then segmented automati-
cally in the consecutive video frames for one cardiac cycle. 
The algorithm was evaluated on 10 longitudinal ultrasound 
B-mode videos of the CCA and was compared with the 
manual tracings of a neurovascular expert, for every 20 
frames in a time span of 3–5 s, covering in general 1–2 
cardiac cycles. The algorithm estimated an IMTmean ± stand-

ard deviation of 0.72 ± 0.22 mm, while the manual results 
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were 0.70 ± 0.19 mm. The mean maximum and mini-
mum diameter was 7.08 ± 1.37 mm and 6.53 ± 1.13 mm, 
respectively. The results were validated based on statistical 
measures univariate statistical analysis and manual observ-
ers’ delineations. It was found that there was no significant 
difference between the snakes segmentation measurements 
and the manual measurements. The integrated system pro-
posed in [54] could thus successfully segment the IMC in 

ultrasound CCA video sequences complementing manual 
measurements.

Table 3 presents, an overview of plaque segmentation 
techniques in ultrasound images of the CCA. There we 
may observe that the best performing technique in terms of 
the number of images is the study by Loizou et al. [49], 
followed by [12, 17, 28, 79, 100, 111]. In terms of the 
TPF, the best method is the level sets-based segmentation 

Fig. 5  Illustration of the M-mode procedure (see [58] for the imple-
mentation details), a first normalized and despeckled (with DsFlsmv) 
frame of a B-mode ultrasound video of the CCA, b segmentation 
of the plaque boundaries and the near wall of the CCA by snakes, 
c extracted plaque, d despeckled M-mode image generated from 
the CCA video for a selected B-mode line, e initial M-mode states 
superimposed on the original M-mode image at the far and near 
walls, respectively, f CCA diameter change averaged across the major 

plaque axis quintiles, with step diagram and systolic and diastolic 
frames of the video with maximum carotid diameter during disten-
sion (asterisk) and maximum carotid diameter during contraction. 
Diastolic and systolic frames (from 0 to 460) (100 frames per sec-
ond = 4.6 s). Contraction frames: 46, 123, 259, 314, 406. Disten-
sion Frames: 1, 85, 178, 245, 353, 440. Minimum Carotid Diameter: 
3.52 mm at frame 123. Maximum Carotid Diameter: 3.89 mm at 
frame 440

(a) (b) 

(c)

(d) (e) 

(f)
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study prosed by Golemati et al. [28], followed by [111], 
[100], [12], and then by [49], with a TRF of 97.5 ± 1.0 %, 
96.7 ± 1.7 %, 95 %, 94.4 ± 2.2 %, and 82.70 ± 2.1 %, 
respectively. Additional evaluation metrics were employed 
in [49]. The degree of automation is very high for the 
techniques in [49, 111]. Some of the methods reported in 
Table 3 were also reviewed in [4] and [42]. In another study 
[78], a segmentation method based on Nakagami distribu-
tions was proposed for classifying plaque pixels into a fixed 
number of components. The method was able to success-
fully distinguish asymptomatic from symptomatic patients.

Table 4 illustrates only two different plaque segmenta-
tion techniques [19, 58] that have been very recently pro-
posed for the video segmentation of the atherosclerotic 
carotid plaque in ultrasound videos of the CCA. The num-
ber of videos investigated was 43 and 33, respectively. The 
Bayesian model-based segmentation method by Destrem-
pes et al. [19] gave the best TNF [TNF = (83.7 ± 8.3) %] 
followed by the snakes-based segmentation method pro-
posed by Loizou et al. [58] [TNF = (84.3 ± 7.5) %]. The 
method presented in [58] integrates video frames normali-
zation, despeckling, and segmentation using active con-
tours. Similar metrics were used for the evaluation of the 
segmentation techniques in both the above studies, where 
the snakes-based segmentation technique [58] (9 s) outper-
formed the Bayesian model based [19] (30 s) on terms of 
segmentation time. The best degree of automation is given 
by the technique in [19].

Finally, there is only one study in the literature [56] that 
proposes an automated segmentation system for the com-
plete segmentation of the CCA bifurcation in ultrasound 
images based on snakes. No significant differences between 
all manual and the automated segmentation measurements 
were found in [56].

A number of limitations for the segmentation of the 
CCA from ultrasound images and videos include cases of 
atherosclerotic plaque types I and IV [21, 58, 95], which 
should not be included in the studies for segmentation. 
Different protocols are used for each study, but there are 
also problems due to differences in anatomy, as well as the 
extent of the atherosclerosis and plaque presence, which 
should be taken into consideration. The presence of exten-
sive and severe carotid stenosis may cause the initialization 
of the algorithm to completely fail as there will be difficulty 
in establishing the lumen of the CCA. In addition, the pres-
ence of extensive plaques in the near wall may cause inac-
curate segmentation of the far wall adventitia. It should be 
noted that the parameters for each processing step should 
be selected for maximum performance (for example, the 
size of the moving pixel window, the number of itera-
tions, the number of frames for which the contour is or re-
initialized in the case of video segmentation). The average 
computational time for some techniques is still very high, 

and this causes difficulties in their application in the real 
clinical practice. A complete discussion on additional limi-
tations of the methods can also be found in [52]–[49], [56], 
[62]–[57], [5]–[111], [18, 67]. Finally, in order to handle 
the variability caused by different datasets, we have started 
working toward the creation of standard image and video 
datasets with ground truth (which can be downloaded from 
http://www.medinfo.cs.ucy.ac.cy). Prior work in this direc-
tion was carried out by Mollinary et al. [68], who used the 
ultrasound images for the segmentation of intima–media 
complex (not covering plaque segmentation of the CCA). 
The creation and use of a standard dataset will ensure high 
accuracy of the segmentation results when other research-
ers apply their techniques on the same standard data set of 
images/videos, thus having a common platform for com-
paring their segmentation performance. It should be fur-
thermore noted that most of the CCA segmentation sys-
tems, presented in this review (see Tables 1, 2, 3, 4), are 
able to be calibrated manually by the user of the system 
before the segmentation of the structure of interest. This is 
usually done manually by the user, in order to overcome 
difficulties arising from different datasets. The calibration 
procedure will estimate the actual pixel size in millimeters 
from the image (using a conversion factor) so that the cor-
rect distance of the structure of interest can be calculated.

In general, snake segmentation techniques, which are 
conducted mainly under human supervision, exhibit bet-
ter segmentation measurement performance than the oth-
ers. The IMT or the plaque is usually measured in a small 
selected image area (ROI) where there is good visibility 
of the structures of interest. The user may interact with 
the segmentation process and increase the measurement 
performance. The rest of the segmentation techniques do 
not focus on a small ROI, but they generally operate on 
the whole image. One possible enhancement is to adopt 
an intelligent strategy for reducing the image to an ROI in 
which the IMT or plaque can be segmented. Neural net-
works, fuzzy logic, and trained classifiers could all help in 
this direction. The disadvantage of such an approach would 
be the higher computational cost and that measurements 
cannot be performed in real time. Another major advan-
tage of the non-snake segmentation techniques is their 
ability to process large amounts of data and be robust with 
respect to image characteristics. Furthermore, they can bet-
ter handle difficulties in image and vessel morphology (i.e., 
straight, curved, inclined, and vessels with plaques can all 
be processed).

Further efficiency can be achieved on commercial soft-
ware versions, while the algorithms may also be designed 
to perform parallel with the clinician’s evaluation so that 
the clinician might carry on the patient examination, while 
the segmentation of the structure is performed. Thus, there 
is a reasonable expectation to create clinically applicable 

http://www.medinfo.cs.ucy.ac.cy
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versions in the future especially for the video segmenta-
tion of the IMC and plaques in the CCA. Another possible 
solution is to merge different segmentation techniques and 
apply them on selected image areas (i.e., intima, adventitia, 
lumen, plague, and CCA bulb.) where best performance is 
demonstrated. It should be furthermore noted that a direct 
comparison of IMT and plaque segmentation measure-
ments is difficult to be made due to the difference in axial 
resolution of the ultrasound scanner used in each study.

Future research will incorporate the extraction of tex-
ture features [33], from the IMC and the atherosclerotic 
carotid plaque, from ultrasound images and or videos. 
Those features may be used to separate subjects in high 
and low-stroke-risk groups, as was also shown in [51] and 
[53]. More specifically, in [51], texture features, whereas in 
[53], amplitude-modulation frequency-modulation features 
were extracted from the IMC, which have been used to 
separate asymptomatic and symptomatic subjects, as well 
as to classify the subjects in different age-groups. However, 
a larger-scale study is required for evaluating the systems 
before their application in the real praxis, which requires 
integrated software applications for image [59] and video 
[57] despeckle filtering.

6  Concluding remarks and future directions

We have presented the most widely used techniques for 
the segmentation of the CCA IMT and the atherosclerotic 
carotid plaque from ultrasound images and videos. The 
trend is now toward the complete automation carotid IMT 
measurements, which will assist the clinician in the clini-
cal practice. As this review shows, there is still no sufficient 
overall system performance demonstrated for the auto-
mated systems, for the segmentation of the IMC or plaque 
in the CCA either with images or with videos. We have also 
shown that the overall performance of the semi-automated 
systems is higher when compared to the performance of the 
automated segmentation systems. We illustrate in Table 1 
that the best performing IMC segmentation system may 
have and IMT error of about 1 × 10−3 mm [23], where on 
average the best performing systems have a bias of around 
50 × 10−3 mm [45, 48, 92, 103, 108]. The best performing 
IMC video segmentation method was proposed in [36] (see 
Table 2), while the best plaque image segmentation method 
was proposed in [28] (see Table 3). The best method for 
the IMC video segmentation was proposed in [19] (see 
Table 4), while an integrated segmentation method for the 
complete image segmentation of the CCA was proposed in 
[56].

With the rapidly growing development of new CCA 
segmentation methods, it is expected that the performance 
of the automated methods will be further increased and 

can be soon comparable with semi-automated segmenta-
tion techniques. Further improvement on the performance 
and accuracy of the segmentation methods will also 
increase the performance of automated classification in 
ultrasound plaque images [14] as well as the identification 
of groups of patients [51, 53]. It is furthermore expected 
that 3D carotid imaging will be used for monitoring 
carotid atherosclerosis progression and regression, where 
new 3D techniques should be developed in order to be 
applied routinely in the clinical practice, where the seg-
mentation of plaque lumen and vessel is of utmost impor-
tance. Furthermore, improved 3D segmentation tech-
niques will accelerate the segmentation process and the 
evaluation of the disease and provide visual evidence of 
spatial and temporal dynamics of carotid artery changes 
in response to therapy [40]. It will also be interesting 
to use the above segmentation techniques for detecting 
artery calcifications in carotid plaques as it was shown 
in [115]. The correct identification and measurement of 
those calcifications may be helpful in estimating the depth 
and circumferential extent of calcifications, the type of 
interventional devices, and the risk of complications. The 
current research will also be helpful in advancing the area 
of motion estimation when working with clinical videos. 
The video segmentations of the atherosclerotic carotid 
plaque [58] may be used in order to estimate accurate 
velocities of clinical videos [69], which will show normal 
or abnormal motion. Furthermore, accurate segmentation 
in video will facilitate the correct monitoring of the wall 
and plaque changes, as well as the characteristics of the 
arterial wall in the CCA and its elasticity [52], which may 
have significant clinical relevance for the assessment of 
future CVD events.
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