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Abstract Brain–computer interfacing (BCI) has been the

most researched technology in neuroprosthesis in the last

two decades. Feature extractors and classifiers play an

important role in BCI research for the generation of suit-

able control signals to drive an assistive device. Due to the

high dimensionality of feature vectors in practical BCI

systems, implantation of efficient feature selection algo-

rithms has been an integral area of research in the past

decade. This article proposes an efficient feature selection

technique, realized by means of an evolutionary algorithm,

which attempts to overcome some of the shortcomings of

several state-of-the-art approaches in this field. The out-

lined scheme produces a subset of salient features which

improves the classification accuracy while maintaining a

trade-off with the computational speed of the complete

scheme. For this purpose, an efficient memetic algorithm

has also been proposed for the optimization purpose.

Extensive experimental validations have been conducted

on two real-world datasets to establish the efficacy of our

approach. We have compared our approach to existing

algorithms and have established the superiority of our

algorithm to the rest.

Keywords Brain–computer interfacing � Feature

selection � Motor imagery � Memetic algorithm �

Differential evolution � Learning automata � Power

spectral density

1 Introduction

It is well known that intentions for any actions performed

by a person originate from the brain [23, 24, 26]. Brain–

computer interfacing (BCI) extracts, decodes and translates

these intentions into control commands to drive an external

device for rehabilitative applications [3, 19, 29]. Other

areas of application of BCI include robotics, communica-

tion, gaming and virtual reality [13, 15, 16, 32, 44]. Motor

imagery (movement based) brain signal [12] is one of the

most frequently researched fields in BCI. For the acquisi-

tion of brain signals, both invasive and non-invasive means

have been employed in BCI research, which includes

electroencephalography (EEG), magnetoencephalography

(MEG), electrocorticography (ECoG), intracortical elec-

trodes and functional magnetic resonance imaging (fMRI)

[28]. Among these, the EEG is preferred because it is non-

invasive, easily available and portable and has very good

temporal resolution [12, 32]. The EEG signals during

motor imagery experiments are acquired from C3 and C4

electrode locations [27] (based on the 10–20 electrode

system) because they are directly placed above the motor

cortex areas of the brain [40].

A general EEG-BCI module contains the following

stages: preprocessing of the raw EEG, feature extraction

from the EEG and classification of the EEG [22]. Here,

time, frequency, time–frequency and nonlinear signal

processing methods are employed for feature extraction

[12, 32, 37–39] along with linear and nonlinear methods as

the classifiers [2, 31]. Sometimes, the features extracted

from the EEG by the BCI have high dimensionality [21, 31],
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which may result in two major drawbacks: (a) increase in

the computational time of the classifier and (b) EEG signals

have poor signal-to-noise ratio [31] and are susceptible to

the inclusion of features which behave as outliers and

therefore reduce the classification accuracy. Thus, during

the past few decades, researchers have included a feature

selection stage before the classification stage [22]. This

stage selects a subset of features from the original feature

set having an enhanced discriminative power [39]. Some

commonly used feature selection algorithms include

sequential forward floating search [14], sequential forward

search [20], principal component analysis [1], singular

value decomposition [17], independent component analysis

[7], curvilinear component analysis, kernel principal com-

ponent analysis [33]. Existing approaches in feature

selection suffer from few major drawbacks, which are as

follows: (a) Sometimes, it is seen that even if the variances

are good among components, they still have low classifi-

cation performance. It may be due to the fact that the

concerned algorithm failed to remove the redundant fea-

tures. Determination and removal of redundant features is

not possible simply by inspection of the feature set.

(b) Many of the popular feature extraction techniques

perform a linear transformation of the original feature set to

a vector of low dimensionality for consideration in the

classifier stage. (c) The optimal number of reduced features

to be considered in the classifier stage after dimension

reduction is determined by cumbersome experimental

validations. The reduced features in most cases are a linear

transformation of the original feature set. Thus, even if the

feature set used in the classifier stage is reduced, we must

still measure the original features. Here, we have solved the

above problems by designing an algorithm to choose an

optimal set of features from the original feature set itself.

So all the features are not employed in the classification

stage. Here, cumbersome experimental validations are

avoided and a simple run of the optimizer is sufficient,

which also optimizes the classifier performance.

The main contribution of this paper lies in the usage of

evolutionary approach to the feature selection module,

whose best d features are selected from the total feature

vector D, where d lies between (0, D]. The algorithm is

based on a population of members, which are represented

by two components, namely the Activation Thresholds and

the Scale Factors. Activation Thresholds determine the

corresponding features to be selected, while the Scale

Factors determine the amount by which a particular feature

has to be scaled. On the basis of these two representations,

each population member undergoes the evolution process

to produce fitter (with respect to the cost function) indi-

viduals. Another significant contribution of the paper is the

application of our proposed memetic algorithm [34] to

optimize the cost function. Memetic algorithms (MA) are

population-based search heuristics that integrate the mutual

benefits of natural and cultural evolution. Evolutionary

algorithms (considering only genetic evolution) often get

trapped in local minima. Cultural evolution, on the other

hand (on integration with genetic evolution), has proved to

be more robust in this respect. This paper employs an

intelligent optimization method which uses differential

evolution (DE) [30, 36] as the genetic evolution tool and

learning automata (LA) [25] for realizing the cultural

evolution phase on two different motor imagery EEG

datasets. Here, we have employed power spectral estimates

for feature extraction and support vector machine for

classification.

The rest of the paper is organized as follows. Section 1

describes our proposed framework of feature selection

using DE and LA. Section 3 deals with the experiments

undertaken to study the performance of our proposed

approach. In Sect. 4, we compare our approach with other

feature selection approaches. The concluding remarks are

given in Sect. 5.

2 The proposed approach

The proposed approach aims to reduce the dimensions of a

feature vector based on a synergistic operation between an

evolutionary algorithm and a supervised learning classifier.

Here, a number of trial vectors are formed with different

number of features for the same dataset, which constructs a

pseudofeature vector from the original dataset such that

each data point consists only of the selected features.

Precision of each possible combination of selected features

is quantitatively evaluated with the classification accuracy

obtained by testing the learning classifier. Then, through

the mechanism of mutation and natural selection, eventu-

ally, the best solutions start dominating the population,

whereas the bad ones are eliminated. Ultimately, the evo-

lution of solutions converges when the fittest solution

represents a near-optimal partitioning of the dataset with

respect to the employed validity index. In this way, the

optimal number of features is selected using our proposed

framework. Here, we have employed the use of LA-DE

algorithm [34] and SVM for this purpose.

2.1 The LA-DE algorithm

In the proposed framework, the global search mechanism is

accomplished by successive generations of DE, while the

optimal control parameters for individual members of the

population in every generation are provided from a meme

pool [43], for given scaling parameter F, which is main-

tained through the generations. A meme is defined as a unit

of cultural information [43]. The meme selection process
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[43] is controlled by the state transition probability matrix

Si;j, where the row indices represent the states of the sto-

chastic automata [25] and the column indices represent the

actions performed by the automata at a particular state. The

rows correspond to the population members ranked in the

order of their decreasing fitness values, and the columns

correspond to uniform quantized values of the control

parameter (i.e., F) in a given range, say (0, 2]. In an evo-

lutionary algorithm framework, ‘‘fitness’’ signifies the

performance of a population member with respect to a cost

function (see Sect. 2.3). The principles used in designing

the LA-DE algorithm are outlined below.

2.1.1 Initialization

LA-DE algorithm starts with a population of NP

D-dimensional parameter vectors, each population vector

representing a possible solution vector Z~. The popula-

tion members are initialized according to a uniform

random distribution along every dimension, within

the prescribed minimum and maximum bounds: Z~min ¼
fzmin�1; zmin�2; . . .; zmin�Dg and Z~max ¼ fzmax�1; zmax�2; . . .;

zmax�Dg. This ensures that for a reasonable number of

vectors, the initial population covers the entire search space

uniformly. Hence, we may initialize the jth component of

the jth vector at generation t ¼ 0 as

zi;jðtÞ ¼ zj�min þ randi;jð0; 1Þ � ðzj�max � zj�minÞ ð1Þ

The state transition probability matrix is initialized with

equal values of 0.05 for 20 quantized levels of the

parameter F ( F1; F2; . . .;F20). This is in accordance

with the principle of unavailability of a priori information

about the environment and assuming all actions to be

equally likely at the initial stage.

2.1.2 Adaptive selection of meme

The next step involves the selection of Fj from the meme

pool ( F1; F2; . . .;F20) (for a member of state Si) such that

the cumulative probability of selection of F ¼ Fj through

Fj�1 is greater than a random number r in the range [0, 1]

for each population member, i.e.,

Xj�1

m¼1

psi;m
\r�

X20

m¼j

psi;m
ð2Þ

where psi;j
is the state transition probability vector at state Si.

Here, Roulette wheel selection [25] has been used for the

selection of potentially useful memes. This entails that

fitter memes would have higher probabilities of selection,

but the memes with poorer fitness also manage to survive

and contribute some components in the course of evolution.

Thus, this selection mechanism ensures that the diversity of

the meme population is effectively maintained.

2.1.3 Differential evolution

Mutation (DE/current-to-best/1) First, DE generates a

donor vector V~iðtÞ corresponding to each population

member Z~iðtÞ by randomly selecting two other members

Z~rand�1ðtÞ and Z~rand�2ðtÞ, where

V~iðtÞ ¼ Z~iðtÞ þ FðZ~bestðtÞ � Z~iðtÞÞ þ FðZrand�1ðtÞ
� Z~rand�2ðtÞÞ ð3Þ

and F is the scaling factor (selected from the meme pool

adaptively), which is used for linear scaling of the differ-

ence vectors during the mutation operation and Z~bestðtÞis
the population member with the best fitness.

Crossover Following the generation of the donor vec-

tors, crossover operation is performed to increase the

potential diversity of the population. There are two types of

crossover (recombination) schemes: binomial and expo-

nential [6, 9]. In the proposed realization, we have used

binomial crossover, where the D components are changed

whenever a randomly generated number, in the range [0, 1]

following a binomial distribution, is less than or equal to

the crossover ratio. Here, a trial vector U~iðtÞ is generated

for each pair of V~iðtÞ and Z~iðtÞ by (4).

ui;jðtÞ ¼

8
><

>:

vi;jðtÞ; if randi;j�Cr or

j ¼ jrandðjrand 2 ½1;D�Þ
zi;jðtÞ; otherwise

ð4Þ

where randi;jð0; 1Þis a uniformly distributed random num-

ber lying in [0, 1] and Cr is the crossover ratio.

Selection The next step of DE decides whether the trial

vector U~iðtÞor the target vector Z~iðtÞ is selected for the next

generation, according to their fitness. The selection process

is

Z~iðt þ 1Þ ¼ U~ iðtÞ if f ðU~iðtÞÞ� f ðZ~iðtÞÞ

¼ Z~iðtÞ if f ðU~iðtÞÞ[ f ðZ~iðtÞÞ ð5Þ

where f ðx~Þis the fitness.

2.1.4 Update of state transition probability matrix

Let a member at state Sm on selection of Fj from the meme

pool produce a trial vector after mutation and crossover. If

the fitness of the trial vector increases, then the state

transition probabilities are updated according to (6);

otherwise, it is updated according to (7). Here, the linear

reinforcement scheme [34] is employed for the updation

process, which is If f x~tð Þ[ f x~t�1ð Þ,
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(
pjðt þ 1Þ ¼ ð1� aÞ:pjðtÞ 8j 6¼ i for state Sm

piðt þ 1Þ ¼ piðtÞ þ a:ð1� piðtÞÞ
ð6Þ

Otherwise,
(

pjðt þ 1Þ ¼ b
e�1
þ ð1� bÞ:pjðtÞ 8j 6¼ i

piðt þ 1Þ ¼ ð1� bÞ:piðtÞ
ð7Þ

where a e [0, 1] is the reward response, b e [0, 1] is the

penalty response, and e is the number of actions of the

automata process.

2.1.5 State assignment

Following the updation of the state transition probability

matrix, we sort the population members in decreasing order

of their fitness and assign their corresponding states.

2.1.6 Convergence

After each evolution, we repeat from step 2 (see Sect. 2.4)

until the termination conditions are satisfied. The algorithm

is stopped if the maximum number of generations (gen_-

max) is reached or the cost function falls below a prede-

fined level.

The overall schematic of the proposed LA-DE algorithm

for feature selection is shown in Fig. 1.

2.2 Solution representation and fitness evaluation

In order to judge the quality of the proposed feature selection

method, we partition the entire dataset into three mutually

exclusive partitions u1, u2 and u3 for training, validation

and testing, respectively. u1 is employed to train the clas-

sifier for each population member, and u2 is used for fitness

function calculation. Finally, the optimal set of selected

features, obtained as a result of optimization, is tested on u3.

For this purpose, k-fold cross-validation technique [2] is

employed and the features are normalized in the range [0, 10]

before partitioning to reduce ambiguity. If CA is the classi-

fication accuracy for the validation set u2, then the fitness of

the jth population member will be given by

fj ¼ 1=CA ð8Þ

Thus, minimization of this cost equation ensures

population members with better validation-stage

classification accuracy to be selected during the evolution

phase.

For the total set of D features, we represent each

member of the population (of NP members) participating in

evolution as a 2D vector Pj ¼ w1j; . . .;w2pj

� �
where the

ith component of the vector, wij, ðwij 2 ½0; 1�; i ¼
1; 2; . . .;D; j ¼ 1; 2; . . .;NPÞ represents the Activation

Thresholds for the respective features. We state that if a

particular component is greater than 0.5, then the corre-

sponding feature feat is considered for validation and

testing in the classifier stage. On the other hand, the ith

component of the vector wijðwij 2 ½0; 1�; i ¼ Dþ 1;Dþ
2; . . .; 2D; j ¼ 1; 2; . . .;NÞ represents the Scaling Factors

for the respective features. Activation Thresholds and

Scaling Factors determine which features are to be inclu-

ded in the final set Sj of optimal features. The selection of

the jth feature and jth population member is made as

follows:

Fig. 1 The proposed feature selection scheme
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If ðwij [ 0:5Þ

feati  wiþDj
� feati

feati 2 Sj ð9Þ

else

ignore feati

Thus, an Activation Weight of greater than 0.5 selects a

feature for training and validation, and in that case, the

feature is multiplied by the corresponding Scaling Factor.

This is done to enhance the discriminating power of the

classifier. Linear scaling of features before classification

enables the classifier to discriminate more efficiently along

the feature axis with larger scale factors. In this way, the

weights not only determine which feature to be selected but

also the importance of the selected features. As an exam-

ple, we consider the weight vector Pj of the jth population

member in Fig. 2. Taking D = 6, i.e., a total of 6 features,

the values of the weights shown indicate that the first,

second and third features are to be selected for training and

validation after multiplication with appropriate scaling

factors, while the rest are ignored. Thus, the set of selected

features for the jth population member becomes

Sj � f0:68� f1; 0:76� f2; 0:44� f3g.

2.3 Final feature selection

The optimization continues until a stipulated number of

generations have reached or an acceptable rate of classifi-

cation is obtained. After termination, the population

member with the best fitness is selected for testing u3. The

weights of this vector determine the final selection of

features. Once again, the chosen features are subjected to

linear scaling by their corresponding weights. This ensures

that throughout the process of training, validation and

testing, the features are multiplied by the same scaling

factors, and hence, there is no scope of any misrepresen-

tation of data.

2.4 Pseudocode

The pseudocode for the complete algorithm is given here.

• Step I: Initialize a set of NP vectors each with

2D components initialized randomly between 0 and 1.

• Step II: Select features according to rule (8) for every

population member.

• Step III: Train classifier on u1 with selected feature set.

• Step IV: Validate on u2 and calculate fitness of

population members.

• Step V: Update population members according to the

evolutionary algorithm guided by the fitness values

calculated above.

• Step VI: if gen\genMAX, goto Step II, else select

member with the best fitness to get the final set of

features. Here, genMAXdenotes the maximum number

of generations.

3 Experiments and results

This section provides details on the experiments under-

taken to examine the performance of our proposed feature

selection algorithm. For this purpose, the power spectral

density (PSD) estimates of two separate motor imagery

datasets are employed as features. These features are fed to

our proposed LA-DE feature selection algorithm to reduce

the dimensions of the feature vector. Support vector

machines (SVM) are employed to optimize the results of

the LA-DE and validate its performance from the recog-

nition accuracy of the given EEG datasets.

3.1 Dataset I: dataset IVa from BCI competition III

This dataset comprises EEG recordings of five healthy

subjects (namely, aa, al, av, aw and ay) with a sampling

frequency of 100 Hz. Details on the motor imagery

experiments performed by the subjects are given in [12].

As indicated in [12], the visual cues for the two motor

imageries the subject should perform: right hand (Class 1)

and right foot (Class 2) are time-locked within 3.5 s. In this

study, the signals obtained from C3 and C4 electrodes are

filtered using Laplace filters [12] to reduce the effects from

the neighboring electrodes.

3.2 Dataset II: experimental data

This dataset was constructed from the EEG acquired from nine

subjects during a left–right motor imagery experiment con-

ducted at our laboratory. EEG signals were acquired using a 19

Fig. 2 An example of the

vector representation of a

particular population member

for a dataset with 6 features
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channel NeuroWin (manufactured by NASAN) amplifier, with

a sampling frequency of 250 Hz. Signals from C3 and C4

electrodes were selected to extract relevant information on the

different movement. Prior to the start of the experiment, the

subjects were given a small introduction about the research

work and stages of the experiment involved. The subjects

performed the experiments on a single day, consisting of 3

separate sessions with 15-min relaxation in between.

The subjects perform the motor imagery tasks based on

the visual stimuli shown to them during each experimental

session. Each session comprises 30 trials; thus, for every

subject, a total of 90 trials are obtained. The subjects

imagine moving their right and the left hand when right and

left arrows are displayed on screen. In each session, a blank

screen was displayed in the first 10 s. In the tenth second, a

fixation cross ‘‘?’’ was displayed on the screen, which

indicates the beginning of a trial. From the twelfth second

onwards, the visual stimuli are displayed for three seconds

to indicate which arm to move. Next, a blank screen is

shown for 2 s during which the subject can relax. This stage

also reduces the effect of the previous motor imagery per-

formed by the subject on the current one. Figure 3 gives a

generic structure of the visual stimuli.

First, the acquired EEG is band-pass-filtered between 8

and 35 Hz using an IIR elliptical filter of order 14, to

remove the noise acquired from the amplifier and the

environment. The elliptical filter was selected because the

filter has a sharper roll-off as compared to the other filters,

requires a small filter order and can independently adjust

both the passband and stop-band ripples, as per the user’s

wish. The passband attenuation and stop-band attenuation

are experimentally determined to be 1 and 50 dB, respec-

tively. Then from each trial, the average of the two seconds

of data acquired during the fixation cross period is sub-

tracted from the three seconds of the movement stimuli data

to remove the effect of background EEG from the motor

imagery data. Finally, three seconds of the motor imagery

data from each trial is selected for feature extraction.

3.3 Feature extraction: power spectral density

estimates

Spectrum estimation describes the power distribution

contained in a signal over frequency based on a finite set of

data. For our study, we have used the Welch’s periodogram

for the spectral estimation of the EEG data. Here, the data

segments are overlapped and windowed prior to the cal-

culation of the periodogram. The overlapping and win-

dowing of the data segments leads to a decrease in the

variance and more control over the bias/resolution prop-

erties of the calculated PSD, respectively. These charac-

teristics make this method highly suitable for the analysis

of a non-stationary signal [5].

For our study, we have prepared the original feature

vector from PSD estimates using the Welch’s method.

Here, a Hamming window of size 125 and 50 for datasets I

and II, respectively, and 50 % overlap was used to obtain

the frequency distribution of the extracted filtered EEG

over 128 frequency points, for both the electrodes C3 and

C4. Thus, the total size of the feature vector is 128 features

92 electrodes.

3.4 Feature selection and classification results

The features extracted from the previous section are fed as

inputs to our proposed feature selection. According to our

algorithm, the best minimum number of features is selec-

ted, which would yield the best result, i.e., classification

accuracy. Thus, the classifiers used in this study have two

functions: First, it is used to optimize the LA-DE feature

selection, and second, it is used to validate the selection of

the features on a test dataset. For this purpose, we have

selected support vector machines (SVM) [35, 42] with

linear kernel as the classifier. SVM has earned popularity

in recent years because it has good recognition ability at

high computational speed as compared to other standard

classifiers.

Experiments undertaken further reveal that the param-

eters in the LA-DE algorithm that give the best perfor-

mance are as follows: population size = 50, scaling

factor = 0.5, crossover ratio = 0.9, maximum number of

generations = 10,000, stopping criteria = 10 number of

same fitness and reward/penalty rate = 0.01. Tables 1 and

2 give the recognition accuracy of the classifiers before and

after feature selection for both datasets I and II, respec-

tively. For this purpose, the dataset is partitioned into

training set and test set using k-fold cross-validation

technique [41]. Here, k is selected as 10 and the accuracies

Fig. 3 Timing scheme diagram

of the visual cue
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for each subject are measured over 10 runs. As observed

from Tables 1 and 2, the accuracies of the dataset after

employing the LA-DE algorithm have significantly

improved.

4 Performance analysis

In this section, we examine the performance of the LA-DE

algorithm with the following competitor algorithms: par-

ticle swarm optimization (PSO) [18], genetic algorithm

(GA) [8] and kernelized principal component analysis

(kPCA) [4] using linear SVM as the classifier. The

parameters selected for PSO and GA are similar to the one

selected for LA-DE in Sect. 3.4. For kPCA, we have

reduced the dimensions of the algorithm to half of its ori-

ginal length, i.e., 128. The performance of the algorithms is

measured by the following parameters: (1) recognition

accuracy (Acc.), (2) computational time (C.T) and (3)

features selected (F.S). They are defined below for ready

reference.

Recognition Accuracy (Acc.): It is the ratio of the

number of test data correctly classified by the trained

classifier to the total number of test data. It is expressed in

percentage (%).

Computational Time (C.T): It is the total time taken by

the feature selection algorithm to produce the best result. It

is expressed in seconds (sec).

Features Selected (F.S): It is the number of features

selected after using the feature selection algorithms on the

original datasets.

Each performance measure was calculated on MATLAB

7.9 environment run on a computer with the following

specifications: Intel Core 2 Duo 1.19 GHz, 3.2-GB RAM

and Windows platform. Tables 3 and 4 provide the results

for the comparison of LA-DE with its competitors. As

observed from Table 3, LA-DE yields the best result in

terms of accuracy, but PSO gives the best result in terms of

features selected. But from Table 4, it is observed that LA-

DE yields the best performance in terms of both accuracy

and features selected. From both the tables, it is noted that

kPCA requires the minimum amount of time, but the

accuracy obtained is very poor. Maintaining a trade-off

between the accuracy, computational time and features

selected, it is noted from Tables 3 and 4 that LA-DE gives

the best optimal result.

The performance measures of LA-DE are further vali-

dated by means of Friedman’s test [10, 11] performed on

both datasets I and II. The null hypothesis here states that

all the algorithms are equivalent, so their ranks Rm should

be equal. The Friedman statistic

v2
F ¼

12N

kðk þ 1Þ
Xk

m¼1

R2
m �

kðk þ 1Þ2

4

" #
ð14Þ

is distributed accordingly to v2
F with K-1 degrees of

freedom, where k is the number of algorithms to be com-

pared and N is the number of parameters used for com-

parison. In this study, we have selected the mean of all the

three parameters for both the datasets; thus, k = 4 and

N = 6, and Table 5 is the ranking table prepared from

Tables 3 and 4.

From Table 5, we calculate the value of Rj, which is

further used in Eq. (14) to get v2
F = 22.5 [ v2

4;0:095 =

9.488. So, the null hypothesis, claiming that all the algo-

rithms are equivalent, is wrong, and therefore, the perfor-

mances of the algorithms are determined by their ranks

only. It is clear from the table that the rank of LA-DE is

1.5, claiming that LA-DE yields better results than its

competitors.

5 Conclusion

The paper proposes a novel feature selection technique

based on differential evolution and learning automata.

Experiments have been performed on two datasets using

power spectral density for feature extraction and SVM as

the pattern classifier. Comparisons have been performed

with GA, PSO and kPCA, and the results indicate that the

proposed approach yields better result. A major advantage

of the proposed algorithm is that the optimal number of

relevant features is a direct outcome of the algorithm and

does not have to be experimentally determined, which

Table 1 Classification accuracies (in %) for dataset I (S.D.—stan-

dard deviation)

Subjects aa al av aw ay Mean S.D.

SVM 88.24 95.45 77.78 100 100 92.29 9.43

LA-DE-SVM 97.06 100 100 100 100 99.41 1.31

Table 2 Classification accuracies (in %) for dataset II (S.D.—standard deviation)

Subjects 1 2 3 4 5 6 7 8 9 Mean S.D.

SVM 71.63 62.80 67.12 54.55 49.89 62.16 66.87 69.99 34.10 59.90 11.98

LA-DE-SVM 100 88.89 87.50 88.89 77.78 88.89 100 90.00 70.00 87.99 9.51
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saves the time of the user. Also, this algorithm allows the

user to employ other classifiers in place of the ones dis-

cussed in this paper. The only disadvantage of this algo-

rithm is that the performance of the optimizer may degrade

due to stagnation. However, this can be easily overcome by

running the optimizer a number of times (say 10) for the

same cost function and then taking the best results. This

does not affect the computational time as the optimizer

works in an offline environment. Further study in this

direction aims to optimize the feature extraction and

classification techniques to be implemented in the online

classification of the EEG data for BCI research and thus to

ultimately develop a complete stand-alone system for an

EEG-driven neuroprosthetic control for rehabilitation

purpose.
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