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Abstract In cranioplasty, neurosurgeons use bone grafts

to repair skull defects. To ensure the protection of intra-

cranial tissues and recover the original head shape for

aesthetic purposes, a custom-made pre-fabricated prosthe-

sis must match the cranial incision as closely as possible. In

our previous study (Liao et al. in Med Biol Eng Comput

49:203–211, 2011), we proposed an algorithm consisting of

the 2D snake and image registration using the patient’s

own diagnostic low-resolution and defective high-resolu-

tion computed tomography (CT) images to repair the

impaired skull. In this study, we developed a 3D multigrid

snake and employed multiresolution image registration to

improve the computational efficiency. After extracting the

defect portion images, we designed an image-trimming

process to remove the bumped inner margin that can

facilitate the placement of skull implants without manual

trimming during surgery. To evaluate the performance of

the proposed algorithm, a set of skull phantoms were

manufactured to simulate six different conditions of cranial

defects, namely, unilateral, bilateral, and cross-midline

defects with 20 or 40 % skull defects. The overall image

processing time in reconstructing the defect portion images

can be reduced from 3 h to 20 min, as compared with our

previous method. Furthermore, the reconstruction accura-

cies using the 3D multigrid snake were superior to those

using the 2D snake.

Keywords Cranial defect � Skull reconstruction �
Active contour model � Image registration �
Computed tomography

1 Introduction

Cranioplasty is a procedure performed by neurosurgeons to

graft the autograft, allograft, xenograft, or synthetic mate-

rial into defective skull regions [17]. Although the optimal

choice involves using a fresh frozen autograft bone flap

removed at the craniotomy [27], it is unfeasible for patients

with head trauma in emergency. A custom-made pre-fab-

ricated prosthesis using a computer-aided design is a

favorable alternative [18]. To ensure the protection of

intracranial tissues and recover the pre-operative head
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shape for aesthetic purposes, bone substitutes must fit the

cranial defects. Several methods have emerged in relevant

literature for reconstructing the cranial implant, such as the

mirroring technique [25, 37], surface interpolation [5, 6],

and a deformed template [8, 36], to match the incision as

closely as possible. However, the mirroring method is

limited by unilateral defects, the surface interpolation

approach does not duplicate actual anatomical shapes, and

the template-based method requires labor-intensive manual

selection of landmarks. In our previous study [20], we

proposed an algorithm consisting of the 2D snake and

image registration using the patient’s own diagnostic

low-resolution and defective high-resolution computed

tomography (CT) images to repair the impaired skull for

preserving the original appearance. Although our previous

approach effectively created a customized skull implant,

the computational efficiency can be further improved from

within 3 h to within half an hour using the 3D multigrid

snake and multiresolution image registration.

Multigrid methods involve using a pyramid of grids to

suppress the error components at each level for solving

partial differential equations [3, 35]. Numerous multigrid

applications are involved in image processing, computer

graphics, and computer vision research, including shape

from shading [34], image denoising [10], image classifi-

cation [29], isometric embedding [4], mesh deformation

[32], and nonlinear image registration [14]. Multigrid

approaches are intrinsically suitable to the snake model

(also known as active contour model), because minimizing

the energy function can be converted into a partial differ-

ential equation [16]. However, most of the previous snake-

related applications have considered only 2D images. For

example, Papandreou and Maragos [28] applied properly

designed multigrid methods for the rapid evolution of level-

set-based geometric active contours. Cremers et al. [7]

implemented a multigrid scheme to solve the steady-state

equation of a diffusion snake, which incorporated a statis-

tical shape prior. Cremers et al. mainly used a knowledge-

driven approach to contend with the occlusion problem in

computer vision. However, this was not applicable to our

case, because prior information was absent. Han et al. [15]

efficiently computed the gradient vector flow by introduc-

ing a multigrid scheme and served as the external force to

increase the capture range of classic snake models in both

2D and 3D images; however, they did not use the multigrid

methods in updating the snake coordinates.

The multiresolution scheme optimizes the estimate in

coarser-resolution images, and the resulting estimate is

propagated to the next finer-resolution image as initial for

accelerating the optimization [24, 30]. We refined the

previous image registration algorithm with an addi-

tional multiresolution image pyramid to accelerate the

computation with comparable precision and robustness.

Furthermore, we designed an image-trimming procedure to

remove the irregular inner margins of the skull implant so

that the trimmed implant can more effectively fit the bor-

ders of the cranial incision. This allows us to facilitate the

placement of skull implants without requiring manual

trimming during surgery.

To assess the performance of the proposed algorithm,

we manufactured a set of skull phantoms to simulate six

different conditions of cranial defects; namely, unilateral,

bilateral, and cross-midline defects with 20 or 40 % skull

defects. After applying the 3D multigrid snake, multires-

olution image registration, and image trimming to recon-

struct the defective skull portions, the skull implants were

manufactured to observe whether the reconstruction algo-

rithm can recover the original cranial appearance.

2 Materials and methods

In this study, we aimed to reconstruct the cranial defect by

image-based and mesh-based processing using a low-reso-

lution diagnostic CT image with an intact skull and a high-

resolution CT image with a defective skull. We previously

Fig. 1 A flow chart of the reconstruction algorithm. Compared with

our previous study [20], procedures in the boxes with solid lines are

redesigned
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proposed a reconstruction algorithm [20], which was com-

putationally intensive and required approximately 3 h of

computation time. The reconstruction algorithm was rede-

signed to improve the computation efficiency (Fig. 1). The

reconstruction steps are as follows. First, the low-resolution

CT image is resampled using trilinear interpolation to match

the resolution of the high-resolution image. Second, the skull

is extracted by image thresholding with a value close to the

lower bound of the CT number for the bone. Third, we adopt

multigrid techniques on a 3D snake model to accelerate the

convergence. The 3D multigrid snake alleviates slice-by-

slice computations and matrix inversion of the 2D snake

model. Fourth, the multiresolution scheme is employed to

reduce computation time in registering the diagnostic and

defective images. Fifth, the difference between the two

aligned images can be extracted as the defective area. Sixth,

we added an image-trimming process to modify the inner

margin of the skull implant to facilitate cranioplasty. Finally,

the repaired skull images were translated into a stereolitho-

graphic (STL) format, and the skull implant was manufac-

tured using a rapid prototyping (RP) machine.

2.1 Phantom design and image acquisition

We designed a set of skull phantoms based on real cranial CT

data to validate the proposed algorithm. A 19-year-old male

with an intact skull was informed of radiation concerns, and

completed a consent form before participating in this

study. The cranial CT data of the subject were acquired

as contiguous axial images, covering only areas above the

orbitomeatal plane, with in-plane resolution of 0.49 mm 9

0.49 mm, and 0.6-mm slice thickness. The acquired CT

images were translated into a STL format using computer-

aided design software [13]. Seven skull phantoms were

duplicated using an RP machine (Dimension SST 768,

Stratasys, Inc.) based on the translated STL (Fig. 2). For six

of the seven phantoms, a portion of the skull was removed

using a clinical-use power twist drill (1.5-mm diameter,

Aesculap, Inc.) in different locations and sizes to simulate six

conditions of skull defect. Specifically, the six simulated

conditions are 20 and 40 % skull defects in the right hemi-

sphere (Fig. 3a, b), cross-midline area (Fig. 3c, d), and

bilateral sides (Fig. 3e, f), respectively. The various condi-

tions of skull defects were designed based on the clinical

suggestions of neurosurgeons (co-authors C.T. Wu and S.T.

Lee). The unilateral side of skull defects is common in

patients who receive a craniotomy to control the elevated

intracranial pressure. The frontal skull defect is usually

caused by trauma from car accidents in which the frontal

cranium is subjected to a heavy impact. The bilateral sides of

skull defects can result from a second craniotomy or bilateral

brain surgery. According to neurosurgeons’ experience, the

20 and 40 % circular skull defects were common in clinics.

For the subsequent image processing, axial CT images

were acquired for one intact and all six defective skull

phantoms using a Sensation 16 CT scanner (Siemens, Inc.)

at Chang Gung Memorial Hospital, Taoyuan, Taiwan. The

field of view was 250 9 250 mm2, with a 512 9 512

matrix and 0.6-mm-thick contiguous slices. Supplemental

CT data were reconstructed for the intact skull phantoms

with the same in-plane resolution and 5.0-mm slice thick-

ness (Table 1) to simulate the partial volume artifacts in the

diagnostic low-resolution CT images.

2.2 3D multigrid snake

Active contour models, also known as snakes, are evolving

curves driven by minimizing the internal and external

energies [16]. The internal energy makes the contour tense

and stiff. The external energy derived from image features

guides the contour toward the region of interest. The calculus

of variations is used to minimize the internal and external

energies for deriving the Euler–Lagrange equation:

av00 þ bv00 00 þ oEext

ov
¼ 0

where v denotes the coordinate vector of the contour with

entities vi, for i = 1, 2,…, N (the number of vertex on the

contour), the leading two terms were derived from the

internal energy with the a and b weights of tension and

stiffness, and the final term from the external energy Eext.

After a further expansion using a finite difference to

approximate derivatives, the equation becomes

aiðvi�vi�1Þ�aiþ1ðviþ1�viÞþbi�1ðvi�2�2vi�1þviÞ
�2biðvi�1�2viþviþ1Þþbiþ1ðvi�2viþ1þviþ2Þþ fvðiÞ¼0

that can be rewritten into matrix form: Avþ fv ¼ 0; where

A is a matrix consisting of a and b, and fv is associated with
Fig. 2 A skull phantom manufactured by the RP machine based on

the STL of CT skull data
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external energy. Traditionally, A is solved using matrix

inversion.

The 2D snake has been applied slice-by-slice to elimi-

nate the superfluous ripple artifacts, which were introduced

when images were resampled from low resolution to high

resolution [20]. Because skull reconstruction using the 2D

snake to iteratively process hundreds of slices can be time

consuming, we proposed using the 3D snake with a mul-

tigrid algorithm to accelerate the computation and ensure

the whole-volume congruency. As described in the previ-

ous study [20], we firstly replaced the lower half volume by

flipping the upper volume to form a closed skull surface for

initializing the 3D snake. We hereafter term the skull/dura

interface as the ‘‘inner surface’’ and the skull/scalp inter-

face as the ‘‘outer surface’’. To encapsulate the recessed

surface, rather than the bumped surface (the artifacts) of

the skull, image erosion was executed [12]. The inner and

outer surface meshes were then constructed using the

marching cubes algorithm [22], and were separately used

as the initials for the subsequent 3D inner and outer snakes.

In this study, the 3D snake consisted of more than

250,000 vertices, and matrix A was not banded diagonal

because of the irregular arrangement of vertices, which

limited the use of lower-upper triangular matrix decom-

position for matrix inversion [16]. To solve this problem,

the basic iterative methods, such as the Jacobi and Gauss–

Seidel smoothers, were employed to estimate the solution

without inverting matrix A. However, the smoothers can

only effectively eliminate the high-frequency errors but are

incapable of suppressing the low-frequency ones. We

adopted a multigrid approach to accelerate the convergence

by damping the low-frequency error components at coarser

resolution levels [3, 35].

In multigrid methods, a V-cycle multigrid algorithm

traverses the grid hierarchy from the finest level to the

coarsest level; at each level, the pre-smoothing is executed.

We then return to the finest level step-by-step to perform

the post-smoothing. The traversal constitutes a V-shaped

path, and this algorithm is referred to as a V-cycle multi-

grid. In this paper, we implemented the two-level V-cycle

Fig. 3 The phantom

simulations with a 20 % and

b 40 % skull defects in the right

hemisphere, c 20 % and d 40 %

skull defects in the cross-

midline area, and e 20 % and

f 40 % skull defects in the

bilateral sides. The black arrows
indicate the removed portions of

the phantoms

Table 1 The voxel size of acquired data sets

CT data of intact phantom CT data of defective phantoms

Low resolutiona High resolutionb Low resolution High resolution

Original size (mm3) 0.49 9 0.49 9 5.00 0.49 9 0.49 9 0.60 – 0.49 9 0.49 9 0.60

Resampled size (mm3) 0.49 9 0.49 9 0.60 – – –

a The low-resolution intact images were designed to simulate the artifacts on the low-resolution diagnostic images
b The high-resolution intact images were designed as the ground truth for the evaluation of accuracy
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multigrid to iteratively update the coordinates of the 3D

snake. The mesh at the coarser level was firstly constructed

by applying a polygonal simplification algorithm on the

original full-resolution mesh [23]. The shortest edge was

successively selected and collapsed to merge the two ver-

tices on the same edge. Once the coarse grid was con-

structed, multigrid methods could be applied with nested

iterations and coarse-grid correction. A schematic diagram

of the two-level multigrid algorithm is presented in Fig. 4a,

and the notations are tabulated in Fig. 4b. The detailed

algorithm of a two-level multigrid is presented in [3].

The inner and outer surfaces at the finer level con-

sisted of 268,528 and 348,618 vertices, respectively. The

huge amount of data not only consumed the storage

space but also hampered the speedup of computation.

We used a sparse matrix to store A. We set the stopping

criteria for Steps 1, 4, and 7 to be either a pre-defined

iteration number (less than 500 in our experiments) or a

tolerance

tol ¼ rk k
e � Ak k � vk k þ fk kð Þ

that was less than a threshold, where e is set to 10-8 and

10-3 at fine and coarse levels, respectively [2]. The

threshold was 1 in all relaxations, except for the relax-

ation of z coordinates in pre-smoothing and post-

smoothing, where the thresholds were set to be 3.0 and

1.5, respectively, because the residuals reduced extre-

mely slowly.

2.3 Multiresolution image registration

A multiresolution image registration scheme was adopted

to avoid local minima and provide better initialization from

the coarse images, whilst reducing computation time [21].

Subsampling was used to reduce the full-resolution images

with a dimension of 512 9 512 9 228 into two coarser-

level images with dimensions of 256 9 256 9 114 and

128 9 128 9 57, respectively. The 3D rigid-body image

registration started from the coarsest-level image. The

translation parameters were initialized as the difference of

two volume centroids and the rotation parameters were

initialized as zeros. The convergent parameters were used

as initials in the registration of finer-level images. The sum

of squared differences was used as the cost function, and

Powell’s method was used in optimizing the parameters

[21, 31].

2.4 Trimming of repaired skull images

After aligning the intact and defective images, the defec-

tive area was extracted using a designed difference oper-

ation, which consists of image subtraction, morphological

opening, 3D region growing, and manual revision [20]. The

resulting image was used to construct the skull implant.

The trimming of the skull implants is usually required

during cranioplasty surgery so that the implants can match

the boundary of defects. The manual trimming of implants

may increase the operating time, resulting in additional

intra-operative blood loss for patients. The mismatch

between implants and the patient’s skull is mainly because

of the bumped inner margin of the implants (white arrows

in Figs. 5a, 6a). To facilitate the surgery, we trimmed the

border of the repaired skull images by shaping the inner

margins. The incised margins created during the craniot-

omy are commonly perpendicular to the skull surface,

allowing us to cut the incised margins of the implants at

45� to remove the bumped inner margins (Fig. 5b).

Specifically, the trimming of the repaired skull images

was achieved by performing the following steps. First, we

defined the normal vector in the center of the repaired skull

images (the white line in Fig. 6b in the outward direction)

by connecting the centre point of the outer surface and the

centroid of the skull image. Second, we smoothed the

images using convolution with a 3 9 3 9 3 kernel com-

posed of the six-neighborhood voxels to reduce the noisy

normals. The normals for each surface voxel were esti-

mated according to their image gradients using the central

difference approximation. Third, the surface voxels, whose

normal vectors were parallel with the central normal vector

(0.8 \ cross correlation \ 1.0), were identified as the outer

surface (the green surface in Fig. 6b). The surface voxels,

whose normal vectors were perpendicular to the central
Fig. 4 A two-level V-cycle multigrid algorithm. a The schematic

diagram. b A list of notations
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normal vector (0.3 \ cross correlation \ 0.3), were

defined as the side surface (the red surface in Fig. 6b). The

outer margin (the blue curve in Fig. 6b) was defined as the

border between the outer and side surfaces. Fourth, we

searched for the point on the central normal line (A in

Fig. 6c) and connected it with the voxels on the outer

margin to define the lines at 45� included angles (magenta

lines in Fig. 6c). Finally, the inner margins located outside

the 45� lines were removed (yellow regions in Fig. 6c) to

result in the trimmed skull images (Fig. 6d). The trimmed

skull image can be readily constructed as a mesh and

translated into the STL format using Autodesk� 3ds Max�.

We manufactured the skull implant using the STL file in an

RP machine.

2.5 Assessment of skull reconstruction

We evaluated the performance of the snake and repaired

skull implants to assess the skull reconstruction using the

phantom CT data sets. The performance of the snake in

eliminating the ripple artifacts was assessed using the low-

resolution (5.0-mm slice thickness) and high-resolution

images (0.6-mm slice thickness) of the intact skull data.

The low-resolution images were first resampled to obtain

identical resolutions of the resampled image and high-

resolution images. The 2D snake and 3D multigrid snake

were then employed on the resampled images to eliminate

the ripple artifacts on both the inner and outer surfaces.

Because the low- and high-resolution images were recon-

structed from the same intact skull phantom, the high-

resolution images served as the ground truth. The surface

errors were estimated for three conditions: resampled,

resampled with the 2D snake, and resampled with the 3D

multigrid snake.

The surface error was calculated as the distance from

every reconstructed inner- or outer-surface vertex to the

closest intersection point on the ground truth mesh. Spe-

cifically, the estimated coordinate of the ith vertex for each

Fig. 5 A coronal slice for

demonstrating the mismatch

between skull defect and

implant. a The image displays

the mismatch between a skull

implant (gray regions) and

defective skull (white regions)

due to the bumped inner margin

(white arrow) of the implant.

b The skull implant with 45�
inner margin trimming can be

placed in the proper position

Fig. 6 The trimming on the inner margin of a repaired skull image.

a A repaired skull image (for the right-hemisphere 20 % defect case)

is with bumped inner margins (labeled by white arrows). b The

central normal vector (the white line with the outward direction) is

defined by the connection of the center point on the outer surface and

the centroid of skull image. The outer surface (green surface)

possesses normal vectors parallel with the central normal vector (i.e.

0.8 \ cross-correlation \ 1.0), and the side surface (red surface)

possesses normal vectors perpendicular to the central normal vector

(i.e. -0.3 \ cross-correlation \ 0.3). The outer margin (blue curve)

is defined as the border between the outer and side surfaces. c The

point A on the central normal line is connected with the voxels on the

outer margin to define the lines with 45� included angles. The yellow
regions are the cut-out inner margins that locate outside the 45� lines.

d The trimmed repaired skull image (colour figure online)
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reconstructed mesh, vr
i , can be denoted as xr

i ; y
r
i ; z

r
i

� �
, for

i = 1, 2, …, Nr, and Nr is the total number of the vertices

for the reconstructed mesh. For each vr
i , the three vertices

of the nearest plane, vg
i1, vg

i2, and vg
i3, on the ground truth

mesh were identified (Fig. 7). The normal of this triangular

plane, denoted as ng
i ¼ ða; b; cÞ, can be obtained using the

cross-product on vectors vg
i2vg

i1

���!
and vg

i3vg
i1

���!
. The plane equa-

tion of the nearest plane can be presented as

axþ byþ czþ d ¼ 0, where d is a constant determined

according to any point on the plane. Finally, the surface

error for vr
i , can be calculated as SEðvr

i Þ ¼
axr

iþbyr
iþczr

iþdj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2þc2
p .

We evaluated whether the manufactured skull implants

could recover the original cranial appearance by two

means. First, the skull implants with or without inner

margin trimming (Sect. 2.4) were placed on the defective

skull phantoms, and the fitness was confirmed by visual

inspection. Second, we calculated the errors of the outer

surface, which is the main concern of clinics, on each

repaired skull portion by comparing the locations of the

outer-surface voxels with those on the high-resolution

intact skull images.

3 Results

3.1 Speed improvement

Our program was implemented by Microsoft� Visual

C??� 6.0, and the experiments were carried out on a

personal computer with an Intel� CoreTM2 Duo CPU

2.33 GHz and 2 GB of RAM on Microsoft� Windows� XP

Professional Edition. The time cost of registering diag-

nostic and defective skull binary images using the full-

resolution images is 1,884 ± 309 (mean ± SD) s. Apply-

ing the multiresolution scheme in image registration can

reduce the computation time to a maximal 1,358 s (right,

40 % defect) and a minimal 330 s (cross-midline, 20 %

defect), obtaining an average 732 ± 370 s. The average

gain in computational speed was 3; that is, 67 % of com-

putations were saved. In comparing the 2D snake with the

3D multigrid snake, the computation time was shortened

from 6,880 s to 245 s—a speed gain of 28. This demon-

strated that the 3D multigrid snake significantly improved

the computational efficiency.

3.2 Accuracy comparison between 2D snake and 3D

multigrid snake

The results of the 2D snake and 3D multigrid snake in

eliminating the ripple artifacts compared with the resam-

pled intact skull images (Fig. 8a) are illustrated in Fig. 8b

and c, respectively. The ripple artifacts on the outer and

inner surfaces in the resampled skull image were efficiently

removed by both the 2D snake and 3D multigrid snake. The

outer and inner surface errors, which were calculated as the

distances to the closest intersection points on the ground

truth images for the estimated vertices, were separately

assessed.

Regarding the outer surfaces, the surface errors for the

resampled images exhibited evident ripple artifacts

(Fig. 8d). After applying the 2D snake (Fig. 8e) or the 3D

multigrid snake (Fig. 8f), the ripple artifacts on the outer

surface were greatly suppressed. Large surface errors

(*3.67 mm for the resampled surfaces and *2.50 mm for

the resampled surfaces with either the 2D or 3D multigrid

snake) were observed at the posterior upper portions of the

skull outer surface under all three conditions (the red

Fig. 7 The surface error

between the reconstructed mesh

and the ground truth mesh on vi
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arrows in Fig. 8d, e, f). These large surface errors may

originate from the insufficient number of image points at

the top of the skull because of the larger slice thickness of

diagnostic skull images; hence, few points were available

that limited the snake algorithms to approximate the curved

shape at the top of the skull.

The ripple artifacts of the inner surface were also greatly

suppressed by the 2D snake (Fig. 8h) and 3D multigrid

snake (Fig. 8i), especially on the convex portions in the

resampled surfaces (Fig. 8g). For both snake algorithms,

large surface errors of 2.40 mm for the 2D snake and

3.10 mm for the 3D multigrid snake were observed at the

frontal crest (the red arrows in Fig. 8h, i). The frontal crest

was an anatomical structure with a locally inward bump, as

compared with neighboring surfaces, and was similar to the

ripple artifacts removed using the snake. Moreover, three

other local areas near the parietal portions with inner sur-

face errors of *2.20 mm were observed in the 2D snake

results (white arrows in Fig. 8h), which did not appear in

the 3D multigrid snake results.

In comparing the surface errors that resulted from using

the 2D snake with those from using the 3D multigrid snake,

Fig. 9 displays the distribution of surface errors indicated

by box plots. For both the outer and inner surfaces, the 3D

multigrid snake presented a lower median, lower 75 %

percentile, and a smaller upper adjacent, although fewer

outliers were observed at the outer posterior portion and

inner frontal crest regions for the 2D snake. Our results

suggested that the 3D multigrid snake is more effective in

removing the ripple artifacts, as shown in the resampled

skull images. In addition, the 3D multigrid snake is more

efficient than the 2D snake (a speed gain of 28).

Fig. 8 The processed results from the 2D snake and 3D multigrid

snake for the intact skull data. a A sagittal resampled skull image,

b the skull image after the 2D snake, c the skull image after the 3D

multigrid snake, d the outer surface error for the resampled skull

images, e the outer surface error for the images after 2D snake, f the

outer surface error for the images after 3D multigrid snake, g the inner

surface error for the resampled skull images, h the inner surface error

for the images after 2D snake (white arrows indicate the location of

local spots), i the inner surface error for the images after 3D multigrid

snake. Red arrows indicate the locations of maximal errors for each

condition (colour figure online)
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3.3 Assessment of skull reconstruction

We manufactured the repaired skull implants using RP

based on the skull images with or without the inner margin

trimming (see Sect. 2.4 and Fig. 6). Figure 10a is the ori-

ginal skull implant manufactured based on the Fig. 6a, and

Fig. 10b is the implant based on the Fig. 6d with a 45�
inner margin trimming. The original skull implant exhibits

bumped inner margin and, therefore, cannot be placed back

to the defect portion of phantom properly (black arrows in

Fig. 10c, e). In contrast, the skull implant with a 45�
trimming can be fitted appropriately to the defective

phantom, and the borders of the trimmed skull implant are

satisfactorily matched with those in the defect portion

(Fig. 10d, f).

The reconstructed outer surface errors of the repaired

skull portions for six conditions of skull defects (Sect. 2.1

and Fig. 3) resulting from using the 2D snake and 3D

multigrid snake are displayed in Fig. 11. The results for the

right, cross-midline, and bilateral 20 % skull defects

exhibit a lower median (for the 2D snake), lower 75th

percentile (for the 3D multigrid snake), and a smaller upper

adjacent of surface errors, as compared with those for the

40 % skull defects. For all right and bilateral defect con-

ditions, the repaired results obtained using 3D multigrid

snake present smaller median outer surface errors, lower

75th percentile, and a smaller upper adjacent than those

from using the 2D snake. Moreover, for all four conditions

of right and bilateral defects using the 3D snake, the

median and 25th percentile are equal to zero, indicating

that most reconstructed outer surfaces of defects are close

to the ground truth. However, under the condition of the

cross-midline 40 % defect, the median and maximum of

surface errors are 0.6 and 2.05 mm for the 2D snake, and

0.30 and 2.32 mm for the 3D snake, which are larger than

other defect conditions. The larger surface errors and out-

liers in the 40 % cross-midline defect are caused by the

coverage over the posterior upper skull portions (Fig. 8d),

which are *2.50 mm for both the 2D and 3D snakes (red

arrows in Fig. 8e, f).

4 Discussion

In this study, we redesigned a reconstruction algorithm to

improve the computation efficiency. For the artifact elim-

ination, a 3D multigrid snake was employed to alleviate the

iterative process involving hundreds of slices using the 2D

snake. The results showed that *96 % of computation

time can be saved using the 3D multigrid snake (reduced

from 6,880 to 245 s), and higher accuracy can be achieved

in artifact elimination (Fig. 9) and defective skull recon-

struction (Fig. 11). For the image registration, a coarse-to-

fine multiresolution scheme was adopted to reduce 67 % of

computation time (the average speed gain was 3), as

compared with the full-resolution image registration with

the same accuracy. After the extraction of the defect por-

tion images, we added an image-trimming step to remove

the bumped inner margin outside the 45� lines (Fig. 6).

This image-trimming procedure can replace the manual

trimming of skull implants during surgery and, therefore,

reduce the operating time. Using this redesigned recon-

struction algorithm, the overall image processing time in

reconstructing the repaired skull images can be reduced

from 3 h to 20 min, saving *90 % of computation time.

We noticed that the construction of the coarse mesh

influenced the convergence of multigrid methods, because

a different edge-collapsing order changed the errors pro-

longed to the finer mesh. Error restriction and prolongation

were two critical steps in the multigrid methods. If the

residual error did not accurately downsample into the

coarse level, the low-frequency error cannot be properly

resolved. However, if the correction obtained from the

coarse level did not faithfully prolong to the fine grid, the

multigrid scheme became inefficient in the updating of

estimation. In addition to the shortest-edge-first algorithm

Fig. 9 The surface errors result from the 2D snake and 3D multigrid

snake for the intact skull data. On each box, the red horizontal line is

the median, and the lower and upper edges of the box are the 25th and

75th percentile, respectively. The upper adjacent (upper end of
whiskers) represents the minimum error larger than 1.5 times

interquartile range of the 75th percentile, and the lower adjacent

(lower end of whiskers) represents the maximum error smaller 1.5

times interquartile range of the 25th percentile. Outliers (red crosses)

are identified as those beyond the upper adjacent (colour figure online)
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(SHORTEST), we evaluated three other edge-collapsing

methods, namely, the Garland and Heckbert simplification

algorithm with and without weighting according to the area

of the triangles in the mesh (QUADRICTRI and QUAD-

RIC, respectively) [11] and Melax’s polygon reduction

algorithm (MELAX) [26]. As presented in Table 2, using

the 3D multigrid snake by applying the shortest-edge-first

algorithm was the most computationally efficient.

We demonstrated the effectiveness of using the 2D

snake and 3D multigrid snake in eliminating ripple artifacts

on the outer and inner surfaces (Fig. 8). The results showed

that both the snake algorithms can successfully suppress

the ripple artifacts to recover the smooth surfaces. How-

ever, the 3D multigrid snake was superior to the 2D snake

in reducing the inner surface errors at local areas (white

arrows in Fig. 8h), because the 3D snake updated the 3D

surface mesh and ensured the overall congruency. The

distribution of the surface errors resulting from the 3D

multigrid snake also exhibited a lower median, lower 75 %

percentile, and a smaller upper adjacent compared with the

results of 2D snake (Fig. 9). Along with the computational

efficiency of the 3D multigrid snake, we suggest that the

3D multigrid snake provides a superior alternative for

eliminating ripple artifacts. We estimated the outer surface

errors in the repaired skull portions using box plots to

evaluate the recovered cranial appearances (Fig. 11). The

results showed that the defective portion with the coverage

over the posterior upper skull portions (e.g. the condition of

the cross-midline 40 % skull loss in this study) may pro-

duce large outer surface errors because of insufficient

image points at the top border of the skull. However, the

other five skull defect conditions can be reconstructed

using the proposed algorithm with the 3D multigrid snake

to achieve maximal surface errors of *1.15 mm (with a

Fig. 10 The repaired skull implants manufactured by RP. a The

original skull implant based on the skull images in Fig. 6a, b the skull

implant with 45� inner-margin trimming based on the skull images in

Fig. 6d, c the placement of the original skull implant on the defect

portion of phantom, d the placement of the trimmed skull implant on

the defect portion of phantom, e the placement of the original skull

implant from a frontal view, f the placement of the trimmed skull

implant from a frontal view. The black arrows indicate the mismatch

between the skull implants and defect portion
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median lower than 0.30 mm). In summary, the redesigned

reconstruction algorithm significantly reduced the compu-

tation time for cranioplasty, and the overall reconstruction

was satisfactory for clinical use.

In our implementation of the 3D snake, the beta was not

used, because the skull was a smooth surface without pits

and, thus, only the alpha was used. We set the alpha to 20

after testing several orders of magnitude: 0.2, 2, 20, 30, 40,

50, 100, 200, and 2000. If the alpha was very large, the

snake converged to an irregular shape. In contrast, when

the alpha was very small, the snake converged slowly and

remained close to the initial surface. However, the alpha

values ranging from 2 to 50 produced comparable results.

Six skull phantoms with defects in different locations

and sizes were repaired to assess the accuracy of skull

reconstruction algorithm. The results showed that the skull

implant models with inner-margin trimming can more

effectively match the boundary of the defect portions on

the phantoms (Fig. 10). Previous studies have reported that

the pre-fabricated skull implants usually require manual

trimming (in the order of several millimeters) costing a few

minutes before or during surgery [1, 9, 33, 38]. The pro-

posed image-trimming procedure provides a solution for

facilitating cranioplasty and alleviating manual interven-

tion. The phantom used in this study was created using a

cranial CT volume acquired from a 19-year-old male

subject. In addition, we chose the material for the phantom

so that the density of the phantom was similar to real

skulls. The phantoms were drilled using the same surgical

devices as in the surgical operation. Accordingly, the

scanned skull images on phantoms were comparable with

real cases. Different from our skull phantoms, the hetero-

geneous surrounding tissues composed of cartilage, fluids,

and brain tissues in real cases may result in regionally

different sizes of bumped artifacts. However, the size of the

bumped artifacts caused by partial volume effects has little

effect on the recovered skull surfaces using the snake

algorithm. Therefore, the reconstructed procedure proposed

in this study is applicable to clinical data.

Using a snake model to recover the skull surface has its

limitations. A diagnostic image with a resolution that is

very low makes using the snake model difficult for the

removal of ripple artifacts. Our experiments indicated that

an axial resolution of at least 10 mm is necessary. We also

noticed the effects of different image resolutions and pro-

portions of incomplete contents on the performance of

image registration. In our previous study [19], we designed

a series of experiments for evaluating intra-subject head

CT image registration using the skull as the matching

feature; different image resolutions and volumes with

incomplete contents were considered. Brain CT images

with different axial resolutions from the same subject were

acquired at 0.3, 1, 2, 3, 5, and 10 mm. Then, 25 to 75 % of

Fig. 11 The reconstructed outer surface errors of repaired results for

six conditions of skull defects (see Fig. 3) using either the a 2D snake or

b 3D multigrid snake. On each box, the red horizontal line is the median,

and the lower and upper edges of the box are the 25th and 75th

percentile, respectively. The upper adjacent (upper end of whiskers)

represents the minimum error larger than 1.5 times interquartile range

of the 75th percentile, and the lower adjacent (lower end of whiskers)

represents the maximum error smaller 1.5 times interquartile range of

the 25th percentile. Outliers (red crosses) are identified as those beyond

the upper adjacent (colour figure online)

Table 2 A comparison of four simplification algorithms used in the

3D multigrid snake

Simplification

algorithm

Inner surface Outer surface

Resulting

cost

Time

(s)

Resulting

cost

Time

(s)

SHORTEST 8,369 221 11,797 245

MELAX 8,478 342 11,984 398

QUADRIC 8,568 238 12,192 265

QUADRICTRI 8,568 241 12,064 271
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the skull parts were artificially removed from the images of

both subjects to simulate incomplete volume contents. We

found that a successful registration can be achieved under

two conditions: (1) more than half of the skull content is

preserved; (2) the difference in image resolution between

the two images is less than 16 times.

In applying the proposed algorithm, we used low-reso-

lution diagnostic images to extract the patient’s own ana-

tomical structure of the cranial defect for skull

reconstruction. This method can prevent patients from

having to receive two high-resolution CT scans within a

short period (immediately before and after craniotomy),

which may increase their risk of induced cancers caused by

radiation exposure. For patients with elevated intracranial

pressure caused by brain tumors or intracranial trauma,

medical doctors suggest having brain CT scans for the

purpose of surgical planning or diagnosis. However, the

proposed method may not be applicable to patients without

brain CT scans before the craniotomy.
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