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Abstract We investigated the parameter identification of

a multi-scale physiological model of skeletal muscle, based

on Huxley’s formulation. We focused particularly on the

knee joint controlled by quadriceps muscles under electri-

cal stimulation (ES) in subjects with a complete spinal cord

injury. A noninvasive and in vivo identification protocol

was thus applied through surface stimulation in nine sub-

jects and through neural stimulation in one ES-implanted

subject. The identification protocol included initial identi-

fication steps, which are adaptations of existing identifi-

cation techniques to estimate most of the parameters of our

model. Then we applied an original and safer identification

protocol in dynamic conditions, which required resolution

of a nonlinear programming (NLP) problem to identify the

serial element stiffness of quadriceps. Each identification

step and cross validation of the estimated model in

dynamic condition were evaluated through a quadratic

error criterion. The results highlighted good accuracy, the

efficiency of the identification protocol and the ability of

the estimated model to predict the subject-specific behavior

of the musculoskeletal system. From the comparison of

parameter values between subjects, we discussed and

explored the inter-subject variability of parameters in order

to select parameters that have to be identified in each

patient.

Keywords Muscle model � Biomechanical model �
Parameter identification � Simulation � Paraplegia

1 Introduction

Electrical stimulation (ES) can be used to induce the

contraction of muscular fibers for rehabilitation purposes. It

can be applied on the muscle surface (epimysial), through

the motor nerve (neural) or spinal cord (epidural) [19].

Electrodes, in the first two cases can be either implanted or

over the skin.

However, the stimulation patterns still need to be

empirically tuned to obtain the desired functional effect.

These trial sessions may be long and the results could be

biased by the increased fatigue that occurs during the

sessions. Indeed, the stimulation parameters are often not

optimal regarding the individual subject’s characteristics

and are very difficult to set in an objective manner.

Therefore, an accurate muscle model may provide a sim-

ulation for analyzing the system behavior and could be

used to optimize the ES tuning.

Muscle models could be based on black box approaches

[15, 33, 39] or on physiological constitutive laws [24, 25,

45, 46]. Because of the difference in mass, geometry and

dynamic characteristics between subjects and muscles,

both types of models require an estimation of parameters

specific to each subject and muscle. Based on a black box

model, the authors in [15, 33, 39] introduced parameter

identification methods through a model linearization in

isometric conditions [15], or by using a known model
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structure, which allowed the authors to apply well-estab-

lished identification methods in isometric and non-iso-

metric conditions [33, 39]. However, the identification

results were not clearly quantified and the validation was

performed in either isometric conditions or with very

specific and predefined input. Moreover, the models were

not physiologically meaningful since the parameter values

were meaningless and did not contain any information to

gain insight into the basic underlying physiological/bio-

mechanical processes.

On the other hand, physiological models have also been

used and the identification of their parameters has been

investigated in [12, 23, 43] through invasive protocols on

isolated animal muscles. In the case of human applications,

a noninvasive condition is usually required, where some

internal states such as muscle lengths are not easily mea-

surable, so numerical algorithms have to be adapted in a

non-trivial way. The feasibility in isometric conditions was

investigated to identify the parameters of a part of the

model [5, 8, 27] or of the whole model [6]. In this latter

work, the identification accuracy, quantified through nor-

malized percentage errors, is between 8.49 and 32.2 %. In

isometric conditions, the model is often simplified, limited

and cannot describe the dynamic behavior of the muscu-

loskeletal system. Under dynamic conditions, the model

and the identification procedure become more difficult to

handle, due to the influence of force–velocity and force–

length phenomena.

In [7, 14, 16, 34], the authors identified the model

parameters under dynamic conditions with a normalized

root mean square errors of between 16 and 30 % in [16]

and lower than 17 % in [14]. In [7], the identification

accuracy was lower than 15 % and was quantified through

the sum of absolute errors divided by the sum of the

measurements, i.e. so-called fractional percent error. In

these works the active muscle model was validated in

dynamic conditions, while the identification procedure was

based on isometric measurements [14, 34] or on both

dynamic and isometric measurements [7, 16]. Hill-type

muscle models were used in all of these cited works. Such

models are based on a macroscopic and phenomenological

formulation, and do not reflect enough nonlinear muscle

properties. Besides, the authors in [32] evaluated the

accuracy of such models and showed that Hill-model errors

increase during movement for low stimulation rates

(between 10 and 20 Hz), which are most relevant to normal

movement conditions. The authors also highlighted the

increase in Hill-model errors with increasing movement

amplitude. Therefore, to overcome these limitations, it is

necessary to use a model based on Huxley’s formulation

[29], which takes microscopic phenomena into account,

and includes more nonlinear dynamics that are most rele-

vant in the representation of muscle behavior. Moreover,

the identification of all parameters makes the identification

protocol very complex and the selection of parameters to

identify still remains very delicate. Indeed, as far as we

know, no previous studies have determined the importance

of each parameter in the model customization, by exploring

their inter-subject variability.

In this work, we applied a new microscopic and

physiological muscle model based on the Huxley formu-

lation and previously developed in [29]. This model,

which has so far only been used on isolated rabbit muscle

in isometric conditions [23], was investigated here in

human subjects with complete spinal cord injury (SCI)

under dynamic conditions. Thus, we established a whole

experimental protocol for parameter identification that we

applied on knee joints, actuated by the electrically stim-

ulated quadriceps muscle. The whole identification pro-

tocol was applied in isometric and dynamic conditions on

each side in seven subjects with complete SCI. First, we

applied an initial identification protocol including four

steps in order to estimate the parameters which are com-

mon to Hill-type models and our model. Therefore, these

methods are adaptations from existing identification

methods applied on Hill-type models. We thus introduced

an original identification protocol using dynamic mea-

surements of the leg and based on the resolution of a

nonlinear programming (NLP) problem to identify the

stiffness of the serial element.

Our main aim is to facilitate clinical application of this

identification procedure by physiotherapists. Therefore, we

focused on two main points to reach this goal. The first

involved simplification of the identification procedure by

defining the relevant parameters to identify. We therefore

discuss the inter-subject variability in the identification

results to define the most subject-specific parameters. The

second point is to establish and apply a safer and lighter

identification protocol than the existing ones [8, 30], to

estimate the stiffness of the serial element (SE) of muscle.

Thereafter, we introduce the new musculoskeletal model

and describe the experimental setup and then we present

the identification protocol and detail the NLP-based iden-

tification protocol. In Sect. 3, we present the experimental

results obtained on human subjects. Finally, the results are

discussed in Sect. 4.

2 Methods

2.1 Neuro-musculo-skeletal modeling

The musculoskeletal system of the knee joint controlled

with the electrically stimulated quadriceps muscle is

henceforth called the quadriceps–shank system. Its model

consists of two parts:
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• model of electrically stimulated quadriceps muscle,

• model of the controlled knee joint.

2.1.1 Electrically stimulated muscle model

The muscle model, which was developed in a previous

work [29], highlights a multi-scale aspect of muscle as a

combination of macroscopic [24] and microscopic [25]

model properties by describing its dynamics from the fiber

to the whole muscle levels, as detailed in Appendix. It

consists of two parts, as shown in Fig. 1a:

2.1.1.1 The activation model It describes the generation

of action potential and the initialization of contraction from

the stimulation input. It includes two subparts:

• The fiber recruitment model describes the spatial

summation of activated fibers. It represents the relation

between the electrical current applied on the nerve or

the motor point and the rate of the activated fibers a
(see Eq. 10).

• The calcium dynamics model represents the electrochem-

ical phenomena responsible for the force triggering within

one fiber [20, 37]. This model, controlled by the stimu-

lation frequency, generates a chemical pulse train u (Eq.

11), that introduces the temporal summation of forces.

2.1.1.2 The mechanical muscle model It represents the

contractile properties of the muscle–tendon structure. It is a

Hill-type lumped element model [44] adapted for FES

application. Figure 1b illustrates this model, which

includes a contractile element (CE) in series with an elastic

element (SE) whose stiffness is ks, and a viscoelastic par-

allel element (PE). With non-isolated muscles, PE is

moved to the joint as a part of passive effects [16], as it

cannot be easily evaluated alone. Therefore, the active

force F, developed by the whole muscle–tendon structure,

is equal to the active force of the contractile element Fc

(Fig. 1b). The specific model of CE, which describes the

contraction under FES, is based on Huxley’s sliding fila-

ment theory [25] (see Appendix). It is represented by the

dynamic equations of the force Fc and stiffness Kc of the

contractile element, as presented in [29].

_Kc ¼ �ðuþ j_ecjÞKc þ aKcmFlcðecÞPcUc

_Fc ¼ �ðuþ j_ecjÞFc þ aFcmFlcðecÞPcUc þ KcLc0 _ec

�
ð1Þ

where, Fcm and Kcm correspond to maximal isometric force

and stiffness, respectively. u, Pc and Uc are described by

Eqs. (11) and (12) (see Appendix). Flc is the CE force–

length relationship, which relates the maximal isometric

force to the strain of CE, ec ¼ Lc�Lc0

Lc0
; with Lc being the CE

length and Lc0 the rest length [21, 35]:

FlcðecÞ ¼ exp � ec

b

� �2
� �

ð2Þ

where b is the so-called shape parameter, which describes

the overlapping level of filaments in sarcomeres.

Fig. 1 Physiological models of electrically stimulated muscle: a
overview of the muscle model. The stimulated muscle applies a force

on the skeletal system. The joint position has a feedback on the

muscle length and then on the contractile element length Lc; b
mechanical model of muscle includes the CE element, controlled by

the recruitment rate a and the chemical pulse train u, the SE element,

whose stiffness is ks, and the PE element; c the biomechanical model

of knee joint. The stimulated quadriceps controls the knee joint

extension while the gravity torque Tg performs the flexion. The

passive muscles include the passive part of muscle around the joint.

The pulley radius rq is the moment arm of the quadriceps force and Lf

is the femur length
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The mechanical interaction between CE and SE allows

us to formulate the deformation velocity of the contractile

element [29]:

_ec ¼
ksL0 _eþ Fcu� aFcmFlcðecÞPcUc

ksLc0 þ KcLc0 � svFc

ð3Þ

Where:

sv ¼ signðksL0 _eþ Fcu� aFcmFlcðecÞPcUcÞ ð4Þ

and e ¼ L�L0

L0
is the strain of the muscle–tendon structure,

with L being the muscle-tendon length and L0 its rest

length. Then L = Lc ? Ls, with Ls being the SE length.

2.1.2 Dynamic model of a controlled knee joint

The knee joint is modeled in the sagittal plane as one

degree of freedom h, as illustrated in Fig. 1c. It is con-

trolled by the quadriceps torque through a constant moment

arm rq. The full knee extension is at 0� and the rest position

is at h0 depending on the subject. The shank–foot group is

considered as a single rigid body since we ensure that the

foot motion according to the leg is very small during the

experiment.

In this work, only the quadriceps muscle group was

stimulated for the knee extension. Flexion was performed

by the gravity torque Tg due to the shank–foot group

weight. The geometrical formulation of quadriceps mus-

cle–tendon length is:

LðhÞ ¼ Lext þ rqh ð5Þ

where Lext is the quadriceps length at the maximal exten-

sion (i.e. h = 0�).

The dynamics of the knee joint motion around the rest

position h0 is given by the following second-order non-

linear equation [42]:

Tq ¼ J€hr þ B _hr þ TgðhrÞ þ TeðhrÞ ð6Þ

where, hr = h0 - h is the knee joint angle w.r.t. the rest

position and positive in the counterclockwise direction.

Tq ¼ F � rq is the active quadriceps torque. B and J are,

respectively, the viscosity coefficient and the shank inertia

around the center of rotation O. TgðhrÞ ¼ MgLog sinðhrÞ is

the gravitational torque of the leg around the knee, where g

is the gravity constant, M the mass of the leg and Log its

center of mass w.r.t. the rotation point O. Te is an elastic

torque that is usually considered to be highly nonlinear [13,

16].

The identification is complicated by the nonlinearity and

difficulty of separating the gravity and elasticity torques in

the measurements. Therefore, we considered the sum of the

gravity and the elasticity torques as a single static torque

(Ts = Tg ? Te), as proposed in several previous works

[7, 28, 40, 42]. From our measurements, which are

discussed further (Sects. 2.3.1, 2.3.2), the static torque was

modeled as:

Ts ¼ K sinðhrÞ ð7Þ

where K is the parameter to identify.

2.2 Experimental setup

Experiments were conducted in the PROPARA rehabili-

tation center (Montpellier, France) with ten male patients

who had a complete spinal cord lesion with an ASIA A

score. An agreement from the local ethical committee and

an informed and signed consent from the patients were

obtained. The details of their clinical assessment are given

in Table 1.

Subject 8 was excluded from the study because of

muscle weaknesses and a high level of spasms. The first

experiments, carried out on subjects 1 and 2, enabled us to

solve some technical problems and adjust the protocol.

Therefore, the results obtained on these subjects were

incomplete and discarded. The subjects were seated on a

chair with their hip flexed at approximately 90� and their

thigh and back held against the seat. Therefore, since the

flexion of the hip was fixed, the rectus femoris, which is

biarticular muscle, is acting as monoarticular muscle on the

knee joint within the quadriceps group. In this study, the

right and left quadriceps–shank were separately consid-

ered. However, the choice of the first quadriceps–shank

(right or left) tested was randomized.

The quadriceps muscle group was stimulated, with the

PROSTIM stimulator (MXM-Sophia Antipolis, France and

DEMAR, Montpellier, France), through surface electrodes,

except for subject 10, for whom neural stimulation was

performed using an implanted FES system [18]. The two

surface electrodes of stimulation (10 cm 9 5 cm, Cefar

Medical, Lund, Sweden) were placed, one at the top of the

rectus femoris and the other at the bottom of the vastus

medialis, in order to stimulate the whole quadriceps muscle

group. The stimulation frequency was set at 20 Hz for all

subjects during all sessions. It was chosen to induce smooth

contractions with the lowest fatigue effect possible

according to [4]. The stimulation amplitude (current

intensity) was fixed for all sessions for each subject. This

stimulation amplitude was obtained during the first session

by setting the pulse width at 300 ls, and increasing the

amplitude until reaching level 3 on the Medical Research

Council scale (MRC). The muscular force of quadriceps

was controlled by the pulse width modulation, which was

limited to PWmax = 420 ls for the safety of the patients.

In isometric conditions, the muscle torques were

acquired using the BIODEX dynamometer (Biodex 3,

Shirley Corporation, NY, USA), as presented in Fig. 2a

and recorded on a PC through the Biopac MP100
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acquisition device (Biopac Systems, CA, USA) and the

isolation units INISO-Biopac, as presented in Fig. 2b. In

dynamic conditions, the knee joint angles were acquired

using an externally mounted electrogoniometer (Biomet-

rics Ltd., VA, USA), as presented in Fig. 2c, and recorded

on a PC through its acquisition system (DataLINK) as

illustrated in Fig. 2d.

The knee joint angles and joint torques were sampled,

respectively, at 100 Hz and 2 KHz, and then low-pass fil-

tered at 30 Hz using the fourth-order Butterworth filter as

in [16, 42].

2.3 Identification of physiological parameters

The physiological parameters of the model vary between

subjects. Therefore, these subject-specific parameters had

to be identified. The complexity of the current model

increased the complexity of the identification procedure.

Moreover, the parameter effects were hard to distinguish in

one identification step in dynamic conditions. Therefore,

we divided the identification protocol into several steps,

with different measurement conditions, where the effect of

each parameter was separated from the others.

The parameters to identify are pooled in two categories:

the first one includes parameters common to Hill-type

models, which were estimated in an initial identification

phase, and the second are parameters specific to the current

model (see Appendix), which were estimated in the second

identification phase.

2.3.1 Initial identification phase

For this identification phase, we improved and adapted

existing protocols and methodologies to the corresponding

context of subjects with SCI. It includes four successive steps:

2.3.1.1 Estimation of geometrical parameters In this

step, we used a fifth-order polynomial equation, formulated

in [22], to estimate the normalized muscle–tendon lengths

for 10 regularly spaced knee joint positions, between full

extension and 90� flexion. Then we combined this with the

anthropometrical estimation of shank length [26] to esti-

mate the values of Lext and rq (Eq. 5) using a linear least

square method. Therefore, the geometrical parameters Lext

and rq were estimated from the subject’s height without

any limb measurement.

2.3.1.2 Identification of joint dynamics parameters The

knee joint dynamics parameters (Eq. 6) are J, B and K.

Two measurement sets were performed without muscle

activation (Tq = 0).

• The first test was conducted in static conditions (i.e.
_hr ¼ 0). Thus for different knee joint angles, from the

rest position to full extension with a step of 5�, the

passive torques originating from the joint elasticity and

gravity effects were measured. From the measurements

(Fig. 4a), the relationship between the torques and knee

joint angles was modeled by Eq. (7). This equation is

linear with respect to parameter K, which was identified

through a linear least square method.

• In the second test, the passive pendulum test was

applied [ 7, 13, 16, 28, 40]. By considering small

displacements of the leg, the approximation

sin(hr) & hr was used. In the absence of muscular

activity and considering the static torque model, Eq. (6)

was linearized [28, 42]. The inertia J and the viscosity

coefficient B were identified based on the damping ratio

f and the natural frequency xn of the free response of a

second-order linear system, such as in [28].

Electromyography (EMG), through surface electrodes

(Controle Graphique, Brie-Compte, France), was used to

verify the absence of muscular activity.

2.3.1.3 Identification of the force–length relationship

The force–length relationship was identified in isometric

conditions as in [12, 34, 41]. However, unlike these pre-

vious works, we considered the force–length relationship

of the CE independently from the SE elastic properties. We

assumed in this step that the SE was highly stiff compared

to the CE [5, 12, 36, 38]. We applied a reduced stimulation

in order to ensure lower CE stiffness compared to the SE

stiffness. This was enough because the force–length rela-

tionship is independent of the muscle activation level [46].

Furthermore, we defined the rest length Lc0 of CE as the

length where the isometric force was maximal [46]. The

quadriceps was stimulated with a pulse width (PW =

300 ls), and then the steady-state muscular active torques

were measured (Fig. 2a, b) for seven knee joint angles

(90�, 80�, 70�, 60�, 50�, 40�, 30�). The measured forces

Table 1 Subjects’ characteristics

Number Subject Age

(years)

Weight

(kg)

Height

(m)

Injury

level

Post-injury

(years)

1 FG 27 64 1.92 T4 3

2 BP 46 85.6 1.75 T4 14

3 LT 37 72 1.75 T6 12

4 BD 46 94 1.88 T10 14

5 AL 38 65 1.8 T6 12

6 FC 34 50 1.69 T6 5

7 AV 23 54 1.72 C7 2.5

9 PC 22 62.7 1.91 C5 1

10a MM 48 75 1.75 T6 19

a Subject with FES-implanted system [18]
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were filtered, as detailed in Sect. 2.2, calculated as the

average of two trials and then normalized to the maximal

obtained force.

For each knee joint position, the CE length Lc was

estimated by subtracting the tendon length Ls from the

muscle–tendon length L. For the current identification only,

Ls was assumed as a constant due to its high stiffness

compared to the muscle. The muscle–tendon length L was

calculated using Eq. (5) and the constant tendon length Ls

was obtained based on the proportion between the muscle

and the tendon in the rest position [10], which corresponds

to the position of the maximal isometric force. This

approximation in static conditions, used only for the force–

length relationship, was not used in the dynamic simulation

thereafter. The inversion of Eq. (2) provides a linear

function with respect to the parameters b and Lc0. A linear

least square method was thus applied to identify these

parameters.

2.3.1.4 Identification of recruitment function parame-

ters Steady-state measurements were performed in iso-

metric conditions to identify the recruitment function

Fig. 2 Experimental setup and

measurement conditions:

a isometric experimental setup;

b acquisition sequence under

isometric conditions; c dynamic

experimental setup;

d acquisition sequence under

dynamic conditions
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parameters, as done in [9, 11, 14, 27, 37, 43]. The knee

joint was fixed at the position at which the torque was

maximum. The quadriceps muscle was stimulated with 13

stimulation trains (duration 1.5 s), separated by a 4 s rest

time. Pulse widths were fixed during each train, but

increased between trains from 0 to maximum

PWmax = 420 ls with a constant step. Isometric quadri-

ceps torques were measured (Fig. 2a, b), filtered (Sect. 2.2)

and averaged during the steady-state phase. The recruit-

ment rates a were obtained by normalizing the torques to

their maximum obtained at PWmax. A nonlinear least

square method was applied to identify the parameters c1, c2

and c3 of Eq. (10).

The maximal isometric force Fcm, which corresponds to

the saturation area, was thus deduced from the identified

recruitment function. Finally, the maximal stiffness Kcm

chosen was proportional to the maximal isometric force

Fcm, according to the physiological model [29]. However,

for a few subjects, Kcm was increased to avoid oscillations

that appeared in the dynamic response.

2.3.2 NLP-based identification of SE stiffness

In this second phase, the identification concerned the

stiffness properties of the muscle–tendon structure. Since

the maximal stiffness Kcm was estimated previously (Sect.

2.3.1–2.3.4), we focused particularly on the identification

of SE stiffness ks.

The muscle mechanical parameters, such as ks, are sel-

dom specified in existing muscle models. Indeed, the ser-

ies-elastic element and the contractile element are usually

lumped in the same muscle–tendon structure and its stiff-

ness is not considered [5, 7, 12, 17, 36, 38, 43].

As far as we know, very few works have focused on

estimation of the stiffness in the muscle–tendon structure.

In [23], the stiffness of series-elastic elements was con-

sidered and identified from the passive force–length rela-

tionship on rabbit. However, this passive force–length

relationship is impossible to obtain in an experimental non-

isolated muscle context. In [8, 30], a separate estimation of

muscle and tendon stiffness was obtained from a linear

measured compliance. This compliance has been measured

on muscles from cat [30] and healthy human subjects [8]

under strong and tetanic stimulation, during rapid muscle

stretching under isometric conditions. However, these

experimental identification protocols are very risky and

inappropriate for SCI subjects due to their fragility and the

very low muscle fatigue resistance.

The muscle model used here (Sect. 2.1.1) is more sen-

sitive to parameter ks in dynamic conditions (i.e. _e 6¼ 0)

rather than in isometric conditions, since it is multiplied by

_e in Eq. (3). In a qualitative sense, generally the stiffness is

relevant to the dynamic behavior. However, as far as we

know, the dynamic conditions have never been considered

for identification of stiffness in a muscle–tendon structure

such as ks, nor for validation of the whole identified model,

as presented in the current work.

Therefore, we defined an original identification protocol

that is safer than existing ones [8, 30] using nonlinear

optimization of the stiffness ks of SE elements along with

the experimental data. This optimization is based on res-

olution of a nonlinear programming problem (NLP), which

considers dynamic measurements of the shank motion

without any mechanical constraint and the simulation of

Fig. 3 Identification of the quadriceps muscle stiffness parameter:

a the identification principle based on the resolution of NLP problem;

b profile of the input stimulation pulse width (subjects 1–9);

c simulated knee joint angles with the whole estimated model and

measured ones on the left leg of subject 3
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shank motion, using the model with parameters identified

during the initial phase (Sect. 2.3.1). The quadriceps was

stimulated in dynamic conditions, while the knee joint

motion was recorded through the electrogoniometer

(Fig. 2c, d). The input stimulation pulse width profile is

presented in Fig. 3b. It was chosen to excite the internal

dynamics of CE contraction. The same profile was applied

for subject 10, but the intensity was modulated instead of

the pulse width.

The use of an NLP-based identification method was due

the nonlinearity of the model. It involved optimizing

parameter ks under box constraints, which minimizes the

quadratic criterion of output angular errors [hr(t) - hs(t)]

(see Fig. 3a). It is formulated as follows:

min
ks

Z tend

t¼0

ðhrðtÞ � hsðtÞÞ2

s:t:
ks [ 0

8><
>: ð8Þ

where hr represents the measured knee joint angles and hs

are the simulated ones using the whole identified model,

including all of its initially identified parameters and the

currently optimized parameter ks. tend is the movement

duration used for the identification.

The algorithm of this constrained nonlinear optimization

and its implementation are summarized below1 For this

recursive identification, parameter ks was initialized with a

value taken from literature [8].

3 Results

3.1 Performances of identification steps

The identification performances at all steps and the cross-

validation results for all subjects are reported in Table 2.

When the measured forces are too weak to be reliable, the

results are represented by nonsignificant force (Nsf).

We selected an error criterion, called normalized root

mean square deviation (NRMSD) to evaluate the perfor-

mance of the identification method and the model fidelity:

NRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ðXm � XsÞ2

r

jmaxðXmÞ �minðXmÞj
� 100 ð%Þ ð9Þ

where Xm and Xs are two vectors of the measured and

simulated data and N is the number of samples within the

considered duration.

For example, the identification results of the left quad-

riceps–shank of subject 3 are presented in Fig. 4.

In Fig. 4a, the simulated static torque closely fits the

measured one, with a NRMSD of about 3.87 %. The results

Fig. 4 Results of the initial

identification steps: a the static

torque at different knee joint

angles; b mechanical joint

parameters; c the force–length

relationship; d the recruitment

function

1 This algorithm is based on trust-region method, which uses an

approximation of the objective function with a simpler one in the

neighborhood around the current variable, called the trust region [31].

Footnote 1 continued

For the implementation, Matlab optimization tools were used through

the ‘‘fmincon’’ function.
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obtained for all subjects highlight a good static torque

model accuracy and identification performance, with the

NRMSD criteria being lower than 5 % (Table 2). Fig-

ure 4b highlights the close match of the identified knee

joint dynamics model with the measured passive pendulum

oscillations of the leg, as shown by a low NRMSD

(3.26 %). However, we noticed small oscillations in the

simulation around the rest position. These oscillations, due

to the lack of coulombic friction in the model, are mean-

ingless considering the lack of significant error. The results

obtained in all subjects highlight the good identification

performance, with NRMSDs lower than 5.1 % (Table 2).

The simulated force–length relationship (Eq. 2), as

reproduced from the identified model, closely matches the

measured one, as presented in Fig. 4c and confirmed by an

NRMSD of under 4 %. For all subjects, most of these

initial identification results illustrate good performance,

with NRMSDs lower than 19 %. However, the results

obtained for the right legs of subjects 5, 7 and 9 indicate

lower performance, with an NRMSD ranging from 35 to

38 %. This was due to a reduced number (7 knee joint

angle positions) of measurements so as to reduce a risk of

muscle fatigue, so it could not compensate for the outlier

data. It was also due to the small force levels that are not

easy to simulate and can introduce a higher percentage of

errors even if the absolute error is not very significant.

In Fig. 4d, the measured recruitment curve closely

corresponds to the sigmoid model (NRMSD about 1.96 %).

The results for all subjects showed good performance,

confirmed by NRMSD to be lower than 6.2 %. In subject

10, who had a neural stimulation implanted system con-

trolled through intensity modulation [18], a similar

recruitment function was used, where the modulated

parameter is the stimulation amplitude I.

The results of the NLP-based identification of parameter

ks indicated close agreement between the measured knee

joint angle trajectory and the simulated one, as presented in

Fig. 3c and confirmed by a low NRMSD of about 4.77 %.

The overall NLP-based identification demonstrated satis-

factory results to a certain extent considering the difficult

accessibility to this internal stiffness parameter. Their

NRMSDs were lower than 19.9 %, except for the right leg

of subject 5, where forces were nonsignificant, and the

right leg of subject 4, where forces during this phase sud-

denly became high compared to previous measurements,

indicating a variation in the muscle response to the stim-

ulation over time.

3.2 Cross validations and model prediction

performances

The cross validation of the subject-specific model was

performed in dynamic conditions using a stimulation input

that had not been applied during the two identification

phases. The stimulation pulse width profile is presented in

Fig. 5a. This estimated model includes all of the parame-

ters identified at each step, and the parameter obtained

from the NLP-based identification step as well.

To show the importance of ks identification in the final

subject-specific model, two joint angle trajectory simula-

tions were performed before and after ks identification and

compared with the measurements on the left quadriceps–

shank of subject 3, as presented in Fig. 5b. The two error

trajectories between each simulation and the measurement

are presented in Fig. 5c. The results highlight the impor-

tance of the NLP-based identification of ks and good final-

model prediction of the knee dynamic behavior, since the

NRMSD was 21.1 % before ks identification and became

5.17 % after. The final-model cross-validation results

obtained in other subjects showed a quite good dynamic

behavior prediction, with an NRMSD of under 19.7 %,

except for the right leg of subject 5 and the left leg of subject

10, because of the weakness of their obtained forces, and for

the right leg of subject 4, which still had a high NRMSD

(&50.5 %) due to abruptly high force measurements, which

led to a poor NLP-based identification performance.

Table 2 NRMSD [%] of the initial identification, NLP-based identification and the cross-validation results

Identification steps (parameters) S3Ra S3Lb S4R S4L S5R S5L S6R S6L S7R S7L S9R S9L S10R S10L

Static torque (K) 2.36 3.87 3.13 2.35 3.20 3.17 3.88 3.49 2.50 2.81 2.49 4.96 2.86 3.55

Joint mechanics (J, B) 2.60 3.26 3.80 2.86 3.10 3.87 3.97 3.45 3.65 5.07 4.01 3.51 2.87 3.70

Force–length (Lc0, b) 17.3 3.96 10.4 18.9 35 21 5.01 6.68 35 4 38 17 10.8 3.80

Recruitment function (c1, c2, c3) 5.93 1.96 2.44 4.94 Nsfc 6.16 3.92 2.47 4.93 1.2 3.53 10.7 1 0.18d

NLP-based identification (ks) 13.7 4.77 47.6 13.6 Nsf 8.78 9.34 19.9 8.63 19 10.5 4.08 11.1 7.9

Cross validation 10.3 5.17 50.5 15.4 Nsf 13.7 9.35 6.87 17.3 13.2 9.55 19.7 12.2 Nsf

a SxR right leg of subject no. x
b SxL left leg of subject no. x
c Nsf nonsignificant force, no results
d Insignificant result, a very few samples

Med Biol Eng Comput (2013) 51:617–631 625

123



4 Discussion

The results of the NLP-based method highlight the feasi-

bility of the new identification protocol for all subjects,

with an NRMSD average of about is about 10.94 %

(Table 2), except those who present small muscle con-

traction levels or a clear time-variant muscle response.

With our method, these results demonstrate the identifi-

ability of the internal stiffness parameter, which is signif-

icant with respect to the dynamic behavior and often

excluded from experimental identifications, and set at

literature values. The comparison between the two models

(Fig. 5), without and with stiffness parameter identifica-

tion, highlights the importance of identifying this param-

eter for improving the accuracy of the cross validation in

dynamic conditions. The reason is that an identification in

dynamical condition under an active condition of the

muscle was required to improve the cross validation, since

the initial identification steps did not consider this condi-

tion. The NLP-based identification protocol allows for

safer clinical experiments because the dynamic measure-

ments are performed without any physical constraint. In

addition, this identification was able to compensate for the

inaccuracy of the force–length identification results for the

right legs of subjects 7 and 9, since it involved the whole

model with the previously identified parameters. Indeed,

the NLP-based identification results for these two cases

were improved, with an NRMSD of about 8.63 and 10.5 %,

while their force–length identification NRMSDs were

about 35 and 38 %, respectively (see Table 2). However,

this good NLP-based identification performance was not

obtained for the right leg of subject 4 (NRMSD about

47.6 %), despite the good performances in its initial iden-

tification steps (3.13, 3.8, 10.4 and 2.44 %, see Table 2).

This poor performance could be due to major variation

problems with respect to the muscle response originating

from the muscle fatigue or the surface electrode condition

over time. It also shows the limits of NLP-based identifi-

cation of stiffness parameter to deal with the time-varying

parameters identified in the initial phase. NLP-based

identification can be applied to identify other parameters as

well, as long as the dynamic behavior is sensitive to them

and every other parameters are previously estimated, as we

tested it in [1] to estimate the recruitment function. On the

other hand, some parameters such as ks should be identified

only in dynamic conditions, as achieved here, due to their

insignificant effects in isometric conditions.

The cross-validation results present satisfactory results

and highlight the ability of the tuned model to predict the

system dynamic behavior for all admissible subjects, with a

low NRMSD average (&12 %, see Table 2). These results

indicate that the presented method together with the use of

a complex Huxley-based muscle model could be very

efficient for predicting the behavior in dynamic conditions.

The identified parameter values for all subjects are

summarized in Table 3. To investigate the inter-subject

variability and then the importance of each parameter in

the identification protocol, we had to calculate the average

of each parameter, also as summarized in Table 3. Each

parameter average for our model, that is common to Hill-

type models and was previously identified in [7, 15, 16, 35,

42] as summarized in Table 3, was used also for a com-

parison with literature values and discussion about its

physiological relevance.

Fig. 5 Cross-validation results in dynamic condition: a profile of the

input stimulation pulse width (subjects 1–9); b measured knee joint

angle trajectory on the left leg of subject 3 and the two predicted ones,

before and after stiffness parameter identification; c two knee joint

angle error trajectories between each simulation and the measurement
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The geometrical parameters Lext and rq were estimated

from the whole body height without any measurement

(Sect. 2.3.1.1). Thus, the estimation performance was not

quantified and the inter-subject variability study was thus

meaningless. Furthermore, the average Lext value, which

was around 42.2 cm, seemed realistic according to thigh

lengths, which were roughly measured on each subject. In

addition, the average value of the moment arm rq, which

was 4.97 cm ± 4.88 %, is included in the range of values

estimated in [3], i.e. between 4 and 6 cm.

The average K (10.7 N m/rad ± 23.8 %) was lower but

close to values reported in [42] (14.3 ± 3.0 and

15.1 ± 3.9 N m/rad) and in [7] (12 and 14 N m/rad). The

average J (0.3 kg m2 ± 22.9 %) was close to values esti-

mated in [42] (0.32 ± 0.09 and 0.36 ± 0.13 kg m2), in

[15] (0.35 ± 0.05 kg m2) and [7] (0.25 and 0.29 kg m2),

and in the same range as the values estimated in [16]

(0.41 ± 0.129 kg m2) and [28] (0.43 ± 0.18 kg m2).

The average viscosity coefficient B value (0.24 Nms/

rad ± 35.4 %) was close to the values estimated in [15]

(0.28 ± 0.016 Nm s/rad) and [16] (0.18 ± 0.05 Nm s/

rad). It was, however, less close to the values obtained in

[7] (0.15 and 0.08 Nm s/rad) and [42] (0.86 ± 0.69 and

0.58 ± 0.38 Nm s/rad). Finally, most values obtained are

in the same order of magnitude of the ones reported in

previous works. The variation is the expression of subject

variability, quite high on patients with SCI. The average b

value, which was around 0.42 ± 16.1 %, was very close to

those introduced in [35], i.e. 0.4 for rectus femoris, and

0.45 for vasti. In addition, the average Lc0 (about 9.22 cm)

was quite close to the optimal fiber length values, cited in

[10], of rectus femoris (8.4 cm), vastus medialis (8.9 cm),

vastus intermedius (8.7 cm) and vastus lateralis (8.4 cm),

which make up the quadriceps muscle group.

Average plateau level c1 was 1.09 ± 11.9 %. It is

realistic as it is close to 1, which represents the maximal

recruitment rate. However, when this parameter was above

1, this showed that the identified recruitment function could

theoretically exceed the maximal recruitment, since the

real plateau was never reached, for safety reasons, and the

maximal authorized stimulation was considered as 100 %

of the recruitment. The average inflexion point c3 value

(0.62 ± 23.2 %) was close to 0.5, which represents the

recruitment function where the half of stimulation level

activates the half of total fibers. This means that the MRC

index is meaningful to adjust a quasi-optimal range of PW

variations through intensity adjustment (vice versa for

subject 10).

Table 3 The identified parameters for each subject and leg

Mean values and relative standard deviations (RSD) (%) for each parameter. Common parameter values reported in previous works (literature)

R right, L left
a SxR right leg of subject no. x
b SxL left leg of subject no. x
c Nsf nonsignificant force, no results
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In subject 10, who had a neural stimulation implanted

system [18], the obtained parameters c1, c2 and c3 were

comparable to those of other subjects (Table 3) and were

included in the statistical calculation. This showed that

controlling the muscle force through the pulse width PW or

the amplitude I of stimulation was similar.

From the identified parameter results, we calculated

their relative standard deviations (RSD), which are inclu-

ded in Table 3. The RSD corresponds to the SD normalized

to the average. It was used to quantify the inter-subject

variability of each parameter in order to evaluate which

parameters were more subject-specific and required more

attention during the identification protocol.

The RSD of K and J, which were about 23.9 and 22.9 %

respectively, highlighted a medium inter-subject variabil-

ity, unlike the viscosity coefficient B, which presented a

larger inter-subject variability, with a RSD of around

35.4 %. The variabilities in the joint elasticity K and vis-

cosity J parameters were qualitatively realistic and

expected because they matched the physical reality of the

patient characteristics (see Table 1). Indeed, these vari-

abilities matched the variability in body weight of the

subjects (21.8 %), since K and J are mainly related to the

body weight.

The RSD of Lc0, which was equal to 3.77 %, highlighted

a very low inter-subject variability. In addition, the shape

parameter b represented a small inter-subject variability,

with an RSD of about 16.1 %. The recruitment function

identification results highlighted a low inter-subject vari-

ability of c1 (with RSD = 11.9 %), a medium inter-subject

variability of c3 (with RSD = 23.2 %) and a very high

inter-subject variability of c2 (with RSD = 83.4 %).

Moreover, parameter c2, which represents the slope of the

sigmoid recruitment function, is very important for FES

control accuracy. Indeed, the bigger this slope is, the more

difficult the accurate torque control is. Therefore, special

attention should be given to the identification protocol for

this parameter, which is highly specific to subjects and

important in the model.

Values of parameters Fcm, Kcm represented very high

inter-subject variability, as confirmed by their RSDs, which

were respectively about 44.8 and 57.8 %. This high vari-

ability was expectable since the muscle strength varies with

the patient age, the post-injury time (Table 1) and the

recovery exercise rate in patients with SCI. This confirms

the importance of identifying the maximal isometric force

to personalize the model for each subject.

The few poor NLP identification results only concerned

the right legs of subjects 4 and 5 (see Table 2), and were

due to the muscle weakness and high time-variations rather

than to the identification methodology. The ks values for

these subjects were thus not included in the statistical

computation of average and RSD. The high RSD value of

parameter ks (61.2 %) and the marked difference between

its minimal value (1 N/mm) and maximal value (12 N/

mm), underlined a very high inter-subject variability and

indicated the importance of identifying this parameter to

obtain better accuracy with the subject-specific model. This

confirmed the importance of identifying the SE stiffness

ks, e.g. via our NLP-based identification method.

Besides, the identification results obtained in subject 10

(FES-implanted) were comparable to the results obtained

in other subjects under surface stimulation. This also

highlighted the feasibility of our identification strategy for

applications involving neural stimulation with FES-

implanted system.

Considering separately each quadriceps–leg of each

subject, the cross-validation results, summarized in

Table 2, highlighted 10 valid tests under surface stimula-

tion and one valid test under implanted neural stimulation.

This number of valid tests is higher than in the previous

identification works, which were 9 in [42], 6 in [7], 5 in [8,

16], 4 in [34], 3 in [6] and 2 in [14]. The present work

presents preliminary conclusions on a significant number of

trials that confirm the relevance of the approach. However,

our long-term goal is to make this protocol a clinical rou-

tine to extend the set of patient and then increase the sta-

tistical relevance.

5 Conclusion

In the current work, a whole parameter identification pro-

tocol was established and applied on a multi-scale model

based on Huxley’s formulation. The experimental protocol

was applied in vivo and noninvasively on 10 human sub-

jects with a complete SCI. It was carried out on both knee

joints controlled by their related electrically stimulated

quadriceps muscles. Nine subjects were stimulated through

surface electrodes, whereas one subject was stimulated

through an implanted neural stimulator.

The whole identification protocol required isometric and

dynamic measurements in passive and active conditions

divided into several steps. In the initial identification steps,

the geometrical parameters, knee joint mechanical param-

eters, force–length relationship and the recruitment func-

tion were estimated using adaptations of existing

identification protocols applied in previous works on the

Hill-type model. Least mean square methods were applied

for these initial identification steps. In the last identification

step, an original and safer identification protocol was

applied to estimate the serial element stiffness of the

quadriceps muscle. It is original since this parameter has

seldom been considered and estimated in previous works,

and it is safer as it considers dynamic measurements of

shank motion without any mechanical constraint. This
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identification consists of a nonlinear optimization of the

stiffness parameter based on the resolution of a nonlinear

programming problem (NLP).

The results of each identification step and cross vali-

dation of the whole estimated model were evaluated

through a quadratic error criterion between the simulated

and measured data. It highlighted the good accuracy of

each identification step and cross validation with a nor-

malized RMS error of less than 20 %, except for a very few

subjects, where the muscles were weak, quickly fatigued or

presented a strong time-varying behavior. Cross validation

in all subjects presented satisfactory results with an average

normalized RMS error of about 12 %.

Our identification protocol should be generalized to

other muscle–joint systems. However, practical issues

related to the experimental position of the patients, the

relevant choice of stimulated muscles and the stimulation

selectivity are still open questions. Possible applications of

the current results concern the synthesis of optimal elec-

trical stimulation [2], the feedback control of the ES [14]

and physiological interpretation or medical diagnosis based

on model parameter monitoring.
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Appendix: Multi-scale muscle model

The appendix focuses on the contractile element for which a

multi-scale approach was used to state, from the microscopic

scale using Huxley’s formulation to a macroscopic and

controlled muscle model that fully fulfills the well-estab-

lished muscle law. At the microscopic scale, the authors in

[29] started from Huxley’s formulation, which describes the

distribution of the fraction of actin–myosin pairs. The key

point is the choice of rate functions of attachment f and

detachment g of the cross-bridges that allow integration

together with a meaningful f and g definitions. Let us begin

with the inputs of the model. We designed a model with two

separate inputs, i.e. the recruitment rate a and the activation

u. The first one is linked to the number of fired motor units

deduced from the level of stimulation intensity and pulse

width. It is a static relationship described by a sigmoid

function [27] and modulated here by the pulse width PW of

the electrical stimulus:

aðPWÞ ¼ c1

1þ expfc2ðc3 � PW/PWmaxÞg
ð10Þ

where c1, c2 and c3 are parameters which represent the

plateau level, maximum slope and inflexion point,

respectively. The u function is linked to the calcium

dynamics and expresses the rate of the creation or breakage

of bridges. It is composed of three phases which are the

muscle contraction and relaxation, and the transition

between both states. It is defined by the following

function [29]:

uðtÞ ¼ PcðtÞUc þ ð1�PcðtÞÞUr ð11Þ

where Pc is a function defined as follows:

Pc ¼
1 during the contraction phase sc

sr�tr
sr

during the transition phase sr

0 otherwise

8<
: ð12Þ

where tr is the relative time position from the beginning of

the transition phase. Uc represents the rate of the actin–

myosin cycle although Ur represents the rate when mainly

breakage occurs during the calcium restoring phase in the

sarcoplasmic reticulum.

For all subjects, the same values sc = 30 ms and

sr = 20 ms were obtained through curve fitting of iso-

metric muscle forces under stimulation twitches. The val-

ues of Uc and Ur were fixed for all subject as well to 30 s-1

and 10 s-1, respectively.

From the activation function above and when stimulus is

under way, f (although f is always zero) can be defined as

follows:

f ðn; tÞ ¼ PcðtÞUc when n 2 ½0; 1�;
0 elsewhere

�
ð13Þ

where n is the relative position of the myosin head and the

closest actin binding site. We consider g to be split in two

parts, one linked to the chemical process from the cell at a

rate u(t) that depends on the contraction phase and the other

one linked to the relative shortening speed that may

increase the detachment rate accordingly. It gives

(compared to [29] the parameter a = 1):

gðn; tÞ ¼ uðtÞ þ j_ecðtÞj ð14Þ

Our definition is thus linked to the microscopic

mechanisms involved within the muscle cell, but another

assumption is now needed to change scale and to assess the

macroscopic behavior. We do not compute the distribution

n of the actin–myosin pairs fraction or express a specific

distribution to solve the problem. Instead, we approximate

the g function during the contraction phase as follows:

gðn; tÞ ¼ j_ecðtÞj ð15Þ

when f = 0 and n 2 ½0; 1�: It can be shown that a constant

can be added to this formulation without any mathematical

change if the definition of g has to be adjusted. This is in

fact equivalent to changing the Uc and k0 values (see

below). In any case it is consistent with Huxley’s theory,

which expresses that g is lower within than outside of this

interval. Then we can write the modified g function:
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gðn; tÞ ¼ uðtÞ þ j_ecðtÞj � f ðn; tÞ ð16Þ

such that f ? g no longer depends on the variable n. The

dynamics of the first two moments of the distribution n is

then possible. The detailed computation is available in

[29], and the main steps are:

kðtÞ ¼ k0

Rþ1
�1 nðy; tÞdy ¼ k0M0ðtÞ

FðtÞ ¼ k0h
Rþ1
�1 ðyþ y0Þnðy; tÞdy ¼ k0hM1ðtÞ

(
ð17Þ

with y linked to both the relative elongation of cross-

bridges and relative position of thin and thick filaments, y0

is the initial position of the spring, k0 is the scaled stiffness

at the sarcomere scale. The dynamics of these moments

become:

_M0ðtÞ ¼
Rþ1
�1 f ðy; tÞdy�

Rþ1
�1 ðf þ gÞðy; tÞnðy; tÞdy

_M1ðtÞ ¼ S0

h
_ecðtÞM0ðtÞ þ

Rþ1
�1 ðyþ y0Þf ðy; tÞdy

�
Rþ1
�1 ðyþ y0Þðf þ gÞðy; tÞnðy; tÞdy

8>><
>>:

ð18Þ

Due to the wise definition of f and g, f ? g does not depend

on y, so integration is possible and we obtain:

_M0 ¼ PcðtÞUcflðecÞ � ðuþ j_ecjÞM0

_M1 ¼ S0

h
_ecM0 þ ð1þ2y0ÞPcðtÞUcFLðecÞ

2
� ðuþ j_ecjÞM1

�
ð19Þ

fl is the force length relationship at the sarcomere scale,

which represents the relation between the maximum

number of actin–myosin pairs that can bind and the relative

length of the contractile element. Then considering that all

sarcomeres are identical, going to the fiber scale involves

multiplying by a scale factor. And then going to the muscle

scale involves scaling of the maximum available force and

stiffness. This leads to Eq. (1) with macroscopic parame-

ters which can be obtained by a combination of the

microscopic parameters.
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