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classification parameters. We obtained an accuracy of 99.41 
and 99.12 % with PNN–GA and SVM quadratic kernels, 
respectively.

Keywords  Diabetic retinopathy · Vision modeling · 
Classification · Trace transform · Genetic algorithm

1  Introduction

Diabetic retinopathy (DR) is a complication arising from 
the more common diabetes mellitus (DM) which is a cause 
of concern in the developed world. Though DM is an endo-
crine disorder, it has far reaching implications on the vision 
of a person with DR being a leading cause of visual impair-
ment in the developed world [31]. The most common treat-
ment of DR is through laser photocoagulation or through 
corticosteroid injections [31]. Early detection and treat-
ment is absolutely essential to prevent vision loss in dia-
betic patients [27]. But early detection of DR is a difficult 
task since this would require regular screening of diabetic 
patients and that would translate into an increased load on 
the opthamologist in-charge of screening the patients. To 
offset this requirement for an increased load on opthamolo-
gist, research is in progress to automate the DR screening 
process. The other advantage of an automated detection 
system is the ability to screen large number of patients in 
a short time and more objectively than an observer-driven 
technique [21].

There are several signs to identify DR. Some of them 
include red lesions, such as microaneurysms, intraretinal 
microvascular abnormalities, and hemorrhages, and bright 
lesions such as hard exudates and soft exudates or cotton-
wool spots [7]. These signs of DR can be used when there 
has to be automated detection of exudates in retinal images. 
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In our study, we focus on classification of retinal images 
into normal and DR images. Hence, we consider the retinal 
images as a whole to study features which might be useful 
in classification of the images into the two classes. We do 
this since the goal of this study is to adapt and develop trace 
transform functionals, a relatively unused feature extraction 
technique for medical image analysis. From an exhaustive 
review of the literature, we are yet to find a significant work 
which uses trace transform for retinal image analysis. The 
closest study as ours can be seen in [11]. In this study, radon 
transforms were used for microaneurysm detection in [11]. 
This can be considered as a precursor to our work since 
trace transform is a generalization of radon transform.

In general, automated DR detection is done by identify-
ing exudates, red lesions, and other commonly occurring 
symptoms mentioned previously. The most basic way to 
do this is gray-level thresholding [15, 22]. But the prob-
lem with thresholding is that the results are not consistent 
due to uneven illumination of the hard exudates [3]. Subse-
quently, to counter this effect, an algorithm based on edge 
detection and mixture models was tested by [3] to obtain a 
classification accuracy of 95 %. Other simple techniques for 
segmentation of lesions in fundus images for DR screening 
were developed by [16]. In this work, region growing, adap-
tive region growing, and Bayesian-based approaches were 
shown to attain an accuracy rate of 90 % for DR detection. 
Thresholding and shape features for microaneurysm and 
hemorrhage detection were used by [25] to obtain an accu-
racy rate of 95.65 % for classification of normal and abnor-
mal retinal images. These examples show that it is possible 
to identify DR fundus images using simple techniques. But 
at times, due to variation in illumination and other image 
properties, it is necessary to go in for advanced techniques.

An assessment of neural network-based classifiers was 
done by [8] to study the efficacy of neural networks in iden-
tifying red lesions in retinal images. In this study, image 
and shape features were extracted to obtain a mean accu-
racy of 86 %. An ensemble based system with a combined 
algorithm of several machine learning techniques including 
pyramidal decomposition, edge detectors, and hough trans-
forms was used by [24] for identifying macula and optic 
disk in retinal fundus images for DR screening. An exudate 
probability map and wavelet analysis were used by [10] to 
identify exudates in fundus images with an accuracy rate of 
94 %. A color information-based feature dimension in com-
bination with Fisher’s linear discriminant analysis was used 
by [26] to obtain an accuracy rate of 100 % for detection of 
hard exudates. This study shows that it is indeed possible 
to classify images with a perfect accuracy rate using image 
information in color images. A study based on Gaussian 
mixture models (GMM) and SVM to classify image shape 
and statistic features for microaneurysm detection was 
done by [1] with an accuracy rate of 99.53 %.

A study close to ours was performed by [23]. In this 
study, a multiple-instance learning framework was devel-
oped for identifying patterns in normal and DR retinal fun-
dus images. An accuracy rate of 88.1 % was obtained in 
this study. Dictionary learning and sparse representation 
classifier (SRC) were used by [2] to detect microaneurysm 
and blood vessels in fundus images, with an accuracy of 
84.67 %.

The quality of retinal images is important in any auto-
mated analysis technique for DR screening. For this, a 
traditional clustering algorithm was developed by [19] to 
verify the quality of color retina images. It is also impor-
tant to note that the accuracy of any classification system 
for DR screening depends on the quality of retinal images 
due to the huge number of features and blood vessels in 
normal images which look very similar to exudates and 
other symptoms visible in DR images [5, 19]. In line with 
this, our work uses a contrast correction and enhancement 
technique discussed in the next section. The proposed sys-
tem has been shown in Fig. 1. In our technique, followed 
by preprocessing, we use trace transform for feature extrac-
tion. In using trace transform, we develop application-
specific functionals in order to effectively extract suitable 
features for DR fundus images. We then used SVM ker-
nels and PNN to classify the features extracted using trace 
transform functionals.

2 � Methods

2.1 � Image database

The data used in this work were obtained from the Depart-
ment of Opthamology, Kasturba Medical College, Manipal, 
India. The images were acquired using a TOPCON non-
mydriatic retinal camera to provide a 3.1 megapixel retinal 
image. For the purpose of this study, 170 normal images and 
170 DR images were used. Out of the 170 DR images, 23 
were mild Non-proliferative DR (NPDR) images, 52 were 
moderate NPDR images, 30 were severe NPDR images, and 
65 were Proliferative DR (PDR) images. The age group of 
patients considered for the study was 24–57 years.

2.2 � Methods

Each of the processes followed in the study has been 
described below.

2.2.1 � Preprocessing

The color scale RGB images were first converted into 
gray scale for efficient computation. Since the exudates 
are visible with more contrast in gray scale, this mode 
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was preferred for further analysis. An equalization proce-
dure was performed on the images to obtain a local con-
trast that is approximately equal at all image intensities. In 
this method, a neighborhood ℘ of an image location (x, y) is 
considered. The local contrast of this neighborhood is esti-
mated as follows:

where c(x, y) is the estimated local contrast, f (x, y) is the 
image gray level at (x, y) and median℘(x, y) is the median 
gray level within the neighborhood ℘ of (x, y). Equation 
(1) can be equated to a high-pass spatial filter. The local 
contrast provides a measure of the high-frequency image 
noise. The noise associated with each image gray level I 
can be measured by the local contrast standard deviation 
σc(I) ≡ σ {c(I)}. The contrast enhancement function is then 
defined as follows:

(1)c(x, y) = f (x, y) − median℘(x, y)

(2)fceq(Ii) =

{

σ(Ii)
σc(Ii)

, if σc(Ii) > 0;

0 otherwise

while executing the contrast enhancement function, 
the gray scale is divided into several overlapping bins 
i = 1, ..., N where N is the number of bins. Interpolation 
of the estimated fceq(Ii) values provides an estimate of the 
function fceq(I) for all image intensities I. This method of 
contrast enhancement is a nonlinear gray level rescaling 
technique. This transfer function fceq(Ii) is then normalized 
such that the total value adds up to 1, the same way it is 
done in the case of a probability density function.

2.2.2 � Feature extraction using trace transform functionals

Trace Transform functionals [14] were used for feature 
extraction. Trace transforms are a generalization of the 
radon transform where the transform calculates functionals 
of the image function along lines criss-crossing its domain 
[14]. The trace transform works by transforming the origi-
nal image into a mapped image, which is a 2D function, 
based on a set of parameters (φ, ρ) that characterizes each 
line criss-crossing its domain. To describe it in a simpler 

Fig. 1   The proposed system
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way, consider a fish tank with a single fish in it. For the 
purpose of this description, let us assume to be living in a 
two-dimensional plane, where we can view the fish tank 
from only one direction at a time with no knowledge about 
the information in other directions. So, when the fish inside 
the fish tank is viewed from the front, the fish would appear 
to be a conical-shaped object. When it is viewed from the 
sides, it would appear to be a streamlined flat object, and 
from the top, it would appear to be a straight line. A person 
living in a two-dimensional plane, who has viewed the fish 
from all the directions, would describe the fish with infor-
mation gathered from the views obtained in all possible 
directions after accumulating and combining the informa-
tion from several angles. Trace transform functions in the 
same way where the images are scanned by tracing lines 
in all angles starting from 0°, running until 359°. At each 
angle, the tracing lines obtain the pixel information of the 
image along the tracing line. This pixel information is then 
combined and calculated according to what are called as 
the trace functionals (T) defined in Table 1. This would 
result in a 2D image in the trace transform domain. An 

example of this 2D image obtained by accumulating the 
trace lines through T can be seen in Fig. 2a–d.

After a 2D image has been obtained in the trace trans-
form domain, the same procedure of tracing the image is 
followed using diametric functionals (P) defined in the sec-
ond column of Table 1. This would result in a 1D line con-
taining condensed information from the 2D image obtained 
through T . Followed by this, circus functionals (�) are 
applied on the 1D line, to obtain a single feature defining 
the original image. This single feature is referred to as the 
triple feature of the image in consideration.

Mathematically, the trace transform can be defined as a 
function g definited on � with the help of T  which is some 
functional of the image function, where T  is the trace func-
tional. If L(C1; φ, p, t) is a line in coordinate system C1, 
then [14]:

where F(C1; φ, p, t) means the values of the image func-
tion along the chosen line. This functional results in a two-
dimensional function of the variables φ and p and can be 

(3)g(F; C1; φ, p) = T(F(C1; φ, p, t))

Table 1   Trace functionals T, 
diametric functional (P), circus 
functionals (�) used to produce 
the 2D functions. Here, xi is the 
gray value of the image at point 
i along the tracing line and N 
is the total number of points 
considered along the tracing 
line in the case of T. In the case 
of P, xi is the value of the trace 
transform at row i along the 
column to which the functional 
is applied, and N is the total 
number of rows of the trace 
transform. In the case of �, xi 
refers to the value of the circus 
function at angle i and N is the 
total number of columns of the 
transform obtained using P

S. no. Trace functional (T) Diametric functional (P) Circus functionals (�)

1 1
N

∑

N

i=1 xi

∑

N

i=1 x
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interpreted as another image defined on �. Here, the triple 
feature � is defined as [14]:

The choice of these three functionals is totally dependent 
on the engineer’s choice and can be varied according to the 
application and image properties in hand. The functionals 
are chosen in such a way that they are invariant to rotation, 
translation, and scaling. As long as the functionals chosen 
have these properties, the engineer is free to choose any 
mathematical function to define his image properties. In our 
study, the functionals used can be seen from Table 1 [6].

2.2.3 � Feature selection

In any classification algorithm, one of the most important 
steps is choosing variables that contribute most to the clas-
sification task. It is also necessary to eliminate variables 
that do not contribute to the overall classification. Statisti-
cally speaking, it is essential to reduce a d-dimensional fea-
ture vector into a m-dimensional vector (m ≤ d) such that 
m represents the most effective set of feature measurements 
for the given problem [29]. In the current study, a forward 
feature selection technique with a Mahalanobis distance 
measure was used to rank the features. The procedure of 
finding the distance measure was done at each round of the 
ten-fold cross validation since a bias would be introduced if 

(4)�(F, C1) = �(P(T(F(C1; φ, p, t))))

the same data are used for both feature selection and accu-
racy estimation. Out of a total of 840 features extracted 
(20*7*6) , 672 statistically significant features (16*7*6) 
ranked using Mahalanobis distance measure were used. 
Since the focus of our study was testing the efficacy of fea-
tures extracted using trace transform, we used one of the 
most widely employed distance measure: Mahalanobis dis-
tance measure. We did not compare it with other distance 
measures as it would be a separate topic of study by itself.

With 16+7+6 functionals listed in Table 1, we can 
extract 16*7*6= 672 features. For this study, we used a 
total of 20*7*6 = 840 features. Since we found only the 
first 672 features to be statistically significant for use in 
classification, we neglect the trace functionals 17–20 dur-
ing the final classification.

2.3 � Classification

Classification was done using three support vector machine 
(SVM) kernels and probabilistic neural network (PNN). 
The accuracy of PNN was further improved using Genetic 
Algorithms.

2.3.1 � Support vector machine

The SVM is a linear classifier which uses a kernel trick 
to classify features in a nonlinear space. The SVM 

Fig. 2   Typical retina images. 
a Normal, b trace transform 
of a, c abnormal and d trace 
transform of c
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simultaneously maximizes the distance between the pat-
terns and the class separating hyper-plane for both the 
classes. It has higher generalization ability in the sense 
that it can classify unseen new data accurately. Generally, 
nonlinear patterns are not separable in the original feature 
space, and hence, a nonlinear kernel transformation is 
necessary [18]. If is the perpendicular vector to the class 
separating hyper-plane, the SVM optimization problem 
will be

where are the Lagrange multipliers under the constraint, 
αi ≥ 0 and k(xi, xj) is the kernel inner product to transform 
the features into high dimensional kernel space. The yi and 
yj are the targets of ith and jth pattern, respectively. There 
are numerous kernel functions, and the kernels chosen are 
highly application specific. In the current study, quadratic, 
polynomial, and radial basis function (RBF) kernels are 
used which are given in Eqs. (6, 7, 8), respectively.

where σ is the width parameter of RBF kernel.

2.3.2 � Probabilistic neural network

It consists of three layers: input layer, pattern layer, and cat-
egory layer. The input layer consists of as many numbers 
of nodes as the number of features [28]. The pattern layer 
consists of as many numbers of nodes equal to the num-
ber of samples in the training set. The category layer con-
sists of as many numbers of nodes as the number of classes 
present in the data [4]. The connection weight between the 
input layer and pattern layer is obtained by normalizing the 
feature vector as,

Each sample comprising of feature vector at the input 
nodes is connected to only one node in the pattern layer. 
Each node in the pattern layer is connected to only one 
node in the category layer for which the sample belongs. 
During testing of a sample, the feature vector is normal-
ized prior to the operation. The normalized feature vector is 
multiplied with the connection weights between input and 
pattern units to obtain the pattern node output as,

(5)L(α) =

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyjk(xi, xj)

(6)k(xi, xj) = (xT
i xj + 1)2

(7)k(xi, xj) = (xT
i xj + 1)3

(8)k(xi, xj) = exp

{

||xi − xj||

2σ 2

}

(9)
xjk =

xjk
(

∑d
i=1 xjk

)1/2

If the given pattern node is connected to the category node, 
then the response at the category node is incremented as,

Finally, the classification of test sample is performed as,

As seen from Eq. (11), the output at category node is 
a function of zk and σ, the spread parameter of the PNN. 
Depending on σ, the output at the category node changes, 
thereby affecting the accuracy.

2.3.3 � Optimization of PNN using genetic algorithms

Genetic algorithms (GA) are an evolutionary and popula-
tion-based optimization method. In the present study, this 
method is used to find the consistent optimal spread of a 
PNN classifier such that it provides the highest discrimina-
tion between classes. A GA consists of coding and decod-
ing of populations, fitness function evaluation, reproduc-
tion, crossover, mutation, and test for convergence of the 
algorithm. The GA initially codes the problem variables 
into binary-valued strings. Each such string has a relative 
importance toward the final optimization goal . The relative 
importance of each string is computed by evaluating the fit-
ness function. Based on the fitness function, the fit strings 
(having higher fitness function value) are reproduced or 
multiplied in numbers and less fit solutions are discarded. 
These fit solutions are made to crossover [17].

A location (string position) is defined, and the string was 
cut into two pieces. When such two pieces belonging to dif-
ferent strings are combined with each other, the operation 
is called crossover. A few bits in the strings were flipped 
in the mutation operation, so that it would avoid conver-
gence of the solution to a local optimum. The three opera-
tions, reproduction, crossover, and mutation were repeated 
until the fitness function becomes steady and will not be 
improved with further iterations. In the current study, a 
population size of 30 was chosen. In every generation 
(iteration), there would be 30 solutions. Initially, 30 solu-
tions were randomly chosen. Out of these 30 solutions, the 
solutions leading higher accuracy ( high fitness function) 
were multiplied and the one leading low accuracy were dis-
carded. The fit solutions were encoded into binary strings 
and reproduction, crossover and mutation were performed 
iteratively until all solutions in a generation were more or 
less same, and there would not be any further improve-
ment over iterations. In the case of this implementation, 
the GA has a population size of 30. In the first genera-
tion, 30 different spread values are chosen randomly. In 52 

(10)zk = wT
k x

(11)gc = gc + exp

{

zk − 1

σ 2

}

(12)class = argi max gi(x)
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generations, the GA converges. In the 52nd generation, all 
individual solutions will have same spread value, which is 
0.984, obtained by the optimization process.

3 � Results

The current work has provided good results for classifica-
tion of normal and DR classes of fundus images. We have 
obtained accuracies comparable to popular works in the lit-
erature as discussed in the next section. We have obtained 
an accuracy of 99.41 and 99.12 % using PNN-GA and 
SVM-Quadratic, respectively. One of the reason for a high 
accuracy rate is due to the spread of the data which has a 
high between class-scatter and low within class-scatter. 
This results in good separability between the two classes. 
Thus, it is clear that apart from the discriminative capac-
ity of the classifiers, the feature extraction technique works 
well in producing features with a good spread. From vis-
ual inspection of features, we find that the DR data have a 
wider spread than normal data. This is due to the fact that 

we have four different stages of abnormalities grouped into 
the same class.

PNN classifier, when used on our feature set, provided 
an accuracy which was lower than SVM kernels. Since the 
accuracy rates did not match with the feature vector spread 
and distribution, Genetic Algorithms, which is an optimiza-
tion technique, was used to optimize the classifier param-
eters to improve classification accuracy. The optimization 
technique helped in improving the classification accuracy 
to a considerable extent as seen from Table 2.

GA is a population-based optimization technique. It 
chooses best solution from an ensemble of solutions. In 
our study, we have used a population size of 30. It means 
the GA finds 30 solutions in a generation/iteration, and out 
of them, it chooses fit solutions to multiply it in the next 
generations. The process is repeated many times until the 
algorithm converges. In the first generation, the GA finds 
a few solutions which are diverse and contain both fit and 
bad (unwanted) solutions. From this, it will choose fit solu-
tions and multiply them using reproduction, crossover, and 
mutation operations. In the first generation, all fit and bad 
solutions will be present. From these, the GA will choose 
the fit solutions, and the process of reproduction, crossover, 
and mutation continues over generations until convergence. 
It is seen that most of the solutions are fit, with high accu-
racy. Since this accuracy is obtained over all the individuals 
in a generation, and such (similar) solutions were obtained 
in subsequent generations, the algorithm is inferred to be 
converged. Table 2 shows the classification accuracy of dif-
ferent classifiers for ten-folds. The optimum spread value 
of the PNN obtained after optimization is 0.984 for which 
a highest accuracy of 99.41 % is obtained. The results 
obtained using our technique has been provided in Fig. 3 
and Table 2.

Table 2   Classification performance of different classifiers with opti-
mal number of features—in-house database

Sensitivity  
(%)

Specificity  
(%)

PPV  
(%)

Accuracy  
(%)

SVM-  
quadratic

98.82 99.41 99.44 99.12

SVM-  
polynomial

96.47 98.82 98.89 97.65

SVM- RBF 100 93.53 94.17 96.76

PNN 93.53 100 100 96.76

PNN- GA 99.41 99.41 99.44 99.41

Fig. 3   Classification accu-
racy with different classifiers 
with respect to the number of 
features—in-house database
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To validate the accuracy of results obtained using our in-
house database, we replicated our experiments on an open 
database (MESSIDOR) [13] choosing the same number of 
images as we did with our in-house database. These images 
were chosen randomly using a random number generator. 
We performed the validation experiments with the same set 
of measurements and feature ranking techniques along with 
similar classifier settings. The results of this are provided in 
Fig. 4 and Table 3.

4 � Discussion

A new set of functionals for use with trace transform has 
been proposed, keeping in mind the nature of images in 
hand. The functionals are new in a way that most of the 
mathematical definitions utilized for extracting features 
used in this study have not been tried before in other stud-
ies related to computer-aided diagnosis of DR. In this case, 
we have used normal and DR retinal images for a two-class 
classification problem. Since we tried to study various 
functionals to test the efficacy of the same with automated 

DR classification, we did not further subdivide DR classes 
into mild, moderate, proliferative, and severe classes. As 
a start, we have found that the technique works very well 
with a two-class problem. Also, we experimented with 
numerous functionals in all three stages of the trace trans-
form. In Table 1, we have given only the functionals which 
provided us with good results. The development of func-
tionals in itself is an exciting and challenging task since we 
have to choose functionals which best represent the images 
in consideration. Having said that, it is also imperative to 
note that the choosing of functionals is not a rigid task, and 
it is the researcher’s prerogative to choose the one which 
is a good descriptor of the sample in hand. By stating the 
functionals are not rigid, it is implied that the functionals 
presented in our study are not exhaustive, and the engineer 
is free to alter the functionals according to his needs as 
long as the functionals are invariant to rotation, translation, 
and scaling. With this in mind, the functionals developed in 
our work have shown to be very effective in discriminating 
the two classes.

Also, we have tried implementing a GA-based optimi-
zation technique which produced a visible improvement 
in classification accuracy for a PNN classifier. Since in the 
current work the emphasis has been more on the develop-
ment of a new framework for feature extraction using trace 
transform functional, we opted to test only a few classifiers. 
This has not hindered the pattern recognition framework 
in any way since we have obtained good accuracy rates 
for all the classifiers considered. In fact, the accuracy rates 
obtained in the present work are one of the best in the lit-
erature as seen from Table 4.

An adaptation of extracting features through trace 
transform has been attempted for application in auto-
mated detection of DR images for a two-class classifica-
tion problem. From a study of available literature, we find 

Table 3   Classification performance of different classifiers with opti-
mal number of features—MESSIDOR database

Sensitivity  
(%)

Specificity  
(%)

PPV  
(%)

Accuracy  
(%)

SVM-  
quadratic

99.03 99.73 99.64 99.38

SVM-  
polynomial

98.08 99.09 99.02 98.61

SVM- RBF 50.15 91.55 92.53 95.82

PNN 100 91.55 92.53 95.82

PNN- GA 100 100 100 100

Fig. 4   Classification accu-
racy with different classifiers 
with respect to the number of 
features- MESSIDOR open 
database
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that our method has provided one of the best classification 
accuracies for the problem in hand. We believe that since 
the functionals used in trace transforms are not rigid, the 
usage of these functionals can be adapted and fine tuned 
or tweaked according to the engineer’s needs. Since trace 
transform functionals capture image information as a 
whole, we believe that it would be difficult to identify and 
differentiate lesions arising from other diseases, unless 
the lesion structure and texture are different from lesions 
of DR. Also, since this is an attempt to see whether trace 
transform functionals can indeed be used for identification 
of different classes of DR, we believe that this could be 
the future direction of our work to identify and differenti-
ate between lesions from different classes and diseases. As 
a direct impact, the proposed methodology can be adapted 
and extended to other areas of medical image analysis as 
well. The features extracted using this technique, classified 
using SVM kernels, and PNN-GA provided a classification 
accuracy of 99.44 and 99.12 %, respectively.

With respect to processing time for the images, process-
ing was done using a Core 2 Duo processor @2.4GhZ with 
a 4.0GB RAM. All processing was done using Matlab. 
The average time required to extract 840 features for one 
image was 12.06 min for a high-resolution 3.1 megapixel 
image. Since in real-time processing we would not require 
an image of such high resolution, the processing time can 
considerably reduce. Further reduction in time could be 
obtained by extracting only the 672 statistically significant 
features that have been identified in this study. Validation 
of our study was done by testing the same algorithm and 

workflow with 170 normal images and 170 DR images 
from an open database MESSIDOR [31] with good results 
being obtained for the same.
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