
ORIGINAL ARTICLE

A classification scheme for ventricular arrhythmias
using wavelets analysis

K. Balasundaram • S. Masse • K. Nair •

K. Umapathy

Received: 16 November 2011 / Accepted: 15 October 2012 / Published online: 7 November 2012

� International Federation for Medical and Biological Engineering 2012

Abstract Identification and classification of ventricular

arrhythmias such as rhythmic ventricular tachycardia (VT)

and disorganized ventricular fibrillation (VF) are vital tasks

in guiding implantable devices to deliver appropriate

therapy in preventing sudden cardiac deaths. Recent studies

have shown VF can exhibit strong regional organizations,

which makes the overlap zone between the fast paced

rhythmic VT and VF even more ambiguous. Considering

that implantable cardioverter-defibrillator (ICD) are pri-

marily rate dependent detectors of arrhythmias and that

there may be patients who suffer from arrhythmias that fall

in the overlap zone, it is essential to identify the degree of

affinity of the arrhythmia toward VT or organized/disor-

ganized VF. The method proposed in this work better

categorizes the overlap zone using Wavelet analysis of

surface ECGs. Sixty-three surface ECG signal segments

from the MIT-BIH database were used to classify between

VT, organized VF (OVF), and disorganized VF (DVF).

A two-level binary classifier was used to first extract VT

with an overall accuracy of 93.7 % and then the separation

between OVF and DVF with an accuracy of 80.0 %.

The proposed approach could assist clinicians to provide

optimal therapeutic solutions for patients in the overlap

zone of VT and VF.

Keywords Ventricular arrhythmia � Wavelet analysis �
Singular value decomposition � Feature extraction �
Pattern classification

1 Introduction

The two most significant ventricular arrhythmias are ven-

tricular tachycardia (VT) and ventricular fibrillation (VF).

VT is generally an organized arrhythmia. On the other

hand, VF is a fundamentally chaotic, disorganized,

abnormal and fast heart rhythm. Long-term therapy options

for VT include anti-arrhythmic medications, ablation and

implantable cardioverter-defibrillators (ICD). VF is nearly

always an emergency, given its life-threatening nature.

The only effective long-term option for VF is an ICD.

The differentiation of these two arrhythmias is of immense

clinical significance because of the difference in prognosis,

immediate and long-term management.

There are programmed algorithms within the ICD that

detect and act according to the type of arrhythmia. The

algorithm usually selects between pacing maneuvers or

shocking a patient depending on if the arrhythmia is VT or

VF, respectively [50]. ICDs initially attempt to treat VT

with overdrive pacing maneuvers or ‘‘painless therapy’’,

failing which shocks are resorted to. For VF, all device

companies have shock as the primary treatment option.

Some device companies [47, 48] provide pacing while the

ICD is charging prior to shocking in an attempt to provide

treatment for those patients with fast VT. Though ICDs

have helped patients for a few decades, if amenable, long-

term solutions via ablation strategies are always preferred.
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It has been shown in the literature that an unnecessary ICD

shock may increase the mortality [24], which makes the

detection of VT and VF and the identification of patients in

the overlap zone crucial. With the proper identification of

patients in the overlap zone, an ablation therapy could first

be attempted due to considerable advances in catheter

guidance methods [14, 30] for ablation. This does not

suggest the ability to predict future arrhythmic episodes,

but instead aid in optimizing treatment options based on

present and past arrhythmic occurrences. Furthermore, this

method could also be used to reduce the number of ICD

discharges caused by inaccurate diagnosis of the Electro-

cardiogram (ECG), especially for patients suffering with an

arrhythmia found in the overlap zone between VT and VF.

The above forms a strong motivation in arriving at tech-

niques that could analyze the ICD/surface ECG tracings

and identify the overlap zone between VT and VF.

The proposed work approaches the problem of identifying

the overlap zone between VT and VF by quantifying the

underlying organizational signal structures during an

arrhythmia episode and determining the affinity toward a

particular type of ventricular arrhythmia. Performing such

affinity analysis in classifying the arrhythmias into VT or

organized VF (OVF) or disorganized VF (DVF) will also

enhance ICDs decision. For example, in cases where the

arrhythmia is identified to be DVF (i.e., clearly not a

misdiagnoses with fast paced VT), immediate shocking

would be an appropriate choice that might save valuable

time in avoiding pacing maneuvers before charging.

Furthermore, this classification of previous arrhythmic

episodes might assist the clinicians in deciding on future

anti-arrhythmic drugs, multiple level shock threshold pro-

gramming and ablation therapies. Recent studies [27] in

atrial fibrillation (AF) show evidence that by identifying

focal and spatially organized electrical activation patterns

(rotors) and ablating them could modulate or terminate AF.

In a similar vein, as a long-term treatment option, previous

ICD shocks (i.e., previous arrhythmic episodes) can be

analyzed by the clinician with a view to statistically

identify the relative load of organized arrhythmia (espe-

cially OVF). Radio frequency ablation may be a thera-

peutic option in this subgroup.

There are many methods that exist when it comes to

detecting and/or classifying ventricular arrhythmias into

VT and VF. Time domain analyses such as dynamic

sampling entropy [21], Empirical mode decomposition [1],

ECG amplitude measure [19] and phase space reconstruc-

tion [32, 33] have been used to study and classify VF.

Heart rate variability and RR interval are common features

used in cardiology and arrhythmia classification, which is

extracted by analyzing the inter-beat interval [5, 20, 28,

43]. VT and VF classification was also performed in the

frequency domain by analyzing the dominant frequency

(DF) [10], spatial derivative of DF [10], spectral coherence

[34] and bandwidth [11] as well as DF harmonic analysis

[7]. The majority of the above methods are accurate in their

ability to separate VF and non-VF, and some [10, 31, 32,

34] are capable of classifying monomorphic VT, poly-

morphic VT from VF. However, due to the time-varying

subtle signal structures that differentiate OVF and DVF,

time-only or frequency-only techniques might not be suf-

ficient to efficiently classify the OVF and DVF zone.

Hence, it is evident that a more localized time–frequency

domain technique must be used to be able to accurately

distinguish the OVF overlap zone.

There are also works that have studied spatial organi-

zation, via 2D/3D electrical mapping of the heart, by

constructing activation pattern maps [9, 17, 26], DF [10,

35], and phase maps [23, 35, 41, 42] to depict the temporal

evolution of the spatial activation and organization. The

proposed method differs from the above mentioned spatial

mapping, because the current method focuses on the tem-

poral organization using a single channel ECG to assist

ICDs or clinicians in improving the treatment options for

patients suffering from arrhythmias in the overlap zone of

VT and VF. To the best knowledge of the authors, existing

work pre-dominantly focuses on VT–VF classification,

with little work [32–34] that focuses on the overlap zone

that quantitatively detects monomorphic VT, polymorphic

VT, and VF using surface ECGs. It is the sub-classification

of VF into OVF and DVF that is challenging rather than

VT and DVF, which is one of the main objectives of the

proposed work.

2 Methodology

The methods are explained in five subsections. Details on

the database used in this study are provided in Sect. 2.1,

followed by brief descriptions on the continuous wavelet

transform in Sect. 2.2 and singular value decomposition

(SVD) in Sect. 2.3. Section 2.4 describes the feature

extraction process to distinguish between VT, OVF, and

DVF and Sect. 2.5 briefly explains the pattern classification

approach.

2.1 Database

Due to the inherent difficulty (confidentiality and ethics

approval) in obtaining ICD tracings of patients, this study

develops and presents the methodology using surface ECG

signals from the PhysioNet signal archives [15]. In par-

ticular, the Creighton University Ventricular Tachyar-

rhythmia Database as well as the MIT-BIH malignant

ventricular arrhythmia database was used. A total of 63 4-s

surface ECG segments with ventricular arrhythmias were
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extracted from 24 patients. These signals were then filtered

between 0.3 and 30 Hz [40]. The signals were normalized

to reduce the variance between the average signal levels.

These signals were pre-classified as VT, OVF (predomi-

nantly early VF), and DVF (predominantly late VF)

by trained electrophysiologists at the Toronto General

Hospital, Toronto, Canada which served as the gold stan-

dard. Of the 63 signals, 21 were categorized into VT, 20

into OVF, and 22 as DVF.

2.2 Continuous wavelet transform (CWT)

To quantify the organizational signal structures of a signal,

it is essential to study the joint time–frequency/time-scale

properties of the signal. Although there are several time–

frequency/time-scale analysis methods available, the use of

the wavelet transform is appropriate due to the flexibility in

the choice of mother wavelets to capture specific time-scale

structures in the ECG, which is crucial for time varying or

non-stationary signal analysis. The most significant aspect

that makes the wavelet transform better suited is its ability

to naturally vary the window size. This is important

because it allows the mother wavelet to use an appropriate

window size to analyze a particular frequency. Since the

window is changing for a given frequency, it inherently has

its advantages in localizing the occurrence of a particular

frequency/scale over time [22]. For these reasons the pro-

posed method uses wavelet analysis.

In CWT, a signal x(t) can be expressed as a combination

of scaled (dilated) and translated version of a mother

wavelet w. The continuous wavelet transform is given by

Eq. 1 [2, 22].

CxðtÞða; bÞ ¼
1
ffiffiffi

a
p

Z

1

�1

xðtÞw� t � b

a

� �

dt ð1Þ

The parameter a represents the scaling (inversely related

to frequency) parameter and b represents the translation

parameter of the wavelet. The wavelet that was used in this

study was the complex Morlet wavelet. The reason for

using an analytic wavelet instead of a real wavelet is that

they are better suited for studying the frequency evolution

of the signal x(t) through time [22]. The discrete time

continuous wavelet transform (DT-CWT) was used for the

analysis of the ECG, which is given in Eq. 2 [4].

CxðnÞða0; b0Þ ¼
1
ffiffiffiffi

a0
p

X

N�1

n¼0

xðnÞw n� b0

a0

� �

ð2Þ

The variables a0 and b0 represents the discretized scale

and time parameter for the mother wavelet, n represents the

time index and N represents the length of the signal x(n).

To eliminate the influence of energy variations between

signals, matrix Cx(n)(a
0, b0) was normalized. The

normalization was done by representing each node in the

coefficient as a percentage of the total energy captured and

is given by Eq. 3.

ĈxðnÞða0; b0Þ ¼
100� ðjCxðnÞða0; b0Þj � jCxðnÞða0; b0ÞjÞ
P

a0

P

b0
ðjCxðnÞða0; b0Þj � jCxðnÞða0; b0ÞjÞ

ð3Þ

Three real arrhythmia samples from the MIT database

were analyzed using the wavelet transform to give us a

time-scale representation of the groups. Figure 1a–c

shows three sample surface ECGs pre-classified by the

electrophysiologist as a VT, OVF, and DVF ECG episode.

From Fig. 1a (top and bottom panels), it can be observed

that VT has a strong organized structure because the signal

energy is confined to a narrow bandwidth but spreads

uniformly over time. The DVF example in Fig. 1c (top and

bottom panels) does not have an observable organizational

structure and the energy is distributed over the time-scale

plane (disorganized). This is also reflected in the scalogram

(bottom panel of Fig. 1c). Visually inspecting the OVF

ECG, and the scalogram found in the bottom panel of

Fig. 1b, it can be observed that there is a higher degree of

organization than the DVF example found in Fig. 1c,

because most of the scalogram energy in the OVF example

is confined to a smaller range of scales. However, it is not

as organized as the VT example in Fig. 1a since the energy

in the confined scales is not consistent through time in the

scalogram.

Since VF is non-stationary in nature, wavelet transform

is suitable for the task due to its time-scale properties and

has been successfully applied in existing literature for VF

analysis [12, 18, 37, 44, 49] and it is also computationally

less expensive. Initial results of the ventricular arrhythmia

classification into VT, OVF, and DVF were presented in [6],

where image processing was applied to the wavelet scalo-

gram (as seen in Fig. 1) to capture dominant energy peaks.

The proposed study provides an analysis of the wavelet

scalogram of the ECG using singular value decomposition

(SVD). Features extracted from the SVD are used to clas-

sify VT and further sub-classify non-VT into OVF and

DVF. Using SVD on the wavelet time-scale/time–fre-

quency plane for extracting features is a known approach

and has been applied by existing works [16, 25, 45].

2.3 Singular value decomposition

The differences in the arrhythmia signal structures (both in

the time domain and in the time-scale domain) for VT,

OVF, and DVF groups can be observed from Fig. 1. SVD

can be applied to the time-scale plane such that discrimi-

native features can be extracted to capture the group

characteristics found in the scalogram. SVD decomposes
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the information spread over the time-scale plane by treating

the scalogram matrix as a sum of separable components

[45]. Briefly, the concept behind SVD is to decompose the

matrix ĈxðnÞða0; b0Þ (shown in Eq. 3) into a canonical form.

The canonical form decomposes the matrix into the format

given in Eq. 4 [3]. The indices c in the matrix ĈxðnÞða0; b0Þ
give the percentage of energy captured by the Morlet

wavelet at a particular time and scale.

ĈxðnÞða0; b0Þ ¼ USVH ð4Þ

The matrices U and V are unitary matrices and H

denotes the complex conjugate transpose of the matrix.

The singular values are represented by S. Therefore, the

scalogram matrix ĈxðnÞða0; b0Þ is factorized by creating two

unitary matrices, U and V, and a singular value diagonal

matrix S [8]. The matrices U and VH represent components

that describe the energy distribution pattern found in the

scalogram ĈxðnÞða0; b0Þ. The singular values in the matrix

S represent the amount of energy captured by the

components U and VH from the scalogram ĈxðnÞða0; b0Þ.
The matrices U and VH have a unique representation when

SVD is applied to the scalogram. If the scalogram is

oriented such that the rows contain the frequency aspects

and the columns contain the time aspects of the scalogram,

then the U matrix (of size A0) contains the components that

capture the spectral information (in terms of scales) and the

VH matrix (of size B0) has the components that capture the

temporal information. Equations 5 and 6 show how U and

V capture the spectral and temporal information.

ĈxðnÞða0; b0Þ � ĈxðnÞða0; b0ÞT ¼ US0UT ð5Þ

ĈxðnÞða0; b0ÞT � ĈxðnÞða0; b0Þ ¼ VS00VT ð6Þ

Both the U and V matrices perform an Eigen

Decomposition on the matrices ĈxðnÞða0; b0Þ � ĈxðnÞða0; b0ÞT

and ĈxðnÞða0; b0ÞT � ĈxðnÞða0; b0Þ, respectively [39]. U and V

obtain the Eigen vectors of their respective matrices to

calculate the components. The Eigen values S0 and S00

contain the same non-zero diagonal entries of matrix S,

but may be placed in a different order. The matrices

ĈxðnÞða0; b0Þ � ĈxðnÞða0; b0ÞT and ĈxðnÞða0; b0ÞT � ĈxðnÞða0; b0Þ
identify the dominant energy structures from both the scale

and time, respectively. Therefore, performing the Eigen

decomposition of these matrices allows for the identification

of the prominent signal structures, which is represented in

the Eigen vectors that are obtained. The eigen values would

then indicate which component is more dominant for the

given scalogram.

For the scalogram given in Eq. 7, each U and VH

component capture specific energy variation from the

matrix ĈxðnÞða0; b0Þ. Therefore, for a particular component i,

the combination of the U and VH with the corresponding

singular value can create the scalogram that captures a
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Fig. 1 Examples of ECGs depicting VT (a), OVF (b) and DVF (c)

156 Med Biol Eng Comput (2013) 51:153–164

123



particular set of energy variations from ĈxðnÞða0; b0Þ.
Equation 8 shows that the ith column of matrix U multi-

plied by the ith row of matrix VH multiplied by the cor-

responding singular value creates the filtered version of the

scalogram ĈxðnÞða0; b0Þ.

Ĉx (n ) (a',b')= 

c1,1 c1,2 · · · c1,b

c2,1 c2,2

...
. . .

ca,1 ca,b

ð7Þ

ĈxðnÞ;iða0; b0Þ ¼ Ua0;i � Si;i � VH
i;b0 ð8Þ

There are many existing works where SVD has been used

to obtain information on a given wavelet scalogram. SVD

was used to determine the ridges from the CWT [29]. The

ridges of the wavelet transform play a key role in

determining the phase structure, and this was captured

using the dominant SVD components to find the local

maxima in the scalogram. In [16], SVD of information

spread over the time–frequency plane was used to classify

EEG seizure in newborn infants. In [25], a wavelet-

SVD analysis on normal sinus ECGs with support vector

machine-based classifier was used to predict the occurrence

of a type of cardiac arrhythmias. The proposed method,

on the other hand, analyzes the surface ECG during

an arrhythmia episode to determine its organizational

structure.

To demonstrate the power of SVD decomposition on the

scalogram, two synthetic signals were created, the first

signal simulates a Monomorphic VT signal (a sinusoid),

and the second signal simulates the DVF signal. The third

signal is from a patient suffering from a DVF episode. Part

A of Fig. 2a, b and c shows the scalogram of the simulated

VT and DVF and real world DVF signal, respectively,

along with the first five components from both the U and

VH matrix and the line plot of the first dominant component

for each matrix (shown above the rows of the VH matrix

and to the left of the columns of the U matrix) in part B and

C, respectively. The original time-domain signal is also

given in part D of the figures.

The set of first components which consists of the first

column of the U matrix (Part B of Fig. 2a–c) and the first

row of the VH matrix (part C of Fig. 2a–c), can be observed

to capture specific information with regards to the scalo-

gram. In particular, it captures the most dominant localized

energy variation within the scalogram. For example, in

Fig. 2a, the energy distribution in the first component of

the U matrix (line plot in part B of Fig. 2a) is centered

between the scales of 40 and 60, where as the component in

the VH matrix (line plot in part C of Fig. 2a) has its energy

distributed throughout the time window. Figure 2b, how-

ever, shows that the energy distribution in the first com-

ponent of the U matrix (line plot in part B of Fig. 2b) is

spread across multiple scales and the first component of the

VH matrix (line plot in part C of Fig. 2b) is not as dis-

tributed (comparatively) through time. SVD has accurately

captured the dominant component found in the synthesized

signals. The singular values give an indication of the

amount of energy retained by each component [46]. SVD

then reorganizes the components such that they are sorted

in descending order of the singular values. The similarities

of the SVD characteristics (dominant U and VH compo-

nents) between the synthetic DVF (Fig. 2b) and the DVF

obtained from a patient (Fig. 2c) can be easily observed.

Therefore, discriminant features for the arrhythmias

(VT, OVF and DVF) could be obtained by analyzing the

dominant component captured by the U and VH matrix as

well as the dominant component’s singular value.

2.4 Feature extraction

The extraction of the features allows us create a two-level

binary classification system to categorize the arrhythmia

groups. The first classification level provides features that

can separate VT from non-VT ECGs. The second level can

focus on further sub-classifying the non-VT ECGs into

OVF and DVF.

2.4.1 Features 1 and 2: first component singular value

and first V component variance analysis

An observable difference between the VT and non-VT

groups from the SVD of scalogram is that the energy dis-

tribution in the first component of the VH matrix of a VT

signal is expected to be equally distributed for most of the

time (which could be observed in part C of the simulated

VT signal in Fig. 2a). Since VT can also be modeled using

fewer components, it makes the initial singular value for

these components to be much larger than the subsequent

components. In the case of a non-VT signal, the energy

distribution in the first component of the VH matrix will be

non-uniform and relatively larger number of components

will be required to represent the scalogram, which in turn

makes the singular values more spread over subsequent

components unlike VT. The features that can be used to

classify VT from non-VT ECGs would be the percentage

of energy captured by the first component (refer to F1 from

Eq. 9) and the variance of the first component (i.e., first

row) of the VH matrix (F2 from Eq. 10).
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Fig. 2 SVD analysis of simulated VT (a) and DVF (b) and a real DVF (c) ECG
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F1 ¼ Ŝi ¼
Si

Pr
j¼1 SðjÞ ð9Þ

F2 ¼ r2
V ;i ¼

1

B0 � 1

X

B0

k¼1

ðjVHðk; iÞj � �VHÞ ð10Þ

In Eq. 9, Ŝ represents the singular value for component i

expressed as a percentage and r represents the rank of

ĈxðnÞða0; b0Þ (r B min{A0, B0}). A0 and B0 represent the

maximum values for parameters a0 and b0 respectively. The

percentage of the singular value is used instead of the

actual value because the value produced by taking the SVD

of a matrix gives specific information about the scalogram

and cannot be directly used for comparison. The percentage

is indicative of how much energy is captured by the

particular U and VH component. In Eq. 10, r2 represents

the variance of vector VH, �VH is the mean of the vector |VH|

for component i.

2.4.2 Feature 3: first U component variance analysis

As explained in the previous section, non-VT ECGs can be

segregated using features F1 and F2 (percentage of energy

captured by dominant component and first component in

the VH matrix). The most distinguishing feature between

the OVF and DVF was observed in their composition of

organized signal structures which is reflected in the energy

distribution of the dominant component of U matrix. This

was also observed directly from the scalogram of the OVF

and DVF ECG (Fig. 1). As DVF is dis-organized with

multiple frequency components, it has a highly varying

energy distribution over frequency relative to OVF, which

had few narrower peaks. This is captured in the dominant

(first) component of the U matrix. Hence, the variance of

the dominant component of U will therefore be a suitable

feature in classifying the organization range of VF. The

feature F3 using Eq. 11 was extracted for this purpose

(similar to the extraction of F2).

F3 ¼ r2
U;i ¼

1

A0 � 1

X

A0

j¼1

ðjUði; jÞj � �UÞ ð11Þ

Features relating to energy distribution over the signal’s

Fourier spectrum, similar to the above feature obtained

from the U matrix, could also be extracted and used for

OVF and DVF classification. The first significant

difference of this feature is that only the dominant scale

components are analyzed for their spread, as opposed to

capturing the total energy distribution from the signals

Fourier spectrum. In addition to the time-scale properties,

the advantages of using the wavelet transform are that it

provides the flexibility to choose different mother wavelets

which could be used to emphasize or de-emphasize certain

signal characteristics and the information extracted from

the U matrix is actually in terms of scales (inversely

related to frequency) and can be easily associated to

morphological signal structures of interest.

2.5 Pattern classification

The proposed 2-level binary classification is illustrated in

Fig. 3. The extracted features, explained in Sect. 2.4, were

fed to a linear discriminant analysis (LDA) based classifier

[38]. To effectively test the robustness of the classifier,

cross validation was performed using the leave-one-out

(LOO) method [13]. In the LOO method, the classifier is

trained with all samples except one and the single sample is

used for testing. This is repeated by leaving out each of the

samples in the database, training the classifier with the

remaining samples, and computing the classification.

The classification accuracy is then computed as the average

of classification accuracies obtained by leaving out each of

the samples. Two sets of classification accuracies were

obtained because a binary classifier was used.

3 Results

The first level classification was made to distinguish

between VT and non-VT groups. The second level classi-

fication was performed to distinguish between DVF and

OVF. Figure 4 represents the scatter plot, using F2 (the

first VH component variance distribution) and F1 (the first

component singular value percentage), that distinguishes

VT from non-VT groups. The linear boundary separating

VT and the rest is obtained from the classification and

shown in Fig. 4. VT scalograms typically have uniform

energy distribution across time, thus making the F2 (X axis

Fig. 3 Two-level binary classification
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from Fig. 4) lower when compared to the non-VT signals.

Furthermore, since VT requires fewer number of compo-

nents to model, the F1 (Y axis from Fig. 4) shows that

all VT samples have a relatively higher first singular

value when compared to non-VT group. Hence VT signals

occupy the top left corner of the scatter plot.

The feature used to distinguish between OVF and DVF

was the energy distribution of the first U component (F3).

Since this classification uses one feature, a box plot shows

the distribution of the feature for the two groups. Figure 5

demonstrates the classification of OVF and DVF using F3

(variance of the first dominant scale component). It is

observed that OVF tends to have a higher variance than

DVF due to OVF dominant component typically having

fewer and narrower spectral peaks.

LOO cross validation was performed in estimating the

classification accuracy. For the first level of the binary clas-

sification, an accuracy of 93.7 % was obtained. The confu-

sion matrix for the classification is presented in Table 1. Out

of the 21 VT signals, 19 were correctly classified with

accuracy of 90.5 % and out of the 42 non-VT signals, 40

were correctly classified with an accuracy of 95.2 %.

The second level of the classification achieved a clas-

sification accuracy of 80.0 %. The confusion matrix for the

classification is presented in Table 2. Out of the 18 OVF

signals, 14 were correctly classified with accuracy of

77.8 % and out of the 22 DVF signals, 18 were correctly

classified with an accuracy of 81.8 %. Considering the

difficulties in discriminating between subgroups of VF into

OVF and DVF, the obtained results are encouraging.

The results from the proposed feature in the classifica-

tion of OVF and DVF were compared with that of spectral

features (DF power and bandwidth with a classification

accuracy of 63.15 %), and found that it is much lower than

the proposed feature. The proposed features were also

tested in a single classification system, as opposed to a

binary classifier, and an overall classification accuracy of

79.4 % was obtained for a direct three group classification

into VT, OVF and DVF.

In addition, to illustrate the significance of the proposed

method in its application of identifying the overlap zone,

ECGs of two patients that contained markers for the onset

of VF from the MIT database were tested to study the

occurrences of OVF and DVF. The first 60 s and the last

60 s of the VF episodes were tested by analyzing a 4-s

sliding window (113 window segments each minute with a
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Table 1 Level 1 binary classification

Method Groups VT Non-VT Total

Cross-validated VT 19 2 21

Non-VT 2 40 42

% VT 90.5 9.5 100

Non-VT 4.8 95.2 100

Cross-validated, linear discriminant analysis with leave-one-out

method; %, percentage of classification

The number (and %) in bold values indicate the number (and %) of

cases correctly classified in the respective groups
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3.5 s overlap between adjacent windows) for the number of

OVF/DVF occurrences. On average, there were a higher

number of OVF occurrences in the first 60 s of the onset of

VF compared to the last 60 s. The results of this analysis

are presented in Table 3. The global organization (or

average organization) can be seen as a transition from OVF

to DVF in both instances. This shows that the proposed

method can be used to study the overlap zone more accu-

rately, to aid in the prognosis of the patient.

3.1 Comparative analysis

A comparative analysis with existing works on arrhythmia

classification was performed to benchmark the perfor-

mance of the proposed method. The algorithms proposed

by Ropella et al. [34] and by Roberts et al. [31, 32] were

tested due to their ability to classify MVT, PVT and VF.

The algorithm developed by Namarvar et al. [25] was also

implemented due to its similarity to the proposed method,

although their motivation was on arrhythmia prediction

using normal sinus ECGs. These methods were compared

for a number of characteristics and these are highlighted in

Table 4. For the classification accuracy comparison, all the

methods were tested with an uniform 4-s window.

The spectral coherence and phase space reconstruction

methods were tested on a smaller subset of the database,

because these methods require dual lead information

(which was unavailable for some patient ECGs in the

public databases used in this study). For the comparison to

be fair, the proposed method was also tested on the same

smaller subset of the database. The method proposed by

Namarvar et al. [25] was tested on the full database, as

single lead information was sufficient for implementing

Table 2 Level 2 binary classification

Method Groups OVF DVF Total

Cross-validated OVF 14 4 18

DVF 4 18 22

% OVF 77.8 22.2 100

DVF 18.2 81.8 100

Cross-validated, linear discriminant analysis with leave-one-out

method; %, percentage of classification

The number (and %) in bold values indicate the number (and %) of

cases correctly classified in the respective groups

Table 3 OVF and DVF occurrences in two patients

First 60 s Last 60 s

Patient 1

OVF occurrences 113 18

DVF occurrences 0 95

Total segments 113 113

Patient 2

OVF occurrences 105 40

DVF occurrences 8 73

Total segments 113 113

The number (and %) in bold values indicate the number (and %) of

cases correctly classified in the respective groups

Table 4 Comparative analysis

Method Electrogram/

ECG in

original

work

Number

of leads

used

Analysis type

in original

work

Analysis

domain

Analysis time

segment (s) in

original work

Target

classification

in original

work

Feature

dimensionality

Classification of

VT, OVF, DVF

in this study

VT/non-

VT (%)

OVF/

DVF (%)

Proposed

method

Surface 1 Arrhythmia

classification

Time-

scale

4 VT, OVF and

DVF

3 97.1a 85.7a

Phase space

reconstruction

[31, 32]

Surface 2 Arrhythmia

classification

Time 2.5 MVT, PVT

and VF

101 85.7a 57.1a

Spectral

coherence

[34]

Intra-

cardiac

2 Arrhythmia

classification

Frequency 4.24 MVT, PVT

and VF

1 60a 53.8a

Wavelet-SVD-

SVM [25]

Surface 1 Arrhythmia

prediction

Time-

scale

1.024 VT and VF

prediction

from sinus

rhythm

U matrix

(A0 9 A0

features)

83.87b 73.80b

a Binary classification on smaller database with dual leads (35 samples with 13 VT, 7 OVF and 15 DVF)
b Binary classification using the full database (since it used only a single lead, which is same as the proposed method), SVM and the scale unitary

matrix (U) with A0 9 A0 number of features. The results of 83.87 % for VT/non-VT and 73.80 % for OVF/DVF achieved by this method should be

compared to 93.7 and 80 % of the proposed method using the full database
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this method. The wavelet used in the comparative analysis

for the method proposed by Namaravar et al. [25] was the

complex Morlet and a linear kernel was used for the SVM

classifier.

The results for the different methods are highlighted in

the last column of Table 4. The results given are the binary

LOO classification accuracies. From the results, it can be

observed that the proposed method performs well in

comparison to the spectral coherence and the phase space

reconstruction methods on the smaller subset of the origi-

nal database (97.1 and 85.7 % compared to 60 and 53.8 %

for spectral coherence and 85.7 and 57.1 % for phase space

reconstruction). It should be noted that the spectral

coherence method and phase space reconstruction per-

formed especially poor in the classification of OVF and

DVF. The feature identified by Narmarvar et al. [25]

(unitary matrix representing the scale energy of the wavelet

coefficients) provided a VT/non-VT classification of

83.87 % and an OVF/DVF classification accuracy of

73.80 % on the full database. However, the classification

of VT samples was only 47.62 %. Similarly, the OVF

classification was found to be 61.90 %. These results are

lower when compared to the VT and OVF classification

results of the proposed method from Tables 1 and 2 (90.5

and 77.8 %, respectively).

4 Discussion

Ventricular arrhythmias seriously affect the quality of life

and could be lethal and lead to sudden cardiac death.

Arriving at techniques that could perform automated clas-

sification of ventricular arrhythmias in a short period of

time has significant implications in the choice of therapies

and survival rates of patients. Our results suggest that the

proposed method using features derived from the time-

scale plane performs well in classifying ventricular

arrhythmias, and in particular the highlight of the work

being the sub-classification of VF into OVF and DVF to

identify the overlap zone. This could be of immense

assistance to ICDs and clinicians in optimizing treatment

options for the affected population with an arrhythmia in

the overlap zone.

Recent studies [10, 23, 35, 41, 42] have indicated the

presence of spatio-temporal organization during VF and

have associated them to the sources that maintain VF. It

has also been shown that the ablation of centers of orga-

nization (rotors) during AF could terminate AF [27]. The

manifestation of these organized activities on the surface

ECG during VF could be related to the presence of signal

components that have time–frequency/time-scale patterns.

Quantifying and studying these time-scale/time–frequency

components could provide a better metric on the transition

from organized VT to disorganized VF rather than rate-

dependent approaches. Our methodology achieves this

using wavelet-SVD analysis on surface ECGs where we

focus on the deriving features from dominant signal com-

ponents in the time-scale plane (i.e., both from time and

scale dimensions) and arrive at an organization index. It

has also been shown in literature [36] that the transition

from VT to VF has a relation to the spatial organization and

short-lived rotors [36, 42], and therefore validates the need

for an overlap zone to better capture this transition. Our

results also confirm this, as our technique identified more

OVF segments during early VF and more DVF segments

during the later stages of VF.

In comparison with few of the related techniques [25,

31, 32, 34], the proposed method in overall performs well

with the given database (either a subset or full) and for the

proposed target classification. It could be observed that the

majority of the existing methods did perform compara-

tively well for VT/non-VT classification; however, their

performance in classifying OVF–DVF is below the pro-

posed method. Based on our features and analysis pre-

sented in this work, it is evident that we operate on a

filtered (i.e., dominant sub-plane) time-scale plane that

correspond to the dominant U (spectral) and V (temporal)

vectors. In other words, we operate on a set of dominant

signal components that have specific time and frequency

localization. Relating this to spectral techniques [7, 10, 11,

34], they are limited in operating only on the global

spectrum of the signals, which does not allow them to

extract spectral information for selective time-scale com-

ponents that may be of interest. This could explain the

lower performances of these techniques for the proposed

classification. In addition, the spectral coherence method

[34] uses dual channel information while the proposed

method performs well using a single-channel ECG. The

phase space reconstruction [31, 32] method also had dif-

ficulties in classifying OVF and DVF while it performs

relatively well for VT-non-VT classification. Since in this

method the correlation between the ECG leads (requires

dual lead) is the key to the discrimination, the subtle

morphological differences between the OVF and DVF may

not be captured effectively.

The method proposed by Narmarvar et al. [25] per-

forms with comparable results to the proposed method.

However, closely analyzing the results indicates a poor

classification of VT and OVF. As discussed earlier our

proposed method derives features from both temporal and

spectral dimensions whereas the work proposed by

Narmarvar et al. [25] only operates on the U matrix which

corresponds to spectral information. From the results

presented in this study, for VT and non-VT classification

an important feature is the time-support of the dominant

time-scale component and the information of which lies in
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the V matrix. Excluding the information from the V matrix

could explain the lower performance of their work in

classifying VT and non-VT group. The other important

differences are the dimensionality of the feature space and

that they used normal sinus ECGs in predicting arrhyth-

mias. With respect to dimensionality, using the U unitary

matrix in its entirety produces a large feature space

[depending on the scale range (A0 9 A0)], whereas the

proposed algorithm in this study has derived features only

from the dominant time-scale components and selected

three features from it.

It should be noted that the poor performance of the

above discussed methods could also be attributed to the

small database size (spectral coherence and phase space

reconstruction methods) due to the requirement of dual

lead information and that their target classification groups

were different to that of the proposed method. However,

since they were all tested in a similar setting (either with a

subset or full database), it is fair to say that although all the

methods perform comparatively well in VT–non-VT clas-

sifications, the proposed method using a single lead ECG

demonstrates higher potential in classifying the OVF–DVF

group accurately. This could result in a tool that the cli-

nician can use to discriminate the organization levels

between the three types of arrhythmias. Although the

method used was demonstrated on surface ECG with

arrhythmic episodes, it could easily be extended to analyze

tracings from ICDs, because ICD tracings would still pre-

serve the organization aspects of the three groups.

A limitation to the proposed method is that the tool

presented in this article cannot be used as a risk-stratifier to

determine whether a patient should get an ICD or not. The

techniques presented here cannot determine the probability

of future VF episodes, but can aid in classifying past and

present arrhythmic events and provide the clinician with a

better understanding of the type of arrhythmia that the

patient may be faced with.

5 Conclusion

The proposed study presented a wavelet-SVD based

method to classify ventricular arrhythmias and in particular

the overlap zone between VT and VF. This could aid cli-

nicians in diagnosing those patients who suffer from

arrhythmias in the overlap zone and suitably provide them

with optimal therapeutic solutions. The proposed approach

can also aid ICDs in choosing appropriate therapy based

on an organizational index rather than the current rate-

dependent detectors of arrhythmias. A comparative analy-

sis with the related existing methods illustrates that the

proposed method has higher potential in sub-classifying VF

into OVF and DVF. Future work involves identifying the

discriminatory time-scale patterns that could be associated

with mechanism that initiates and maintains VF.
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