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Abstract This manuscript describes our recent develop-

ments towards better understanding of the mechanisms

amenable to cardiac resynchronization therapy response.

We report the results from a full multimodal dataset cor-

responding to eight patients from the euHeart project. The

datasets include echocardiography, MRI and electrophysi-

ological studies. We investigate two aspects. The first one

focuses on pre-operative multimodal image data. From 2D

echocardiography and 3D tagged MRI images, we compute

atlas based dyssynchrony indices. We complement these

indices with presence and extent of scar tissue and correlate

them with CRT response. The second one focuses on

computational models. We use pre-operative imaging to

generate a patient-specific computational model. We show

results of a fully automatic personalized electromechanical

simulation. By case-per-case discussion of the results, we

highlight the potential and key issues of this multimodal

pipeline for the understanding of the mechanisms of CRT

response and a better patient selection.
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1 Introduction

Cardiac resynchronization therapy (CRT) can relieve heart

failure (HF) symptoms by reducing heart dyssynchrony

through the implantation of a pacemaker. However, non-

response rates to CRT rise to 30 % (clinical response) or

44 % (volume response) [5]. Thus, patient selection and

pacemaker configurations remain open challenges of high

concern and focus within the clinical community. Recent

updates of the official guidelines for CRT from the European

Society of Cardiology now include a number of additional

patient subgroups that were previously omitted [32]. Several

research groups are also investigating new pacing configu-

rations (number and position of leads) in experimental

models under fully controlled conditions [47] as well as the

different parameters that are related to response to CRT [4].

Patient-specific cardiac imaging tools and computational

models can help to understand and improve CRT, since

they combine anatomical and functional pre-operative data

to provide new insights into dyssynchrony mechanics [41].

This has motivated our research under two driving ques-

tions: (1) Can pre-operative multimodal image data

improve our understanding of the mechanisms of CRT

response? (2) Can in silico electromechanical simulations

improve our understanding of intra-ventricular mechanical

dyssynchrony? This manuscript describes our recent

developments towards answering these two questions.

These developments have been applied to clinical cases

collected for a multi-center study within the euHeart pro-

ject. Most of the components presented in this work are

already integrated into a common software framework,

constituting the cardiac resynchronization therapy plan-

ning platform, currently implemented in an open-source

software, GIMIAS [26].

2 Image data

The image data collected routinely before CRT implanta-

tion is mainly echocardiography, for cost and practical

reasons. Next to a full echocardiographic evaluation, often

patients undergo an MRI scan to evaluate the presence and

extent of scar tissue in the myocardium. Follow-up with

MRI is currently not feasible for implanted patients. With

this starting point, we have extended each examination to

include advanced acquisition sequences to better under-

stand the mechanisms of dyssynchrony and relate them to

CRT response.

2.1 Patient description

In this study, we report the results obtained in a full dataset of

multimodal data corresponding to eight patients: four

acquired at INSERM (Institut National de la Santé et de la

Recherche Médicale, Université de Rennes, France), and

four acquired at KCL (King’s College London, UK). These

patients are a subset of a larger multi-center study (n = 70)

within the euHeart project. These cases were selected to

high-light different aspects of our pipeline. All patients were

selected for CRT implantation based on standard criteria

[New York Heart Association (NYHA) class III–IV; left

Ventricular (LV) end-diastolic diameter [55 mm; LV

Fig. 1 Image data of patient

INSERM #1 (top): pre-CRT

MRI (4-chamber SSFP), intra-

operative electrophysiological

study (EnSite), displaying a

voltage map at the end of the

QRS complex, follow-up

echocardiography (4-chamber

2DUS). Image data of patient

KCL #16 (bottom): pre-CRT

3DTAG in 4-chamber and

short-axis view, pre-CRT LE in

short-axis view
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ejection fraction (EF) \35 % and prolonged QRS on elec-

trocardiogram [120 ms]. The study complied with the

Declaration of Helsinki and the protocol was accepted by our

local ethics committees. Written informed consent was

obtained from all subjects. Patient demographics are shown

in Table 1.

To evaluate patient response to CRT, there are usually

two main criteria: clinical response and volume response.

In this paper, we defined clinical response as an increase

C10 % in the 6-min walking test (6MWT), or a NYHA

functional class reduction C1 point for patients unable to

complete the 6-min walking test at baseline. Volume

response is defined as a reduction C15% in LV end-systolic

volume or an increase C15% in ejection fraction [5]. These

criteria (evaluated in Table 1) are in agreement with clin-

ical practice and values found in literature. For limitations

of using strict cut-off values refer to Sect. 5.1.

2.2 Ultrasound acquisition

Patients underwent a full echocardiographic study (2DUS)

prior to CRT intervention and at 3/6 months follow-up.

The studies were acquired using a GE Vivid 7 scanner (GE

Healthcare, Milwaukee, WI, US). Ejection fraction (EF)

and LV dimension were measured for each patient using

2D biplane Simpson’s method. Analysis was performed

using the EchoPac software (General Electric-Vingmed,

Milwaukee, WI, US). For an example dataset see Fig. 1.

2.3 MRI acquisition

The MR datasets were acquired using a 1.5T Philips

Achieva System (Philips Healthcare, Best, The Nether-

lands). The MR sequences used in this study were cine

steady-state free precession (SSFP), late enhancement (LE)

and 3D tagged (3DTAG) images. SSFP datasets were

scanned in multiple views (Repetition Time/Echo Time

2.9/1.5 ms, flip angle 40�). For an example dataset see

Table 1 Patient demographics evaluated at pre- (basal) and post-

CRT (follow-up)

INSERM KCL

#1 #2 #3 #4 #12 #9 #16 #24

Demographics

Age 46 72 69 51 70 72 32 56

Ischemic

etiology

No No No No Yes Yes Yes No

QRS width (ms)

Basal 190 156 139 170 160 160 135 160

Follow-up 154 147 152 122 200 120 – 160

6MWT (m)

Basal 522 360 441 423 220 210 350 390

Follow-up 534 456 436 486 390 430 445 –

NYHA

Basal III III III III III III III III

Follow-up II II II II I I II I

LV ED diameter (mm)

Basal 72 64 64 78 59 58 78 76

Follow-up 56 63 64 65 – 66 – 72

LV EDV (ml)

Basal 376a 327a 190a 274 142 243 385 250

Follow-up 150 216 140 160 177 222 367 235

LV ESV (ml)

Basal 277a 249a 123a 223 92 184 319 213

Follow-up 93 126 86 104 116 172 272 171

LV EF (%)

Basal 26 24 35 19 35 24 17 15

Follow-up 38 42 39 35 34 23 26 27

Infarct (LE)

Location N N N N Sep Sep Inf N

Clinical response

Increase in

6MWT (%)

2 27 -1 15 77 105 27 –

Reduction in

NYHA

1 1 1 1 2 2 1 2

Patient/healthy 6MWT (%)b

Basal 91 63 77 74 39 37 61 68

Follow-up 94 80 76 85 68 75 78 –

Volume response

ESV reduction

(%)

– – – 53 -

26

7 15 20

Increase in EF

(%)

44 75 11 88 –2 –7 51 84

Spectrum of responsesc

Pure LBBB with

SF

R – – R – – – R

LBBB with sep

scar

– – – – NR NR – –

LBBB with non-

sep scar

– – – – – – R –

Table 1 continued

INSERM KCL

#1 #2 #3 #4 #12 #9 #16 #24

Other

mechanisms

– R NR – – – – –

6MWT 6-min walking test, EDV end diastolic volume, ESV end

systolic volume, EF ejection fraction, LE late enhancement, N none,

Sep septal, Inf inferior, LBBB left bundle branch block, SF septal

flash, R responder, NR non-responder
a Measurement from MRI
b 57 m [8]
c See Sect. 5.1
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Fig. 1. LE images were also scanned in multiple views

with an inversion recovery sequence, 10 min after IV

administration of 0.2 mmol/kg of gadopentate dimeglu-

mine contrast (Repetition Time/Echo Time 5.7/1.9 ms, flip

angle 25�). 3DTAG datasets were obtained with three

sequential breath-hold acquisitions in each orthogonal

direction (Repetition Time/Echo Time 7.0/3.2 ms, flip

angle 19�–25�, tag distance 7 mm) [39]. A respiratory

navigator was used to compensate for possible respiratory

miss-alignment during the three sequential acquisitions.

2.4 Electrophysiological study acquisition

Cardiac electrophysiological studies were performed for

INSERM patients, using the EnSite Velocity system (St

Jude Medical, St Paul, MN, US). For an example see

Fig. 1. A 64-electrode balloon catheter was inserted

through the femoral artery and placed within the left ven-

tricle. Recordings were obtained while performing differ-

ent stimulation configurations with the implanted CRT

system. Raw far-field potentials acquired by each elec-

trode, as well as a set of virtual electrograms projected onto

the endocardial surface, were exported for further pro-

cessing, which involved the estimation of local endocardial

activation times (LAT) and the generation of isochronal

and isopotential maps [37].

3 Can pre-operative multimodal image data improve

our understanding of the mechanisms of CRT

response?

The limitations of single measurements of mechanical

dyssynchrony have been extensively discussed [23], and

recent works insist on the importance of understanding the

complexity and variety of the etiologies of cardiac dys-

synchrony [27, 34]. Keeping this in mind, we chose to

analyze pre-operative image data in a way that allows both

the characterization and quantification of septal deforma-

tion patterns (i.e., septal flash1). Doing this we compute a

Fig. 2 2D?t motion abnormality quantification. The atlas-based

dyssynchrony indices are represented by means of color-coded maps,

in which the horizontal axis is time (one cardiac cycle) and the

vertical one is the position along the septum. Since the velocity data

has been aligned to a common spatiotemporal system of coordinates,

the time axis is the same for all subjects (axis legends are given for

subject INSERM #1 only, for the sake of clarity). Values correspond

to the p value index used to locally encode abnormality, in a

logarithmic scale, multiplied by the sign of the radial velocity. Thus,

blue and red colors indicate highly abnormal inward and outward

motion of the septum, respectively, while white color corresponds to

normal motion. The vertical line indicates the end of the isovolu-

metric contraction (IVC) period. The presence of inward and outward

events are indicated by the black arrows (see animations in

supplementary material). The dyssynchrony patterns inward/outward

with no longitudinal velocity (KCL #12) and inward only (KCL #9)

are probably due to the presence of septal scar (see Fig. 3). vq ¼
radial velocity, vh ¼ longitudinal velocity (color figure online)

1 Early inward motion/contraction of the septum, followed by lateral

wall contraction. This latter contraction pulls the relaxed septum and

thereby stretches it (see animations in supplementary material).
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dyssynchrony index at each spatiotemporal location, which

consists of a distance to normality in terms of motion. In

this work, we computed such dyssynchrony indices from

the CRT pre-operative datasets we collected, namely 2DUS

images (Sect. 3.1) and 3DTAG MR images (Sect. 3.2).

3.1 2D?t motion abnormality quantification

A new methodology for the computation of atlas-based dys-

synchrony indices was implemented in [17]. The methodol-

ogy was tested on 88 CRT candidates with visual evidence of

abnormal septal motion [18]. Briefly, this method compares

the myocardial motion pattern of the studied subject to an atlas

of normal motion built from a population of healthy volunteers

(in the present study, 21 healthy volunteers with normal car-

diac function recruited at the Hospital Clı́nic, Barcelona,

Spain). This method consists of three steps.

3.1.1 Myocardial velocities

Extraction of myocardial motion (myocardial velocities),

which is achieved in this study through the temporal dif-

feomorphic free form deformation (TDFFD) registration

algorithm [13, 14]. The TDFFD approach enforces the

temporal consistency and differentiability of the recovered

2D?t velocities, which should be preferred for the atlas

building process [16].

3.1.2 Alignment

Spatiotemporal alignment to a common reference anat-

omy, using the matching of physiological events (time) and

FFD image registration (space).

3.1.3 Statistics

Computation of statistics to encode normal motion within

the healthy population (average and covariance), and to

quantify abnormality (p value resulting from the Maha-

lanobis distance being used as statistical distance to nor-

mality, low p value meaning high degree of abnormality).

For 2D?t data, these indices are represented by means of

color-coded maps, in which the septum has been unfolded

around its medial line and used as vertical dimension, time

being used as horizontal axis (Fig. 2). Blue color represents

highly abnormal inward motion of the septum, whereas red

color represents highly abnormal outward motion. No

abnormality is, therefore, represented by white color.

3.2 3D?t motion abnormality quantification

To extend the quantification of dyssynchrony indices to

3D?t data, we collected a database of 15 volunteers to

have a reference of normal motion [44]. The volunteers

were scanned at KCL following the protocol described in

Sect. 2. Motion was quantified using the TDFFD algorithm,

which has been tested on 3DUS datasets [14] and 3DTAG

MRI datasets [15]. In our case, we used the 3DTAG

datasets to compute the atlas of myocardial velocities.

Briefly, due to our TDFFD approach, motion (myocardial

velocities) is represented by a 3D?t diffeomorphic trans-

formation continuous in space and time. Abnormal motion

is quantified using statistical parametric mapping (SPM)

[49] analysis on the velocity fields. Similarly to our 2D?t

approach, SPM provides a map of p values, which grades

and localizes regions where the two populations under

comparison differ significantly (individual vs. volunteer).

Dyssynchrony is associated with a simultaneous event of

contraction and relaxation. Such an event triggers high

abnormality values (i.e., high p value of �). They are

noticeable in Fig. 4 as peaks in the plot and yellow areas on

the left ventricular surfaces. The plots were computed

averaging the AHA segments along the septal wall at basal

and midventricular level. Further details can be found in

[12].

3.3 Resulting dyssynchrony indices

This section presents the results obtained from 2D and 3D

dyssynchrony indices. These results are further discussed

in Sect. 5.

3.4 INSERM patients

3.4.1 Prediction

Based on the abnormality maps (Fig. 2), patients #1 and #4

presented septal flash (SF) with no other complications and

were expected to be responders, following the results of

Parsai et. al. [34]. Patient #2 presented passive motion on

the septum (inward motion during early systole, not fol-

lowed by outward during early isovolumetric contraction).

Fig. 3 Late enhancement images highlighting the presence of septal

scar (white arrows). This is most likely the reason for the

dyssynchrony patterns displayed by these two patients
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In this case was hard to predict CRT response. The 2DUS

images of patient #3 were of relatively bad quality. How-

ever, we could differentiate almost normal longitudinal

contraction and small abnormal radial motion of the

septum.

3.4.2 Response

Considering the information in Table 1, and based on

volume response, patients #1, #2 and #4 were clear

responders to CRT. On the other hand, patient #3 was a

non-responder. The patient maintains a large QRS width,

probably indicating that electrical dyssynchrony (not

LBBB in this case) was not corrected. This patient has

different etiology than the other cases (idiopathic cardio-

myopathy), along with mitral and aortic regurgitation,

significant atrial volumes and increased pulmonary artery

pressure. This condition makes the evaluation of CRT

response more difficult. For these 3 volume responders,

patient #1 did not meet the clinical response criteria.

However, the distance walked by this patient at baseline

was very close to normal (91 % compared to a healthy

population 40–80 years old) [8]. Therefore, 6WMT

distance is probably a suboptimal criterium for this case.

These results are further discussed in Sect. 5.

3.5 KCL patients

3.5.1 Prediction

Based on the abnormality maps (Fig. 2), patient #12 pre-

sented inward–outward motion, but no longitudinal motion.

Patient #9 presented inward motion only. This correlates

with the presence of scar along the septal wall (Fig. 3), in

accordance with other clinical studies [20]. Patient #16

presented SF, more marked at basal level, and end-systole

outward motion. The scar of this patient was located at

inferior wall. Patient #24 showed large SF along the whole

septum.

We also computed dyssynchrony indices from 3DTAG

images for patients KCL #16 and KCL #24. Both patients

displayed abnormal motion at early systole and at late

diastole. The early systole (33 % of cardiac cycle) abnor-

mality motion of patient KCL #16 is mainly localized at

basal level (consistent with 2DUS observations). The early

systole (13 % of cardiac cycle) abnormality motion of

Fig. 4 3D?t motion

abnormality quantification

computed from 3DTAG

datasets. p value associated to

the Euler characteristic was

plotted as a color map (top) and

as a function of time (bottom).

Abnormal motion results in high

values of � and are visualized as

peaks in the plot and yellow

areas in the color map. The

plots were computed averaging

the AHA segments along the

septal wall at basal and

midventricular level. The white

wireframe represents the AHA

segments used to calculate the

plots (color figure online)
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patient KCL #24 spans along the whole wall. The abnor-

mality peak at end diastole (78 and 82 % of cardiac cycle)

corresponds to late ventricular filling.

3.5.2 Response

Considering the information in Table 1, and based on

volume response, patients #16 and #24 were clear

responders to CRT. On the other hand, patients #12 and #9

were non-responders. This correlates well with our obser-

vations from the abnormality maps.

4 Can in silico electromechanical simulations improve

our understanding of intra-ventricular mechanical

dyssynchrony?

As was described in the previous section, the mechanics of

dyssynchrony of CRT candidates can differ greatly from

patient to patient. As a result, to be able to apply electro-

mechanical simulations to CRT planning, we must per-

sonalize our computer models as much as possible. To

obtain a personalized simulation, the models should

include parameters that can either be measured or inferred

from clinical data. Other parameters are measurements

obtained from animal or ex-vivo studies. The integration of

these multiple sources is therefore not a trivial task. We

describe next our advances towards personalized electro-

mechanical simulations of cardiac function in CRT

candidates.

4.1 Modeling the anatomy

In order to build a computer model that can accurately

represent each patient’s heart, we follow several steps.

4.1.1 Segmentation

We require a biventricular anatomy to be able to include

the contribution of the right ventricle (RV) to the septal

wall. Thus, we extract this anatomy from MRI datasets

using the segmentation algorithm implemented in [45]. In

this manner, we can select the most appropriate cardiac

frame as geometrical reference for the simulations. This

technique is based on a deformable model that can be

deformed manually, if final corrections are needed. Due to

the image resolution of MRI datasets, segmenting the RV is

particularly challenging. We cope with this by segmenting

only the RV endocardium. As a post-processing, we add

the RV epicardium with a user defined wall thickness

(typically 4 mm). From this biventricular surface we gen-

erate a volumetric binary image (see Fig. 6).

4.1.2 Volumetric meshing

From the binary image we extract a polygonal surface using

the Marching cubes algorithm [28]. Then, we use ReMesh

[3] to smooth and ensure a manifold triangular mesh. During

the volumetric meshing process, we can generate different

configurations targeted to the desired simulation: high-res-

olution tetrahedral meshes for detailed electrophysiological

Fig. 5 Personalized cubic

Hermite mesh: template mesh

initialization (top) and final

result (bottom). Warping of the

anatomy of patient INSERM #1

is presented as a white surface.

Original binary segmentation is

presented in as a red surface

(color figure online)
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simulations, low-resolution tetrahedral meshes for fast

electromechanical simulations, and, high-order hexahedral

meshes for mechanical simulations. For the generation of

tetrahedral meshes, we use Tetgen2 and Netgen.3 However,

the generation of patient-specific high-order hexahedral

meshes is more challenging. We developed a method to build

high-order meshes from a binary segmentation (see Fig. 5)

[25]. These meshes allow us to perform mechanical simu-

lations with solvers such as OpenCMISS [6].

4.1.3 Region labeling

During this step, each tetrahedron is automatically labeled

according to certain anatomical regions. The labels were

already defined in the original deformable model used for

segmentation. Therefore, we can simply transfer the labels

to the closest element in the new volumetric mesh. The

regions previously defined were: valves, LV myocardium,

RV myocardium, LV surface, RV surface, epicardial sur-

face and the 17 myocardial AHA segments (Fig. 6). Some

labels will be used for mechanical and electrophysiological

simulation personalization. Other labels will be used for

microstructures inclusion.

4.1.4 Microstructures inclusion

Some anatomical features, although very relevant for

generating realistic simulations, cannot be retrieved in vivo

with current imaging techniques. Therefore, we include

them in our anatomical model based on ex vivo observa-

tions. The two main structures we require for simulation

are preferential myocardial fiber orientation (myofibers)

and the cardiac conduction system (Purkinje networks).

Further details will be provided in the next section.

4.2 Modeling the electrophysiology

Classic electrophysiological (EP) models include ionic

models that characterize ionic currents flowing through the

Fig. 6 Modeling the anatomy

of patient INSERM #1 (from

top to bottom): extracting

geometry from MR datasets,

generating volumetric meshes,

adding labels of anatomical

regions and including

microstructures

2 http://tetgen.berlios.de.
3 http://www.hpfem.jku.at/netgen.
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cardiac cell membrane [9]. This type of models use many

parameters to recreate in detail events that happen at the

cellular level. Unfortunately, due to high computational

cost, that will limit its use in clinical environment, detailed

EP models are not directly translatable to our CRT appli-

cation. To cope with this constraint, we have developed

simple phenomenological models of electrophysiology, as

described in [35]. The method uses the Eikonal form of the

Hamilton–Jacobi equation to model electrophysiological

wave propagation in the myocardium. Anisotropic con-

duction due to the myofibers structure is included in the

domain considering the myocyte direction distribution

calculated by means of the Streeter model [42]. A fast

marching method (FMM) is applied to the numerical

solution in the domain for myocardium. We use homoge-

neous conduction velocities of 0.67 and 0.235 m/s along

myofibers direction and transverse to myofibers direction,

respectively [35]. In order to include the effect of the

cardiac conduction system, we defined a virtual Purkinje

partial-mesh that started in the apex of both ventricles and

is deployed throughout the ventricles. Following observa-

tions reported by Durrer et al. [21], we bounded the acti-

vation time of the Purkinje terminals to a maximum of

40 ms from the first terminal activated in the apex to the

last one in the base [7]. Purkinje terminal distribution was

generated randomly and gave a total of 300 points in the

LV and 150 in the RV (Fig. 6).

One common electrical disorder among CRT candidates

is left bundle branch block (LBBB). This disorder has been

widely associated with intra-ventricular dyssynchrony [34].

The close link between LBBB (electrical defect) and intra-

ventricular dyssynchrony (mechanical defect) has been

studied in animal models [43], clinical subjects [19], and,

more recently in computational models [24]. However, the

respective influence of one defect on the other remains an

open issue.

To model LBBB, we consider first the activation of the

Purkinje system in the RV, and the retrograde activation of

the Purkinje system in the LV after the depolarization wave

crossed the septal wall and reached the first LV Purkinje

terminal (Fig. 7). Besides simulating LBBB, we personal-

ize the EP model further by including local activation time

information measured with EnSite as described in [37].

Briefly, we use a fast Eikonal model to make an initial

tissue conductivity estimation. We use an adaptive multi-

level domain decomposition algorithm to minimize the

mean-squared difference of the simulated and measured

isochrones. Then we set this estimate as the conductivity

parameter of a biophysical model (Mitchell–Schaeffer).

Additional parameters, related to action potential duration

Fig. 7 Electrophysiological

simulation for a normal

activation pattern (top) and for a

left bundle branch block

activation pattern (LBBB)

(bottom). Isochrone map of

local activation time in ms
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and restitution properties of the tissue, are then directly

estimated locally using the Mitchell–Schaeffer model and

the measured endocardial surface potential. With this

approach, the simulated activation patterns are optimized

to fit the measured activation patterns. The obtained EP

model is displayed in Fig. 8.

4.3 Modeling the mechanics

With the steps described in Sects. 4.1 and 4.2, we

accomplished geometrical and electrophysiological per-

sonalization. For mechanical personalization, we per-

formed an automatic calibration of the parameters based on

global physiological indicators and cardiac motion specific

to the patient as follows. The fast EP models were inte-

grated into the finite element mechanical framework SOFA

[1]. The simulation presented in this study was obtained

with an updated implementation of the Bestel–Clement–

Sorine model described in [40]. To prevent rigid body

motion, some approaches choose to impose fixed zero

Dirichlet boundary conditions at the apex (or even the

base). In our case, to better resemble physiological condi-

tions, we used two types of boundary conditions. First, the

volumetric mesh was attached to soft springs at the level of

the four valve annuli limiting ventricular global motion. To

allow some valve motion, these linear springs were con-

nected to the valve vertices at their reference position

(stiffness = 50 Pa). The same spring approach was used to

constrain the apex. Second, we defined a fixed pericardium

surface surrounding the myocardium (fixed distance of

2 mm from the epicardium). A contact force allows sliding

of the myocardium against the pericardium. Both pericar-

dium and apex constraints limited ventricular displace-

ments [30].

The cardiac motion was computed from cine SSFP

datasets using the TDFFD registration algorithm (see Sect.

3.2). The static volumetric mesh (Sect. 4.1) was deformed

using the transformation obtained from the registration.

With this deformed volumetric mesh, the patient’s volume

curve was computed. Next, the ventricular pressure was

computed using as boundary condition a Windkessel model

that depends on four parameters: the peripheral resistance,

the characteristic time, the characteristic resistance and the

total arterial inertia [40]. With this volume and pressure

information, we implemented a new method to calibrate

the hyperelastic constitutive parameters and the Windkes-

sel parameters required for the mechanical simulation. This

calibration method was proposed to tackle two issues: the

Fig. 8 Personalized

electrophysiological simulation.

Depolarization time (DT)

isochrones as measured with

EnSite in the left ventricle (top).

Including the measured DTs

into the EP simulation, we

obtain DT isochrones on the

whole biventricular anatomy

(bottom)
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choice of the parameters to estimate and their initial cali-

bration to ensure convergence. The method automatically

calibrates the parameters from the ventricular volume

curve computed from image data (see Fig. 9).

This approach was designed to ensure speed and auto-

matic convergence, which is highly desirable for our

clinical application. Although a clear simplification of the

cardiac events happening during cardiac contraction, this

method proved to correctly reproduce ventricular volume/

pressure relationships both in volunteers and in heart fail-

ure patients [31]. The calibration can be further enriched

with personalization based on local volumes (i.e., per AHA

segment) or on motion information (i.e., position of the

endocardial surfaces).

The method is based on the unscented transform algorithm

and requires only one iteration with multiple simulations

performed in parallel for calibrating typically 4 or 5 parame-

ters selected from a sensitivity analysis. The parameters

evaluated included active contractive components (i.e., con-

traction, stiffness, relaxation rate, viscosity), passive hyper-

elastic components (i.e., Mooney Rivlin material), and

hemodynamics components (i.e., Windkessel model). This

algorithm builds a covariance matrix between the relevant

parameters and the observations (in our case the minimum of

the LV volume and the minimum and the maximum of its

derivative) spread around an initial parameter set. The new

parameters are then found to minimize the difference between

the mean simulated observations and the measured observa-

tions in one iteration. Complete details can be found in [30].

4.4 Resulting electromechanical simulations

Figure 10 shows the electromechanical simulations obtained

for the four cases from INSERM. In general, RV motion was

well reproduced, compared to the contours obtained from

cine SSFP datasets, except towards the ES phase at the basal

level. For the LV, the motion of the anterior, lateral and

posterior walls were well reproduced. As for the septum, the

simulations generated an early motion, probably due to an

early activation of the septum resulting from an unbalanced

contribution of the RV. However, this motion is not syn-

chronized with the septal motion observed in the patients.

The lack of electrical information from the RV endocardium

does not allow to properly personalize the electrical model.

Evidently, modeling the mechanic interactions leading to

septal flash remains a challenge. This might require a better

parameterization of the current model in order to obtain more

accurate results. Improvements can be related to an extended

hemodynamic model and/or personalization of additional

parameters. This is further discussed in Sects. 5.3 and 6.

5 Discussion

5.1 CRT candidate selection

One major point to take into account is the lack of stan-

dardization of response criteria. As recently pointed out by

Fornwalt: ‘‘Methods to assess response to CRT are nearly as

varied and different as the numerous published dyssyn-

chrony parameters’’ [23]. Specifically, clinical response

evaluates whether the patient feels better, which depends on

many factors besides the therapy itself. Volume response

evaluates whether the heart works better, but this in turn may

be affected by artifacts in pre-/post-CRT images. These

criteria partially reflect hemodynamic changes resulting

from CRT. They do not consider improvements in the con-

traction or synchronization of the ventricular walls, which

would be the first improvement of cardiac function to be

expected from CRT. This was one of the main motivations to

develop a technique for abnormal motion quantification [18].

Another strong limitation is that the definitions of both

clinical and volume responses include arbitrary thresholds

that the patient should pass to be considered a responder.

This limitation was partially addressed by Foley et al. [22]

by suggesting an evaluation based on a spectrum of

responses. Note that the literature on CRT studies also makes

a distinction between ischemic and non-ischemic patients,

and reports different rates of response for both categories.

However, and contrary to our study, few works actually

target the characterization of specific patterns of dyssyn-

chrony and their possible relation with the scar location.

Applying this spectrum of responses concept, we may

categorize our population into several groups. (1) Pure

LBBB with septal flash.4 These patients tend to respond
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Fig. 9 Results of the automatic calibration of mechanical simulation

parameters for patient INSERM #1. The optimization uses the

ventricular volume curve computed from image data

4 Early inward motion/contraction of the septum, followed by lateral

wall contraction. This latter contraction pulls the relaxed septum and

thereby stretches it (see animations in supplementary material).
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Fig. 10 To personalize the

electromechanical simulation,

we extract cardiac motion

information from cine SSFP

data using image registration

[14]. A patient-specific volume

curve is obtained from the

deformed mesh (green). The

mechanical simulation is

optimized to fit this patient-

specific volume curve (red).

ES end systole, LVF late

ventricular filling. See

animations in supplementary

material (color figure online)
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positively to CRT. From our population, patients INSERM

#1, INSERM #4 and KCL #24 correspond to this category

and were responders. (2) LBBB with septal scar. These

patients tend to respond poorly to CRT [20]. In our pop-

ulation, KCL #12 and KCL #9 fall into this category and

were non-responders. (3) LBBB with non-septal scar. As

long as the leads can be placed in viable tissue, patients

with inferior/lateral scar have slightly higher response rate

[20]. In our population, KCL #16 falls into this category

and was a responder.

A remarkable example from our population is INSERM

#2 who showed abnormal septal motion, but in smaller

magnitude and responded positively to the therapy. This

confirms the presence of additional mechanisms involved

in CRT that require further investigation.

5.2 Computational models to understand mechanical

dyssynchrony

The cardiovascular system has been studied for decades

using in vitro and animal models. More recently, compu-

tational models have also been adopted as a technique able

to accurately reproduce cardiovascular dynamics.

Using a generic (non-personalized) simulation, the

study of Leenders et al. [27] helped us understand dif-

ferent patterns of dyssynchrony. They investigated intra-

ventricular mechanical dyssynchrony by analyzing septal

deformation patterns. In this study, 132 CRT candidates

with LBBB were categorized in 3 septal deformation

patterns. They used a simplified lumped model (0D) to

simulate beat-by-beat hemodynamics [2, 29]. Although

this model is not personalized, it proved to be very

helpful for understanding the mechanics behind SF. This

model (TriSeg) represents the geometry with three

ellipsoids corresponding to RV, septum and LV. Simu-

lations included different activation delays between the

septal and lateral wall, together with different severities

of hypo-contractility. The three types of septal defor-

mation patterns were reproduced by simulating: (1) pure

LBBB, (2) LBBB with decreased septal contractility, and

(3) LBBB with decreased global contractility (e.g.,

severely infarcted heart). The study showed that response

to CRT was higher in pattern 1 and decreased towards

pattern 3. These observations actually confirm the gen-

eral trend observed in our images and expectations

towards the location and presence of an infarcted area, as

discussed in Sect. 5.1.

In another recent electromechanical simulation study,

Kerckhoffs et al. [24] used a canine heart model to

investigate the development of intra-ventricular dyssyn-

chrony. The study showed that mechanical dyssynchrony

arises from the combination of electrical dyssynchrony,

increase in total blood volume, and ongoing dilatation.

5.3 Computational models to simulate the effect

of CRT

The location of the pacing leads has been shown to greatly

influence the success of CRT [11]. Thus, predicting opti-

mal pacing sites is the ultimate purpose of our patient-

specific electromechanical simulations. Several approaches

have been explored to personalize the electromechanical

models.

Sermesant et al. [40] reported preliminary results on the

patient-specific electromechanical simulation methodology

presented in the current study. We extended the method-

ology to include kinematic information (i.e., cardiac

motion from cine SSFP) and the automatic calibration of

mechanical parameters [30].

Recent studies have explored the use of detailed elec-

tromechanical simulations to study the effect of CRT.

Constantino et al. [10] used a non-personalized detailed

electromechanical model on a patient-specific anatomy to

study the activation sequence in normal and failing hearts.

Niederer et al. [33] used detailed electromechanical simu-

lations to locate optimal pacing sites using invasive data

from a 60-year-old female. The study included a person-

alized anatomy with a generic (non-personalized) pos-

terolateral scar and took into account manually aligned

coronary venous anatomy from the same patient.

A very important aspect to consider is that the simula-

tions should reproduce the long-term effects of the therapy.

Kerckhoffs et al. [24] suggested to combine growth models

with electromechanical simulations. These growth models

are based on physiological processes such as hypertrophy

and/or dilation due to pressure and/or volume overload. By

including these growth models and more detailed boundary

conditions (CircAdapt [2]), Kerckhoffs et al. [24] were

able to reproduce the SF events with a finite-element

canine model. Further extension to patient-specific appli-

cations is required.

5.4 An integrated pipeline for personalization

With our pipeline, we managed to enrich the clinical data

available for the personalization of computational models.

We could achieve it by extending routine imaging data

with advanced imaging data. In particular, we have col-

lected experimental MRI sequences, including 3DTAG

[39], whole-heart [46], and 3D MR angiography sequences.

We have developed techniques to extract valuable ana-

tomical and functional information from these sequences,

as reported in previous publications: myocardial deforma-

tion from 3DTAG [15], full heart anatomy [36] and coro-

nary tree [48]. Both chamber and coronary information are

spatially fused and can be visualized during CRT inter-

ventions using an X-ray/MR (XMR) hybrid imaging
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system [38]. Our pipeline is integrated into a common

software framework (i.e., CRT planning platform). The

CRT planning platform allows for a more efficient case

processing workflow, with respect to multiple pieces of

unconnected software.

6 Conclusions and future work

To understand and improve CRT, we investigated two

aspects in this study: pre-operative multimodal image data

and patient-specific computational models. From our

observations, along with the studies discussed above (Sect.

5), we can conclude the following.

First, image-based criteria can complement the current

criteria for selecting CRT candidates. Nonetheless, special

care is required for preserving the quantitative information

embedded in such mechanical dyssynchrony indices, and

not reducing them to the definition of yet another threshold

for CRT patient selection. Rather, the likelihood of

response should be analyzed based on a deeper under-

standing of the dyssynchrony patterns of each given patient

and the chances of properly delivering the therapy given

the patient substrate. By analyzing pre-operative multi-

modal image data, we can identify the dyssynchrony pat-

terns that will most likely benefit from CRT. In addition,

computational models can help to discriminate between

non-responders originated from a lack of electrical resyn-

chronization, problems of tissue stimulation (e.g., large

scar areas), or mechanical defects.

Second, modeling the electrical defect (LBBB) alone is

not enough to capture the mechanisms of intra-ventricular

dyssynchrony. From the insights obtained from our pre-

operative image data, we observed that dyssynchrony

mechanisms can vary significantly among CRT candidates.

Thus, there is a need for electromechanical simulations

that accurately reproduce patient-specific dyssynchrony

patterns.

Third, several recent studies suggest the strong potential

of electromechanical models to reproduce the effect of

CRT on patients. In our study, we observed that with a

correct personalization of the eletrophysiological model,

abnormal septal motion is retrievable. However, we believe

that the whole phenomenon of septal flash, including inter-

ventricular pressure differences, lateral pulling and septal

stretching, requires further investigation. For instance,

parametrization of current electromechanical models

should be improved through better electromechanical

coupling, inclusion of patient-specific viability information

(i.e., scar) and plausible anatomical locations of pacing

(i.e., coronary tree), more detailed boundary conditions

(e.g., hemodynamics computed by the CircAdapt model),

and inclusion of growth models to evaluate the chronic

effect of the therapy. Once these issues are tackled, we can

further explore the potential of patient-specific electrome-

chanical models to assess whether synchronicity is restored

after an in silico CRT device implantation.

Fourth, in this study we present a large amount of

multimodal imaging data from CRT candidates. To our

knowledge, such an amount of complementary image data

had never been used to study CRT candidates, due to the

difficulty of acquiring these datasets. This information

proved to be highly valuable to understand the complexity

of the mechanisms conditioning CRT response. Now that

we have a pipeline in place, it is possible to increase the

sample size and evaluate multiple pacing sites. Our future

work will focus on the evaluation of a larger cohort of

patients recruited within the euHeart project. With this we

hope to make electromechanical simulations ready to be

applied in real clinical scenarios.
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