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Abstract The problem of estimating magnetic nanopar-

ticle distributions from magnetorelaxometric measure-

ments is addressed here. The objective of this work was to

identify source grid parameters that provide a good con-

dition for the related linear inverse problem. The parame-

ters investigated here were the number of sources, the

extension of the source grid, and the source direction. A

new measure of the condition, the ratio between the largest

and mean singular value of the lead field matrix, is pro-

posed. Our results indicated that the source grids should be

larger than the sensor area. The sources and, consequently,

the magnetic excitation field, should be directed toward the

Z-direction. For underdetermined linear inverse problems,

such as in our application, the number of sources affects

the condition to a relatively small degree. Overdetermined

magnetostatic linear inverse problems, however, benefit

from a reduction in the number of sources, which consid-

erably improves the condition. The adapted source grids

proposed here were used to estimate the magnetostatic

dipole from simulated data; the L2-norm, residual, and

distances between the estimated and simulated sources

were significantly reduced.

Keywords Magnetic nanoparticles � Particle imaging �
Adaptation of source space grids � Condition number �
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1 Introduction

Magnetic nanoparticles are in the focus of research in many

biomedical applications [17, 19]. To reveal the location and

the distribution of such particles, magnetorelaxometric mea-

surements using SQUID sensor systems and linear inversion

techniques can be used [3]. The imaging of magnetic nano-

particles is particularly important for hyperthermia cancer

treatment [6, 23, 24] and for magnetic drug targeting [2, 4, 16].

To estimate the distributions of magnetic nanoparticles,

the linear inverse problem (IP) of reconstructing dipole

moments m from a measured magnetic field b has to be

solved,

b ¼ Lm: ð1Þ

The lead field matrix L incorporates information about the

sensor, source, and forward models. The lead field condi-

tion is crucial for the stability of the solution m, in the

presence of numerical errors and noise contained in b. Our

objective is to identify parameters associated with the

source space grids to support a good condition for L with

respect to practical requirements. As a result, the linear

inverse solution m should be less sensitive to noise and

errors. Because the condition is a property of the linear

inverse problem (1), our findings are relevant to the

application of different solution approaches, such as the

TSVD [14], sLORETA [20], or FOCUSS [12] methods.
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2 Methods

2.1 Sensor arrays and source spaces

Five sensor models of two magnetometer arrays, as typi-

cally used in magnetic nanoparticle measurements, were

created. The first array represents the 304 channel PTB

vector magnetometer system (Physikalisch-Technische

Bundesanstalt, Berlin, Germany [22]), which we tested in

four configurations: ‘PTB 304ch’ contained all 304 sen-

sors, ‘PTB 114ch’ included the lowest 114 sensors with

Z \ 0.5 cm, ‘PTB 190ch’ included sensor layers with Z \
3.5 cm, and ‘PTB 247ch’ included sensor layers with

Z \ 7.5 cm. The AtB sensor system Argos 200 (Advanced

Technologies Biomagnetics, Pescara, Italy) was used with

195 sensors, ‘ATB 195ch’.

The axes of the coordinate system are denoted X, Y, and

Z. The axes were defined with respect to the sensor sys-

tems, in which the lowest sensors were positioned in the

XY-plane with Z = 0. The positive Z-axis was upwardly

directed from the center of the lowest sensors (see Fig. 1).

The units corresponding to the positions and lengths are

given in meters, if not stated otherwise. The term jj � jj
describes the L2-norm.

Regular planar grids of magnetostatic dipoles were used

to model the source space. The distance between the lowest

sensor plane and the source space grid was 6 cm, which

represented a typical distance between the sensor system

and the nanoparticles in our application. When defining the

source space grids, we used the following default values:

the number of sources was defined to be 25� 25 ¼ 625,

and the source grid area was configured with the dimen-

sions 0:28� 0:28 m2, including an extension of 2 cm

beyond the sensor area in both the X and Y directions. The

centers of the source space grids were located at X = Y = 0,

equivalent to the X/Y-centers of the sensor arrays. The

standard direction of a source dipole was ?Z. The sensor

positions and directions of the array ‘PTB 304ch’ and the

default source space grid are illustrated in Fig. 1.

The lead field matrix L is a linear mapping from the

source onto the sensor space and incorporates the source,

sensor, and forward models. When considering a mag-

netostatic field (see, for instance Clark et al. [7, Chap.

10.1]), L can be computed for sensor i and source j

according to

Lði; jÞ ¼
X

k

wikdi �
l0

4p
3ej � rijk

jjrijkjj5
rijk �

ej

jjrijkjj3

 !
;

where k are the indices corresponding to the sensor inte-

gration points, w are the sensor weights, d are the sensor

directions, e are the source directions, and r are the dis-

placement vectors connecting the source positions and

sensor integration points. The forward problem is solved

for a given set of source activities m by multiplying Lm.

2.2 Condition measures

The condition of a lead field matrix L can be analyzed

using the condition number with respect to the L2-norm

(e.g., [21, 11]). The condition number j for L 6¼ 0 is

defined by

jðLÞ ¼ jjLjj jjLþjj ¼ r1ðLÞrnðLÞ�1; ð2Þ

where ri is the ith of n singular values (SVs) of L, with

r1 [ 0 and ri� riþ1� 0: However, significant numerical

errors can occur during the computation of j (see Sect.

‘‘Accuracy of the condition number j’’ of the Appendix),

and j depends essentially on the smallest SV rn:

To increase the numerical stability during evaluation of

the condition of L 6¼ 0 and to reduce its dependency on the

smallest SV rn; we propose a new condition measure, q, in

which
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(a) Front view.

(b) Top view.

Fig. 1 Sensor positions (dots) and directions (bars) of the sensor

array ‘PTB 304ch’. The default dipole positions of the source space

grid are indicated by the circles
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qðLÞ ¼ r1ðLÞ
1=n

Pn
i¼1 riðLÞ

¼ 1

n

Xn

i¼1

riðLÞ
r1ðLÞ

 !�1

: ð3Þ

q represents the ratio between the largest and the mean SV

of L, as defined in the first part of Eq. (3). q can equiva-

lently be interpreted as the inverse of the average decay of

the SVs, as given in the second part of (3). A direct

graphical comparison of the SV decay was presented by

Nalbach et al. [18] as a measure for the information con-

tent of different sensor arrays. When a lead field matrix

exhibits a slow decay of SVs, the correlations among the

matrix rows (relate to the sensors) and among the matrix

columns (relate to the sources) are small. Hence, the rows

contain little redundant sensitivity information on the

sources and, in practice, the information content of mea-

surements provided by the modeled sensor array on the

considered source distribution is high.

By employing the mean value of all SVs, the influence

of the comparatively small SVs on q is considerably

reduced. Smaller values of q and j indicate a better con-

dition in the context of L and related linear inverse prob-

lems. In Sect. ‘‘Condition of the TSVD-regularized linear

inverse problem’’of the Appendix, we define qtsvdðL; rÞ and

jtsvdðL; rÞ to measure the condition of L by considering the

first r SVs only. Using this approach, we can determine the

condition of TSVD-regularized [14] linear inverse prob-

lems, in which SVs smaller than rr are truncated. Practi-

cally relevant or optimal values of r, however, are often not

known in advance. Further, we show in the Appendix

sections ‘‘Condition of the TSVD-regularized linear

inverse problem’’ and ‘‘Proof of 1� qtsvd� q’’ that qtsvd

and jtsvd are bounded above by q and j; respectively.

2.3 Simulations

In four simulations, the influence of the number of sources,

grid extension, and dipole directions on the condition of the

linear inverse problem, as measured by q(L), were evalu-

ated. In a fifth simulation, the relative improvements in

the linear inverse solutions were measured using source

space grids that were expected to provide an improved

condition.

In simulation 1, we investigated the influence of the

number of sources contained in the source space grid on q.

The number of sources and dipoles, respectively, increased

from 5� 5 ¼ 25 to 50� 50 ¼ 2;500: During this process,

the source grid extensions and dipole directions were held

constant at their default values.

The objective of simulation 2 was to vary the extensions

of the source space grid relative to the sensor area in both

the X and Y directions from -0.08 m (smaller than the

sensor area) to ?0.12 m (larger than the sensor area).

Simulation 3 combined simulations 1 and 2 by simul-

taneously evaluating the effect of the number of sources

and the source grid extension on q.

In simulation 4, we gradually changed the uniform

directions of the dipolar sources in the grid from 0� (the

Z-direction) to 90� (the X-direction).

In simulation 5, we investigated the effects of adapted

source grids on the quality of the linear inverse solu-

tions. For this purpose, four exemplary source grids

(A1, A2, B1, and B2) were evaluated. This set consisted of

two pairs of comparable grids, labeled with indices 1 and 2

that provided identical numbers of sources. Source grids B

provided X/Y extensions and source directions, which were

expected to improve the condition of the related linear IP.

The parameters associated with the source grids A1–B2 are

given in Table 1.

Simulation 5 included one magnetostatic dipole with a

moment of 1 nA m2 at position p0 = [-0.001, -0.001,

-0.065]. The dipole was directed toward ?Z for the source

grids B and toward ?X for the source grids A, which cor-

responded to the assumed directions of the sources in the

grid. The sensor array ‘PTB 304ch’ was used to simulate

the measurement data, and white Gaussian noise with an

SNR of 5 dB relative to the signal level of the dipole

oriented toward ?X was added. For each grid, 100 simu-

lation runs using different random noise profiles were

performed.

The linear inverse problem was solved by applying the

truncated singular value decomposition (TSVD) method

[14]. The quality of the TSVD solutions was evaluated by

testing all possible SV regularization parameters r, with

1 B r B n = 304. In this process, nDopt counted the

quantity of parameters r that resulted in solutions with a

maximum dipolar moment located at the grid position [0, 0,

-0.6]. This position in all four source grids represented the

minimum distance to the simulated dipole and, therefore,

the lowest localization error.

Furthermore, we compared the relative improvements

(RI) of the solutions mB
r using the source grids B with

solutions mA
r for grid A. To determine the RI, source grids

with the same number of sources were compared, i.e.,

A1 with B1 and A2 with B2. The individual relative

Table 1 Parameters that define the source space grids

Source

grid

Number of

grid points

X/Y source grid

size in m2
Directions of

source dipoles

A1 25� 25 = 625 0.2 9 0.2 ?X

B1 25� 25 = 625 0.28 9 0.28 ?Z

A2 55� 55 = 3,025 0.2 9 0.2 ?X

B2 55� 55 = 3,025 0.28 9 0.28 ?Z
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improvements in the solutions mB
r compared with mA

r were

averaged over all possible TSVD regularization parameters

r to yield a general measure that did not depend on the

choice of r. The RI was evaluated with respect to the

residual, RIRes, the distance between the grid dipole and the

highest estimated moment, the position of the simulated

dipole, RIDopt, and the L2-norm of the solution, RIL2. The

residual and L2-norm of the solutions should be small,

because their combined minimization is the objective of the

TSVD minimum-L2-norm method.

To compare the solutions from grids B and A, the RI

quantities were determined as follows:

RIResðB;AÞ ¼ 1

n

Xn

r¼1

jjb� LA mA
r jj

jjb� LB mB
r jj
; ð4Þ

RIDoptðB;AÞ ¼ 1

n

Xn

r¼1

jjp0 � pmax mA
r

� �
jj

kp0 � pmax mB
r

� �
jj
; ð5Þ

RIL2ðB;AÞ ¼ 1

n

Xn

r¼1

jjmA
r jj

jjmB
r jj
: ð6Þ

The term pmaxðmrÞ in Eq. (5) represents a 3-by-1 vector that

provides the source position with the maximum absolute value

among all estimated dipole moments in mr. Among the three

measures of RI, higher values indicate higher improve-

ments and, therefore, better solutions. The TSVD solution mr

using the regularization parameter r was computed according

to

mr ¼
Xr

i¼1

ðuT
i � bÞr�1

i vi; ð7Þ

where u, r; and v are the singular vectors and values of the

decomposition of the respective lead field, L.

3 Results

The results of simulation 1, as shown in Fig. 2a, indicated

that for an overdetermined IP q increased significantly for

increasing numbers of sources. An underdetermined IP,

however, yielded only a slight increase in q for an increase

in the number of sources.
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Fig. 2 Results of simulations 1–4. Lower values of q indicate a better condition

1084 Med Biol Eng Comput (2012) 50:1081–1089

123



Figure 2b shows the results of simulation 2, which

revealed that a larger source area decreased the measure q.

Source space grids with extensions clearly smaller than the

sensor area impaired the condition considerably. Positive

extensions of the source grid beyond the sensor area led to

a reduction in q.

The results of simulation 3 for the sensor array ‘PTB

304ch’ are shown in Fig. 2c. The influence of both

parameters, the number of sources, and the extension of the

grid in the X/Y directions were evaluated simultaneously.

Almost no differences in q were observed for a grid

extension of � 2 cm and a number of sources equal to or

greater than twice the number of sensors. As shown in

simulations 1 and 2, q increased considerably for grid

extensions that were clearly smaller than the sensor area,

and q was low if the number of sources was less than the

number of sensors.

The outcomes of simulation 4, shown in Fig. 2d, indi-

cate that the dipolar sources should be oriented toward ?Z

to provide low values of q. Deviations in the source

directions of more than 35� away from Z clearly increased

the values of q.

Table 2 and Figs. 3, 4 and 5 show the results of simu-

lation 5. The semi-logarithmic plots of the SVs for the lead

field matrices using source grids A2 and B2 are illustrated in

Fig. 3. The largest, mean, and smallest SVs are indicated

by horizontal lines for both matrices. This plot shows that

grid B2 led to a better condition in terms of q and j
compared with A2 because grid B2 provided a smaller

maximum SV together with higher values for the mean and

smallest SVs.

Table 2 shows the condition measures q and j for each

of the four source grids A1�B2: The mean value of nDopt

quantified the number of regularization parameters that led

to inverse solutions with a minimum distance to the sim-

ulated dipole. Use of the grid B1 instead of A1 improved the

lead field condition; q decreased by a value of 12 and j
decreased by a factor of 100. With the source grid A1; only

22 of 304 (7.2%) regularization parameters, on average,

provided the lowest achievable localization error. With the

source grid B1; 62 of 304 (20.5%) possible parameters r, on

average, led to solutions with minimum localization errors.

A comparison of the denser source grids A2 and B2; which

included 3,025 magnetostatic dipoles, revealed similar

improvements in q and j when using grid B2 instead of A2:

With the source grid A2; 7.7 of 304 (2.5%) regularization

parameters, on average, provided solutions with a mini-

mum distance to the simulated dipole. The use of grid B2

increased this number to 34.2 (11.3%).

The individual results for RIRes;RIDopt; and RIL2 of

simulation 5 are shown in Fig. 4. The average relative

improvements gained upon use of source grid B1 instead of

A1 (Fig. 4a) are for RIRes at 1.4, for RIDopt at 3.0, and for

RIL2 at 26.4. A comparison of the TSVD solutions using

source grids B2 and A2 (Fig. 4b) yielded slightly lower

mean relative improvements: RIRes at 1.3, RIDopt at 3.0, and

RIL2 at 23.0. The variations in RI were relatively small

over the 100 runs with different representations of white

Gaussian noise. No run provided values with RI� 1:

Figure 5 shows the visually selected best TSVD solu-

tions with the fewest artifacts and minimum distance

between the strongest estimated source and the simulated

dipole for grids A1–B2. The results for grids A (Fig. 5a, c)

were obtained using the regularization parameter r = 28.

For grids B, the best TSVD results were obtained using the

regularization parameter r = 40 (Fig. 5b, d). Hence, the

best estimates using grids B were provided by the larger

parameters r. The differences between the solutions

obtained using parameters between r = 28 and 40 were

relatively small for B. The source grids B clearly provided

fewer artifacts than the grids A, and the area of the highest

source activity was more symmetric and focal. The results

obtained using source grids with 625 and 3,025 sources

differed not significantly. Application of the TSVD method

to the source grids A2 and B2, with 3,025 magnetostatic

dipoles, resulted in smoother estimates with dipole

Table 2 Results of simulation 5: q, j; and nDopt

Source grid q j Mean ðnDoptÞ

A1 35.21 2.71e?13 22.0 ± 6.66

B1 23.25 2.01e?11 62.3 ± 10.04

A2 35.80 2.05e?13 7.7 ± 4.21

B2 23.40 1.98e?11 34.2 ± 9.66

50 100 150 200 250 300
10

−20
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−15

10
−10
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−5
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σ i(L
)

Fig. 3 Semi-logarithmic plot of the SVs of the lead field matrices

using the ‘PTB 304ch’ sensor system and the source grids A2 (blue
solid lines) and B2 (red dashed lines). The largest, mean, and smallest

SVs are indicated by thin horizontal lines (color figure online)
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moments that were a factor of 5 smaller than those obtained

using A1 and B1.

4 Discussion

The IP in our application is typically underdetermined;

therefore, the number of sources produces a relatively

small effect on the lead field condition. However, the

practical application of a sparse source grid with equal or

fewer numbers of sources than sensors can considerably

improve the condition upon further reductions in the

number of sources. The area of the source grid should

extend over the sensor area. Brauer et al. concluded pre-

viously, based on a phantom experiment, that a two-

dimensional source space grid should extend over at least

five times the area of the distributed source [5]. Accounting

for the spatial resolution and the number of dipoles within

the grid, an extension of 1–3 cm in each direction should

be adequate, in practice.

The orientations of the sources in our application and,

therefore, the direction of the magnetic field applied during

excitation should not deviate more than 35� from the

Z-direction. In addition, sources oriented toward Z also

provided for the given sensor arrays higher signal levels

and better SNRs.

All five sensor array configurations in simulations 1–4

yielded qualitatively similar behavior that depended on the

number of sensors. The best results for q were obtained for

the configuration ‘PTB 114ch’. However, the better values

of q obtained from the sensor array ‘PTB 114ch’, as

compared with the values obtained from ‘PTB 304ch’,

resulted mainly from the reduced number of SVs in the

lead field matrix. A smaller number of sensors (as com-

pared with the number of other arrays) introduce a rela-

tively small redundancy in the measurement values;

however, the ‘PTB 114ch’ sensor configuration picks up

less information from the magnetic field compared to the

configuration ‘PTB 304ch’.

As shown by the examples illustrated in simulation 5,

the quality of the inverse solutions could be improved

considerably using the source grid adaptations presented in

this paper. Solutions using the adapted grids provided

fewer artifacts, smaller L2-norms, and smaller residuals. In

addition, a greater fraction of the possible TSVD regular-

ization parameters led to optimal solutions in terms of the

distance to the simulated source. Therefore, the appropriate

determination of these parameters, for instance, using the

Generalized-Cross-Validation [25] or the L-curve [13]

methods should be easier and more reliable, in practice.

Some of our findings, including the specific recom-

mendations for the source grid extensions and the direction

of the magnetic sources, are directly related to the appli-

cation of magnetic nanoparticle imaging. However, we

expect that the basic findings, such as the general influence

of the number of grid sources and the extensions of the

source space on the lead field condition, are relevant to

various linear IPs in magnetic applications. The findings of

this study were used, for e.g., to detect ferromagnetic

objects in geomagnetic measurements [10].

The condition measure, q, can be used to replace j to

reduce numerical errors that occur during the evaluation of

the condition. In our example simulation 5, a shift in q by a

value of 12 corresponded to a reduction in j by a factor of

100. Variations in the parameters that define the source

space grid yielded smooth changes in q, and q were not
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affected by obvious numerical errors. Furthermore, q can

be used to evaluate the condition in other applications, e.g.,

to quantify the stability and convergence of the Newton

method in finite element computations [26].
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Appendix

Accuracy of the condition number j

The singular value decomposition of the lead field matrices

in this application was accomplished using the LAPACK’s

DGESVD routine. Anderson et al. (section 4.9.1 of [1])

show that the DGESVD produces deviations in the com-

puted SVs of r̂i relative to the true values ri; bounded by

jjr̂i � rijj � �r1: ð8Þ

The floating-point relative accuracy � was 2.2e-16 on the

64-bit systems used for our computations. Therefore, high

relative accuracies of r̂i are only obtained for SVs close to

r1: Because the smallest SV rn is very small in relation to

r1 in this and many other applications, even low absolute

errors in rn indicate high relative errors and lead to high

absolute errors in r�1
n and j:

Considering the definition (2), the accuracy of j cru-

cially depends on rn: Using the inequality (8), we obtain,

for the relative error of rn

jjr̂n � rnjj
rn

� �r1

rn
¼ �j: ð9Þ

Consequently, the values of j may be inaccurate, even in

the order of magnitude, for j� ��1: Demmel [8] and

Higham [15] stated that the condition number for com-

puting the condition number is the condition number.

For special classes of matrices, it is feasible to compute

all SVs, including the tiny SVs, with a high relative

accuracy. An overview of this topic is provided by Demmel

et al. [9]. This is not possible for general dense matri-

ces, such as the lead field operators employed in our

application.

Condition of the TSVD-regularized linear inverse

problem

To facilitate stable linear inverse solutions, regularization

methods are applied to improve the condition. For exam-

ple, when computing a linear inverse solution using the
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TSVD solutions showing the

estimated magnetic moments of

the dipoles defined by the

source grid. The sources with

the largest estimated moments

are indicated by square
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TSVD approach (7) and a regularization parameter r, with

1� r� n; all singular components with SVs smaller than

rr are omitted. Depending on the parameter r, the TSVD

regularization changes the linear IP and causes a regulari-

zation error, which should be smaller than the error that

results from an inferior condition.

To measure the condition of the TSVD-regularized

linear inverse problem for a lead field matrix L, the defi-

nitions of j and q, (2) and (3), are modified to consider the

largest r SVs only:

jtsvdðL; rÞ ¼ r1ðLÞrrðLÞ�1; ð10Þ

qtsvdðL; rÞ ¼
r1ðLÞ

1=r
Pr

i¼1 riðLÞ
¼ 1

r

Xr

i¼1

riðLÞ
r1ðLÞ

 !�1

: ð11Þ

From (2) and (10), we obtain for any r between 1 and n

1� jtsvdðL; rÞ� jðLÞ; ð12Þ

and, from (3) and (11),

1� qtsvdðL; rÞ� qðLÞ: ð13Þ

The property (12) follows because r1� rr � rn: A proof

for (13) is shown in Sect. ‘‘Proof of 1� qtsvd� q’’ of the

Appendix. According to (12) and (13), j and q are the least

upper bounds for jtsvd and qtsvd: In practice, the optimal

choice of r for a matrix L and the resulting values of

jtsvdðL; rÞ and qtsvdðL; rÞ can vary widely.

Proof of 1� qtsvd� q

To prove 1� qtsvdðL; rÞ� qðLÞ; we first show that

qtsvdðL; rÞ is smaller or equal qðLÞ for all regularization

parameters r between 1 and n:

1

r

Xr

i¼1

riðLÞ
r1ðLÞ

 !�1

� 1

n

Xn

i¼1

riðLÞ
r1ðLÞ

 !�1

() 1

r

Xr

i¼1

riðLÞ
r1ðLÞ

� 1

n

Xn

i¼1

riðLÞ
r1ðLÞ

() n
Xr

i¼1

riðLÞ� r
Xn

i¼1

riðLÞ

() r
Xr

i¼1

riðLÞ þ ðn� rÞ
Xr

i¼1

riðLÞ
|fflfflfflfflffl{zfflfflfflfflffl}
� r�rrðLÞ

� r
Xr

i¼1

riðLÞ þ r
Xn

i¼rþ1

riðLÞ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�ðn�rÞ�rrþ1ðLÞ

(¼ ðn� rÞ � r � rrðLÞ� r � ðn� rÞ � rrþ1ðLÞ
() rrðLÞ� rrþ1ðLÞ

which is provided by the singular value decomposition of

L. Second, from r1ðLÞ� riðLÞ follows r � r1ðLÞ�Pr
i¼1 riðLÞ and 1� qtsvdðL; rÞ: h
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18. Nalbach M, Dössel O (2002) Comparison of sensor arrangements

of MCG and ECG with respect to information content. Phys C

372–376:254–258. doi:10.1016/S0921-4534(02)00683-4

19. Pankhurst QA, Thanh NKT, Jones SK, Dobson J (2009) Progress

in applications of magnetic nanoparticles in biomedicine. J Phys

D Appl Phys 42(22). doi:10.1088/0022-3727/42/22/224001

20. Pascual-Marqui RD (2002) Standardized low resolution brain

electromagnetic tomography (sLORETA): technical details.

Method Find Exp Clin Pharm 24(D):5–12

21. Rouve LL, Schmerber L, Chadebec O, Foggia A (2006) Optimal

magnetic sensor location for spherical harmonic identification

applied to radiated electrical devices. IEEE Trans Magn 42(4):

1167–1170. doi:10.1109/TMAG.2006.872016

22. Schnabel A, Burghoff M, Hartwig S, Petsche F, Steinhoff U,

Drung D, Koch H (2004) A sensor configuration for a 304

SQUID vector magnetometer. Neurol Clin Neurophysiol 70.

http://www.neurojournal.com/article/view/284

23. Su D, Ma R, Salloum M, Zhu L (2010) Multi-scale study of

nanoparticle transport and deposition in tissues during an injec-

tion process. Med Biol Eng Comput 48(9):853–863. doi:

10.1007/s11517-010-0615-0

24. Su D, Ma R, Zhu L (2011) Numerical study of nanofluid infusion

in deformable tissues for hyperthermia cancer treatments. Med

Biol Eng Comput 49(11):1233–1240. doi:10.1007/s11517-011-

0819-y

25. Wahba G (1977) Practical approximate solutions to linear oper-

ator equations when the data are noisy. SIAM J Numer Anal

14(4):651–667. doi:10.1137/0714044
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