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Abstract The starting point of this paper is the analysis

of the reference problem in intra-cerebral electroencepha-

lographic (iEEG) recordings. It is well accepted that both

surface and depth EEG signals are always recorded with

respect to some unknown time-varying signal called ref-

erence. This article discusses different methods for deter-

mining and reducing the influence of the reference signal

for the iEEG signals. In particular, we derive optimal

approaches for the estimation of the reference signal in

iEEG recording setups and demonstrate their relation to

the well-known minimum power/variance distortionless

response approaches derived for general array and antenna

signal processing applications. We show that the proposed

approaches achieve optimal performance in terms of esti-

mation error and that they outperform other reference

identification methods proposed in the literature. The

developed algorithms are illustrated on simulated examples

and on real iEEG signals.

Keywords Reference problem � Intra-cerebral EEG �
Blind source separation � Array signal processing

1 Introduction

Multichannel (array) signal processing has increasingly

gained prominence in the medical field for the acquisition

and analysis of bio-medical signals. The most well-known

examples are the bio-potentials recording devices, elec-

troencephalography (EEG) in particular. In this context, an

important but rather neglected issue is the recording setup

and, in particular, the reference problem. Indeed, signal

acquisition is performed with measuring electrodes, placed

on or inside the human body and referenced to a reference

electrode, itself placed on the body. Therefore, the elec-

trical activity at the reference (never constantly zero)

affects measurements at all other active electrode sites [1,

6, 7, 19]. In EEG, this type of acquisition setup is called

common reference (CR) montage. In classical scalp EEG,

the reference electrode is often placed on the head. In this

case, this electrode is influenced by brain sources and by

specific artefacts, depending on its location (eye artefacts

for a frontally placed electrode, for example). The arte-

factual activity is thus present in all the measures. To

eliminate the influence of the reference electrode, and

consequently to ease the interpretation and the use of dif-

ferent signal processing techniques,1 several montages

(average, bipolar, Laplacian) can be derived from the CR

recordings by simple manipulations (see [3, 14] for more

details of the recording setup).

In depth EEG recordings, like in the recording setup

from [6, 10], the signals are acquired from intra-cerebral

contacts, placed along an electrode implanted in the brain

(see Fig. 2 for an example of depth EEG implantation

scheme). The reference can be either a surface electrode [6]

N. Madhu

Division of Experimental Otorhinolaryngology,

Department of Neurosciences, Katholieke Universiteit,

Leuven, Belgium

R. Ranta (&) � L. Maillard � L. Koessler

Centre de Recherche en Automatique de Nancy (CRAN),
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or a user chosen contact of some depth electrode [10]. In

both setups, the reference contact is placed as far as possible

from the region of interest (the supposed epileptogenic zone

in our clinical context). The reference signal is then sup-

posed uncontaminated by the electrical activity recorded by

the measuring contacts, but not necessarily null: the surface

reference electrode, besides potentially propagated brain

signals (assumed negligible), records also physiological

artefacts (muscle, eyes) or other recording device artefacts,

while the distant intra-cranial reference contact might

record local brain potential changes. Both these activities

(extra-cerebral artefacts or different structure activity)

appear on all measured signals, as they are obtained as a

potential difference between the measuring electrodes and

the reference one. Finally, noise also affects the reference

electrode, especially when it is placed on the scalp.

To avoid the reference problem, all iEEG signals are

interpreted by clinicians using a bipolar (BL) derivation:

neighbouring contacts on the same electrode are subtracted

to obtain images of the local activity and to eliminate the

reference.2 Still, direct measures obtained by the CR

montage can be useful for the interpretation, as they offer a

global view, complementary to the local view furnished by

the BL montage. Unfortunately, they are contaminated by

the electrical activity recorded by the reference contact. An

interesting attempt to reduce this influence, based on a

constrained blind source separation (BSS) approach, was

proposed by Hu et al. [6, 7] and further developed by [13].

The proposed idea was to estimate the reference signal and

then eliminate this estimated reference signal from the CR

montage. Ranta et al. [13] termed this montage as the zero

reference (ZR) montage.

This contribution presents a unifying analysis of the

reference estimation problem for the specific setup of the

independent reference. A framework is developed, under

whose umbrella the above mentioned BSS-based methods

are closely related. Within this framework, we further

develop a simple reference estimation approach which is

shown to be reliant only on the second-order statistics

(SOS) of the signals and which is optimal in terms of SNR

maximisation (see Sect. 2.3.1). We further demonstrate the

equivalence of this approach to the well-known minimum

power/variance distortionless response (MPDR/MVDR)

approach to signal estimation. These are well-known

approaches in the array signal processing field, and

while briefly describing these approaches in Sect. 2.3.2, we

would refer the interested reader to the excellent book

of van Trees [17] for more details. Finally, simulated

examples and results on real iEEG recordings are presented

in Sect. 3.

2 Methods

2.1 Signal model

The underlying signal model we consider is:

xðnÞ ¼ AsðnÞ ð1Þ

where xðnÞ 2 R
ðM�1Þ is the vector of M observations at

time instant n (measured EEG signals after sampling and

quantization) and sðnÞ 2 R
ðQ�1Þ is the corresponding vec-

tor of Q source realisations (underlying brain activity) at

the same instant. A 2 R
ðM�QÞ ¼ a1; . . .; aQð Þ represents the

linear combination of the sources to yield the observation

vector x, where aq 2 R
ðM�1Þ. This model, also known as

instantaneous mixture model, is widely accepted in the

EEG processing field [15].

In the field of array signal processing, the vectors aq are

known as steering vectors, whereas in the field of EEG

processing and in the BSS framework, these are often

referred to as the mixing parameters. Note that we denote

these terms as belonging in the real domain, as in the EEG

applications, but the generalization to the complex case is

immediate.

When using the common reference montage (subse-

quently referred to as CR), the signal model is obtained by

modifying (1), as proposed in [6]. This implies that we will

consider that the mixing A is unknown, except for one

column whose each element is �1:

xðnÞ ¼
�1

..

.
A2

�1

0
@

1
A rðnÞ

s2ðnÞ

� �
; ð2Þ

xðnÞ¼M ða1 A2Þ
rðnÞ
s2ðnÞ

� �
ð3Þ

xðnÞ¼M a1rðnÞ þ vðnÞ; ð4Þ

where xðnÞ shall subsequently denote the measured CR EEG

signals; rðnÞ, the non-zero common reference signal; a1, the

M � 1 column vector with each element being �1; A2,

the matrix of the remaining mixing parameters; and s2ðnÞ, the

remaining sources. Equation (4), where vðnÞ ¼ A2s2ðnÞ,
presents an alternative, compact expression for the signal

model, which will also be used in the following development.

Our aim of reference estimation is to make the best

estimate of rðnÞ from the observations xmðnÞ by a weighted

linear combination w 2 R
ðM�1Þ:

brðnÞ ¼ wTxðnÞ ð5Þ

2 Average or Laplacian references are never used for depth EEG

signals. In fact, electrode placement is not symmetric, so there is no

reason to suppose that signals should average to 0 as in scalp

recordings.
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The only necessary hypothesis is that the reference rðnÞ is

independent (in fact uncorrelated is sufficient) from the

other sources s2ðnÞ (i.e. E sqr
� �

¼ 0; 8sq 2 s2, where E �f g
stands for the statistical expectation operator).

2.2 Analysis of the reference estimation problem

2.2.1 Non-blind estimation

For the sake of completeness, we consider first the case

when the mixing A is known. In this case, the most

immediate approach would be to try to invert the mixing,

yielding estimates for all sources, rðnÞ included. The

general approach followed in this case is to formulate the

estimation as a least-squares optimisation problem:

J w ¼ argmin
w

kwTA� eT
1k

2 ð6Þ

where em is a column-vector of which the mth element is

unity and the remaining elements are zero. What this cost

function implies is the recovery of only the desired source,

nulling the effect of other sources. Differentiating this cost

function w.r.t. w and equating to 0 we obtain:

AATw ¼ Ae1 ð7Þ

Depending upon M and Q, the analysis can be divided into

three cases:

1. well-determined case: square full rank mixing

AðM ¼ QÞ
2. over-determined case: rank deficient AðM [ QÞ
3. under-determined case: full row-rank mixing AðM\QÞ:
Obviously, when the mixing matrix is known and full-rank

square, w is obtained as:

w ¼ AAT
� ��1

Ae1 ¼ A�Te1 ð8Þ

hence we obtain brðnÞ as

brðnÞ ¼ wTxðnÞ ¼ rðnÞ ð9Þ

When the mixing is known and over-determined

rankðAÞ ¼ Q\M, the solution for w is not unique, but it can

be determined by reducing the dimension of the observations x

(and thus of the mixing matrix AwÞ to Q in order to obtain a

full-rank invertible mixture, and then applying (6) in this

reduced space. A classical approach for such dimension

reduction is the principal component analysis (PCA). The

estimated brðnÞ will be an exact reconstruction of rðnÞ in this

case too.

Finally, when the mixture is known but under-deter-

mined, the solution will be given by:

w ¼ AAT
� ��1

Ae1 ð10Þ

where e1 is now of dimension Q� 1.

In this case, we take recourse to the singular value

decomposition (SVD) [16] of A as: A¼M U R 0ð ÞVT, where

U 2 R
ððM�MÞÞ and V 2 R

ðQ�QÞ are unitary matrices and

R 2 R
ðM�MÞ is a diagonal matrix of the singular values of

A, and 0 is an M � ðQ�MÞ matrix of zeroes. Using this

decomposition, the least-squares estimate of brðnÞ
from (10) can be obtained as:

brðnÞ ¼ wTxðnÞ

¼ eT
1 V

IM;M 0M;Q�M

0Q�M;M 0Q�M;Q�M

� �
VT

rðnÞ
s2ðnÞ

� �

¼ eT
1

V1:M;1:MVT
1:M;1:M 0M;Q�M

0Q�M;M 0Q�M;Q�M

 !
rðnÞ
s2ðnÞ

� �

ð11Þ

where I is the identity matrix and the subscripts for the

matrices in the above equation indicate the corresponding

dimensions of the matrices. We also use the notation

Ba:b;c:d to indicate the sub-matrix of B consisting of

rows a through b and columns c through d. The matrix

V1:M;1:MVT
1:M;1:M in (11) guarantees the presence of residual

interference. Furthermore, unit-gain on rðnÞ is not guar-

anteed. While this can be enforced, it should be clear that

in the under-determined case, a clean extraction of the

reference signal is not possible.

2.2.2 Reference estimation via blind source separation

When nothing about A or sðnÞ is known, model inversion

needs to be done in a completely blind manner, and this

is generally accomplished through an appropriate BSS

approach. In the case where some a priori information is

available (on the mixing or on the sources), the BSS

becomes semi-blind source separation (sBSS). This is

exactly our problem setting, where the mixing column for

the reference source (the source of interest) is known.

The solutions proposed by [6] start by deriving from the

measured xðnÞ the bipolar montage (BL) xbðnÞ. This BL

montage is constructed from the CR montage by comput-

ing pairwise differences among the xmðnÞ, which eliminates

the influence of the reference rðnÞ in the resulting xbðnÞ
signals. Separating the xb by FastICA [8], one obtains

statistically independent estimates of s2 sources3 (if the

number of measures is too small, M\Q, one still obtains

independent signals, but not necessarily close to s2).

Exploiting the absence of the reference rðnÞ in the new

estimates, [6] propose two methods for estimating rðnÞ by

3 Hu et al. [7] proposed an alternative method replacing the FastICA

step by simple principal component analysis, thus not imposing

statistical independence but only decorrelation.
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comparing the xðnÞ from the CR montage (which includes

the reference) with the sources obtained from xbðnÞ (for

details, see [6]).

Ranta et al. [13] exploited the same model (2) to derive

a more robust and faster method. The basic idea being: if

complete source separation needs a two step approach

(whitening ? rotation), and if one wants to estimate only

one source, the rotation matrix does not need to be com-

pletely determined, determining one row is sufficient. It

can be shown that such a constrained approach where one

column of the mixing matrix is known has an optimal

estimator that ties into a central framework dependent only

on the SOS of the signals. These relations are subsequently

described and the model generalized to this case.

2.3 Unified framework

2.3.1 The semi-blind source separation solution of [13]

In the absence of any a priori knowledge of the sources or

the mixing system, the aim of blind source separation

algorithms is to invert the mixing system to obtain the

underlying sources. Such completely blind approaches

suffer from the fundamental, unavoidable indeterminacy

regarding the amplitude of the sources. From the per-

spective of blind source separation, a mixing of the kind

in (1) is equivalent to:

xðnÞ ¼ ADD�1sðnÞ
¼ eAesðnÞ ð12Þ

where D is some arbitrary diagonal scaling matrix which

changes the amplitude, but not the time course of the

sources. A unique solution of (12) for eA and esðnÞ is

therefore impossible.4

Traditionally, therefore, BSS approaches consider unit

variance sources esðnÞ. This, combined with the indepen-

dence assumption, means that:

Ueses ¼ E esðnÞesTðnÞ
n o

¼ I; ð13Þ

which implicitly implies that D ¼ U1=2
ss . The aim of BSS

approaches is then to invert the mixing system eA.

Note that eA may be expressed in terms of its constituent

components from the SVD as:

eA¼M eUeR eVT
; ð14Þ

where eU 2 R
ðM�MÞ and eV 2 R

ðQ�QÞ are orthogonal

matrices and eR 2 R
ðM�QÞ contains the singular values.

Classic blind source separation algorithms demand that

M�Q in order to obtain plausible source estimates. Our

first analysis focusses therefore on the case when eA (thus

A) is full-rank square, i.e., linearly independent rows,

M ¼ Q. Note that when eA is row rank deficient (M [ Q),

the inversion problem can be easily separated into multiple

well-behaved sub-problems by considering subsets of Q

signals. An alternative approach is to perform dimension

reduction using PCA followed by BSS on the reduced

space.

From (14), obtaining the inverse of eA is equivalent to

computing the individual components of its SVD. This is

done in two stages: a whitening, followed by a rotation.

Consider Uxx ¼ E xðnÞxTðnÞf g. The eigenvalue decom-

position (EVD) of Uxx can be written as:

Uxx ¼ UxRxUT
x ð15Þ

Under the assumption of (13) and considering (14), Uxx

can also be expressed as:

Uxx ¼ E eAesðnÞesTðnÞeAT
n o

¼ eAUeses eA
T

¼ eA eAT ¼ eUeR2 eUT
ð16Þ

From (15) and (16) eU ¼ Ux and the non-zero singular

values of eR are given by R1=2
x .

Thus, we see that (16) can already give us two com-

ponents of eA: eU and eR. We use this to first whiten the data,

which yields:

x
�ðnÞ ¼ R�1=2

x UT
x xðnÞ

¼ R�1=2
x UT

x
eAesðnÞ

¼ eVTesðnÞ
ð17Þ

What remains is to estimate the unitary, rotation matrix eV.

Denote this estimate of eV by fW. ICA approaches estimate

fW by optimizing functions that maximise the statistical

independence between the outputs yqðnÞ of yðnÞ, where

yðnÞ ¼ fWT
x
�ðnÞ. Effectively, what these methods aim to

achieve is:

fWT
x
�ðnÞ ¼ fWT

R�1=2
x UT

x xðnÞ

¼ fWT
R�1=2

x UT
x
eAesðnÞ

¼ fWT
R�1=2

x UT
x ea1 ea2 � � � eaMð ÞesðnÞ

¼M eDesðnÞ
¼M DsðnÞ

ð18Þ

where, as before, eD; D are diagonal matrices of scale

values. For a completely blind approach, such as ICA, this

4 Another ambiguity relates to the order of the sources, which is also

impossible to recover.
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is the best result possible under no knowledge of the

mixing system or source auto-correlations.

In contrast, when we know a1 and wish to estimate only

the corresponding source rðnÞ, we do not need complete

inversion of eA and can adopt another strategy, namely:

fWT
x
�ðnÞ ¼ fWT

R�1=2
x UT

x ðea1
eA2ÞesðnÞ ð19Þ

whereby from (12) and the implications of (13),

DsðnÞ ¼ fWT
R�1=2

x UT
x ðU1=2

rr a1
eA2ÞU�1=2

ss sðnÞ ð20Þ

From this, and given that fW is unitary, it follows that:

fWDsðnÞ ¼ ðU1=2
rr R�1=2

x UT
x a1 R�1=2

x UT
x
eA2ÞU�1=2

ss sðnÞ;
ð21Þ

where eA2 ¼ ea2; . . .; eaMð Þ. Thus, the first column of fW
can be determined, except for the unknown scale factor of

U1=2
rr as:

ew1 ¼ aR�1=2
x UT

x a1; ð22Þ

where a is the unknown scale factor to be determined.

From (18) and (22), we have an effective demixing filter

for rðnÞ which we express compactly as:

w1 ¼ UxR
�1=2
x ew1

¼ aUxR
�1
x UT

x a1

¼ aU�1
xx a1

ð23Þ

It remains now to fix the scale, which is done by ensuring

that w1 introduces no distortion along a1, i.e., wT
1 a1 ¼ 1.

Introducing this constraint yields:

a ¼ aT
1 U�1

xx a1

� ��1
: ð24Þ

Note, also, that whereas traditional BSS approaches cannot

be applied to the under-determined case, the sBSS solution

described above still applies. For this case, where M\Q,

we can write (14) as:

eA ¼ eUeR eVT

ðU1=2
rr a1

eA2Þ ¼ UxðR1=2
x 0M;Q�MÞeVT

¼ UxR
1=2
x
eVT

p ;

ð25Þ

where eVp ¼ eV1:Q;1:M .

Thus, the mixing model of (12) may be written in terms

of (25) as:

xðnÞ ¼ ðU1=2
rr a1

eA2ÞesðnÞ ¼ UxR
1=2
x
eVT

pesðnÞ: ð26Þ

Applying the whitening transform to (26) then yields:

eVT

pesðnÞ ¼ R�1=2
x UT

x ðU1=2
rr a1

eA2ÞesðnÞ: ð27Þ

The solution of this equation for esðnÞ requires the right

pseudo-inverse of eVT

p which, given that the columns of eVp

are orthogonal, is simply eVp. Moreover, for extracting only

rðnÞ, we require just the first row of eVp (and,

correspondingly, the first column of eVT

p ). This is, in

effect, the same solution as (22) and the demixing filter is

identical to the solution for the determined case, when

imposing unit gain along a1.

We shall show next that the solution we obtain for w1

using this scale factor in (23) is identical to well-known

approaches from array technology, which only consider the

SOS of the signals for the extraction of a ‘desired’ or

‘target’ signal along a known direction. As will be shown,

the sBSS solution is also the best achievable in terms of

SNR maximisation.

2.3.2 MPDR estimator

Recall that our aim is to find a linear combination w, able

to estimate the unknown source rðnÞ. One possible

approach is to minimise the output power of the resultant

signal yðnÞ ¼ wTxðnÞ, under the constraint that the gain

on the estimated reference signal (also denoted as the

‘target’ or ‘desired’ signal in this estimation context)

remains unity. This may be posed as the following

optimisation:

J w ¼ E jwTxðnÞj2
n o

þ kðwTa1 � 1Þ

¼ wTUxxwþ kðwTa1 � 1Þ;
ð28Þ

where Uxx is the correlation matrix of x, and k is the

Lagrange multiplier.

The solution to this constrained optimisation is obtained,

after some manipulation, as:

w ¼ U�1
xx

aT
1 U�1

xx a1

a1: ð29Þ

This solution is well known in array technology as the

MPDR approach [17]. The title aptly describes the

design considerations behind this approach: minimising

the output power while keeping the desired signal

undistorted.

2.3.3 Maximum SNR approach

We may also pose the search for the optimal w as an SNR

maximising criterion. Consider the signal model of (4),

under the linear combination w:

wTxðnÞ ¼ wTa1rðnÞ þ wTvðnÞ ð30Þ
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The SNR after applying w is then easily obtained as:

SNR ¼ EfjwTa1rðnÞj2g
EfjwTvðnÞj2g

¼ jw
Ta1j2Urr

wTUvvw

ð31Þ

As the SNR is a positive value, maximising the SNR w.r.t.

w is also equivalent to maximising the following cost

function:

J w ¼
1

1þ SNR�1

¼ jwTa1j2Urr

jwTa1j2Urr þ wTUvvw

¼ jw
Ta1j2Urr

wTUxxw

ð32Þ

The solution is obtained as:

jwTa1j2Urr

wTUxxw
Uxxw ¼ a1aT

1 w: ð33Þ

from which (and recognising that aT
1 w is a scalar) we can

conclude that

w / U�1
xx a1:

Selecting the constant of proportionality to yield unit gain

along a1 results in a ¼ ðaT
1 U�1

xx a1Þ�1
and the resulting w is

identical to the sBSS and MPDR solutions.

2.3.4 Reduction to MVDR

Observe that maximising the SNR directly is equivalent to

minimising the error term in Eq. (30), under the same unit

gain constraint. The optimization problem is strictly similar

to the one posed in (28):

J w ¼ E jwTvðnÞj2
n o

þ kðwTa1 � 1Þ

¼ wUvvwT þ kðwTa1 � 1Þ:
ð34Þ

Assuming that Uvv is full ranked, this will lead to:

w ¼ U�1
vv

aT
1 U�1

vv a1

a1: ð35Þ

This solution is known as the MVDR approach as it

minimises the variance of the output signal about rðnÞ.
To prove the equivalence between the MVDR solution

and the previous approaches, we factorise Uxx as:

Uxx ¼ a1aT
1 Urr þUvv

� �
ð36Þ

Applying Woodbury’s identity [18] (and assuming Uvv is

full-rank and invertible) , U�1
xx can be written as:

U�1
xx ¼ U�1

vv � Urr
U�1

vv a1aT
1 U�1

vv

1þ UrraT
1 U�1

vv a1

: ð37Þ

Substituting this value of U�1
xx in (29) and after some trivial

algebraic manipulations, we obtain again the solution

in (35).

Finally, if we return to the SNR maximisation prob-

lem (31) under the hypothesis that Uvv is invertible, we can

directly write:

SNR Uvvw ¼ a1aT
1 w: ð38Þ

Again, as aT
1 w is a scalar, (38) reduces to:

SNR

aT
1 w

Uvvw ¼ a1; ð39Þ

from which:

w ¼ aT
1 w

SNR
U�1

vv a1 ð40Þ

w ¼ aU�1
vv a1 ð41Þ

In other words, w is a scaled version of U�1
vv a1. To impose

the distortionless constraint, we may again redefine the

scale factor such that:

wTa1 ¼ 1 ð42Þ

yielding

a ¼ ðaT
1 U�1

vv a1Þ�1: ð43Þ

To conclude, if Uvv is also full-ranked, MVDR, MPDR and

sBSS solutions are strictly equivalent. Nevertheless, in

practical applications, Uvv is seldom known, while Uxx can

be estimated from the data, so we will focus in the next

sections on this solution only.

2.3.5 Source estimate

As seen previously, the linear combination permitting an

optimal recovery of the unknown reference signal rðnÞ can

be written as:

w ¼ U�1
xx

aT
1 U�1

xx a1

a1: ð44Þ

Applying this linear combination to xðnÞ, we obtain the

following estimate of the target signal:

brðnÞ ¼ wTxðnÞ

¼ rðnÞ þ aT
1 U�1

xx vðnÞ
aT

1 U�1
xx a1

ð45Þ

1008 Med Biol Eng Comput (2012) 50:1003–1015

123



One can easily prove that this estimate is identical to rðnÞ if

the mixing is over or well-determined (column rank of

A�M).

Consider first the case of a square invertible matrix A

(M �M). This case also implies that Uxx is invertible and

permits a factorisation of its inverse as:

U�1
xx ¼ AUssA

T
� ��1

¼ A�TU�1
ss A�1

ð46Þ

The corresponding estimate brðnÞ is:

brðnÞ ¼ wTxðnÞ ¼ aT
1 U�1

xx

aT
1 U�1

xx a1

AsðnÞ

¼
eT

1 AT A�TU�1
ss A�1

� �

eT
1 AT A�TU�1

ss A�1
� �

ATe1

AsðnÞ

¼ eT
1 U�1

ss

eT
1 U�1

ss e1

sðnÞ ¼ rðnÞ

ð47Þ

when A is not full-ranked (as in the case when M [ Q for

example), Uxx is not invertible and a dimension reduction

step is necessary. Again, as in the case of the known matrix A,

principal component analysis (PCA) can be employed. The

number of non-null eigenvalues of the covariance matrix Uxx

will indicate the new dimension of the system, equal to Q. In

theory, any well-conditioned linear transform P (Q�M)

applied to the measured signals will lead to similar results.

Indeed, the original model (1) can be rewritten as:

PxðnÞ ¼ PAsðnÞ
xPðnÞ ¼ APsðnÞ;

ð48Þ

where xP and AP indicate the resulting observations and

mixing system under the linear combination P. The sBSS/

MPDR approach can then be applied in this reduced, well-

conditioned space to obtain a Q-dimensional weight vector

wP as:

wP ¼
U�1

xPxP

aT
P;1U

�1
xPxP

aP;1

aP;1: ð49Þ

A similar analysis as in (47) proves that brðnÞ ¼ rðnÞ i.e.,

the estimation is perfect.

Finally, when the mixing is under-determined (rank of

A ¼ M\Q), the estimated source will be equal to the

original, plus some residue:

brðnÞ ¼ aT
1 U�1

xx

aT
1 U�1

xx a1

AsðnÞ

¼ aT
1 U�1

xx

aT
1 U�1

xx a1

a1rðnÞ þ eT
1 ATU�1

xx

aT
1 U�1

xx a1

vðnÞ

¼ rðnÞ þ evðnÞ

ð50Þ

An interesting point must be noted here: unlike (10), the

weight vector obtained by sBSS/MPDR methods is the

solution of a constrained optimization problem. Therefore,

the residue evðnÞ contains a weighted average of the

remaining signals, the weighting being inversely propor-

tional to the power of each source. Thus, powerful sources

would be more strongly suppressed as compared to weaker

sources. Such a weighting is of advantage and, therefore,

for under-determined conditions, this method is recom-

mended even when the mixing matrix A is completely

known.

2.4 Experimental setup

We illustrate the reference estimation approach and the

benefits of the zero-reference montage (ZR), obtained by

eliminating the estimated reference signal from the CR

montage, using both simulated signals and real depth EEG

measurements, as described next.

2.4.1 Simulation

The aim of this section is to compare the sBSS/MPDR

method to matrix inversion (if A is known) or to BSS

estimation. The three estimates of r are r̂sBSS, r̂A and r̂BSS,

respectively.5 Two simulation setups are possible:

1. Determined case M�Q. We have regrouped the over-

determined (M [ Q) and the well-determined

(M ¼ Q) cases together, as the first one reduces to

the second after dimension reduction. Therefore, we

simulate in the sequel only this last case, that is a full-

rank square matrix.

2. Under-determined case M\Q. An important particular

case of under-determined mixture is the noisy case:

indeed, when considering noisy measures, well- or

over-determined mixtures transform in under-deter-

mined mixtures, as noise can be considered as a

source. This general formulation allows to consider

independent noises for every channel (in which case

the extra-columns of the mixing matrix corresponding

to noise sources will be zero, except for one element)

or spatially correlated noises (arbitrary supplementary

columns in the mixing).

We have considered, for the simulation, four sources

(Q ¼ 4), with the setup presented in Table 1 (see also

Fig. 1a).

As seen in the table, only one source is Gaussian,

in order to respect the basic hypothesis of independent

5 The BSS estimate r̂BSS was selected, among all sources found by

BSS, as the signal having the highest absolute value of the correlation

coefficient with the original signal r:
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component analysis (ICA) based blind source separation.

Indeed, taking two or more Gaussian sources prevents ICA

from succeeding because of the non-existence of the high

order moments.6

The powers of the sources are indicated respective to the

first (target) one. The mixing matrix A was randomly

generated (uniform distribution in ½�1; 1�, in order to

simulate dissipative propagation medium and dipolar-like

sources). We have considered 1,000 mixing matrices, the

results presented here being the mean values over all

simulations.

The considered performance criterion was the correla-

tion coefficient between the target source and its estimate

obtained by the three tested approaches (matrix inversion,

BSS and sBSS/MPDR). Although mean square error can

also be considered for matrix inversion and sBSS/MPDR, it

penalizes BSS approaches, as they are unable to estimate

correct amplitudes.

2.4.2 Intra-cerebral EEG recordings

Intra-cerebral EEG recordings are acquired from multi-

contact depth electrodes implanted in the brain in order to

localise the epileptogenic zone (see Fig. 2 for an exam-

ple). The reference is placed somewhere sufficiently far

away from this zone, so it can be considered as indepen-

dent, although unknown and different from 0. The depth

electrodes might have from 10 to 15 contacts each, with a

2 mm distance between them. The total number of

acquired signals varies around 100, depending on the

number of implanted electrodes by patient. The unknown

reference signal contributes to all recordings according to

model (2).

According to this description of the recording setup, it

appears that one might choose to estimate the reference

either using all the recorded signals or after some dimen-

sion reduction. We will not insist here on the different

choices and on their influence on the quality of the esti-

mation from a medical interpretation point of view, this

analysis will be presented elsewhere. We will only focus on

three example of reference estimation and elimination

considering a subset of the recorded signals. The obtained

corrected montages will be called further on zero-refer-

enced (ZR).

The considered signals are obtained from three patients

diagnosed with temporal lobe epilepsy, at the University

Hospital (CHU) from Nancy, France. Each patient gave his

informed consent and the study was approved by the ethics

committee of the hospital.

3 Results

3.1 Simulated signals

3.1.1 Determined case M ¼ Q

In this simple case, all approaches should be essentially

equivalent and the solutions should be ideal (assuming that

the independence condition necessary for BSS approaches

is respected). Indeed, extensive numerical simulations

confirm this expected hypothesis: matrix inversion leads to

perfect reconstruction (correlation 	1), while BSS and

sBSS/MPDR solutions are very close between them and

close to the ideal solution (mean correlation coefficients

[0.99).

3.1.2 Under-determined case M ¼ Q

A more crucial case arises when M\Q. In such a case, the

MPDR solution weights the residual sources by the inverse

of their power, thus giving lower weights to the more

powerful sources. Thus, we would expect that the data-

adaptive structure of the MPDR would be better than when

only applying the solution in (10).

This is presented in the simulation below, where we

considered only three measuring channels for the four

sources from Table 1 (M ¼ 3, Q ¼ 4, see an example of

mixed signals in Fig. 1b). An example of source estimate

brðnÞ is presented in Fig. 3.

Mean and standard deviation values of the correlation

coefficient between r and its estimates r̂A, r̂BSS and r̂sBSS

(1,000 simulations) are given in Table 2. The distribution

of the correlation coefficient over all simulations is pre-

sented in the box-plots of Fig. 4.

3.2 Real depth EEG signals

3.2.1 Noisy ictal iEEG

The analyzed time window was 20 s length, recorded at a

sampling frequency of 512 Hz. The signals are measured

Table 1 Setup for the simulations

Signal Type Power (dB)

rðnÞ Sawtooth waveform (50 Hz) 0

s2ðnÞ Sinusoid (30 Hz) 0

s3ðnÞ Sequence of 
1 (20 Hz) �10

s4ðnÞ Gaussian noise 0

6 Still, other BSS algorithms, based on second-order statistics only

(SOBI for example) will function also for Gaussian sources.
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relative to a reference contact placed in the skull-bone (one

of the exterior recording contacts of one depth electrode).

The complete depth EEG has 112 common references

channels.

The considered subset of signals is recorded by elec-

trode OT , implanted in the right median and lateral

occipital lobe below the calcarine sulcus. We chose this

electrode because it was initially involved by the epileptic

discharge in this case. It had 12 measuring contacts inside

the brain (OT1 to OT12, OT1 being the most profound).

Figure 5 shows an example of the clinical use of the

estimated zero-reference montage (ZR). After an initial fast

low voltage activity starting from second 4, the discharge

appears as a rhythmic activity in the theta band (4–8 Hz)

from second 10, on the lateral contacts OT7 to OT10. We

used the proposed method to estimate the reference signal

and to correct the original acquisition montage. As it can be

seen in Fig. 5a, in the original common reference montage

(CR) all signals had a rather noisy appearance, while in

the corrected zero-reference montage (ZR, Fig. 5b) the

obtained signals were much cleaner. This noise is due to an

0 0.02 0.04 0.06 0.08 0.1
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Fig. 3 Original (r, dashed line) and estimated reference signals using

the different approaches when M\Q. brA is the estimate when using

complete knowledge of A (correlation coefficient = 0.83), the brBSS is

the solution using FastICA (correlation = 0.89) and the estimate

using the sBSS/MPDR approach is brsBSS (correlation = 0.91)
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Fig. 1 Simulated sources and

under-determined mixture

(M ¼ Q� 1)

Fig. 2 Depth EEG implantation example. a Implantation scheme (the

electrodes insertion points are superimposed on the MRI image in a

saggital view). b Axial view on the level of a horizontally inserted

multi-contact depth electrode (left side up)

Table 2 Performance evaluation using the correlation coefficient

between the simulated original source r and different estimates (mean

values over 1,000 simulations) for the under-determined case

r̂A r̂BSS r̂sBSS

0.88 (
0:14) 0.90 (
0:14) 0.92 (
0:11)
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unexpected electrical noise appearing on the reference

channel.

To illustrate the clinical use of a zero-referenced mon-

tage, we compare it to the usual bipolar montage (BL),

routinely employed for iEEG interpretation (Fig. 5c).

Clearly, the BL montage eliminates the reference artefact

and it provides a local view of the brain activity. On the

other hand, it loses the amplitude and propagation infor-

mation, preserved on the (zero)-referenced signals.

The spatial decrease of the signal amplitude is signifi-

cantly different for the corrected ZR montage compared to

the bipolar montage. In Fig. 6, CR and ZR montage clearly

indicate a gradual decrease of amplitude roughly matching

the separation between grey matter (containing the elec-

trical sources) and white matter (electrically inactive).

Maximum amplitude is noticed on contact OT8 with these

montages. In contrast, bipolar montage shows maximum

amplitude on OT9 � OT10 and a decrease of amplitude on

OT8 � OT9. This local minimum could be falsely consid-

ered as electrically inactive (white matter) because of the

low signal in this cerebral area.

Concerning the electrical diffusion of the potentials

inside the brain, visual analysis of the ZR montage allows

identifying a clear electrical propagation in the white

matter (contacts 4–6) from generators located in the grey

matter (contacts 7–10). This diffusion, absent on the BL

montage, might be useful to better estimate the location

and the orientation of the neural generator.

3.2.2 Artefacted spontaneous iEEG

In the previous example, all signals were issued from a one

of the implanted depth electrodes having 12 contacts. In the

general case, this is not the most favourable situation, as

the signals might be highly correlated and thus the

covariance matrix Uxx might be badly conditioned (i.e.

numerically difficult to invert in, for example, Eq. 29). The

second example we present here concerns one contact by

implanted depth electrode (7 electrodes, thus 7 contacts in

all), measured with respect to a scalp reference placed in

the FPz position according to the 10–20 system. The sig-

nals have 5 s length and are sampled at 512 Hz. Right

temporal lobe was implanted with depth electrodes, from

the anterior to the posterior part, in order to delineate the

epileptogenic zone. The anatomical structures explored by

the considered contacts are the insula (T1 and H1), the

entorhinal cortex (TB1), the hippocampus (B1 and C1), the

temporal pole (P1) and the amygdala (A1). The raw signals

are presented in Fig. 7a.

As seen in Fig. 7a, all signals are perturbed by additive

noise and artefacts, very likely affecting the reference

electrode. Both noise and artefacts disappear, as expected,

when using the bipolar montage obtained by subtracting

neighbouring contacts from the same depth electrode, see

Fig. 7b. For example, the peak appearing around second 4

on the common reference montage is completely removed.

On the other hand, this visualization also drastically reduce

the amplitude of some patterns not present on the refer-

ence, but still appearing on several contacts (positive peak

after second 1). For the corrected ZR montage, this pattern

is preserved clearly identified on TB1, P1 and A1, which are

implanted in neighbouring and connected regions of the

brain. Roughly,7 this can be evaluated by computing the

correlation coefficients q between the involved signals:

qTB1;P1
¼ 0:69, qTB1;A1

¼ 0:84 and qP1;A1
¼ 0:80. These

correlations are significantly higher than all the other cor-

relation values among electrodes: the next value equals

0.46 between contacts A1 and C1, still situated in closely

connected regions(amygdala and hippocampus). The rela-

tions between these signals (and presumably between the

corresponding brain areas, anatomically connected in the

human brain) are masked on the CR montage (more than

half of the correlations are [0.8 because of the reference

artefact) and they are reduced on the BL montage because

of the elimination of the activity appearing simultaneously

on two neighbouring contacts (qTB1�TB2;P1�P2
¼ 0:60,

qTB1�TB2;A1�A2
¼ 0:32 and qA1�A2;P1�P2

¼ 0:04).

3.2.3 Interictal spikes

A last example is presented for interictal spikes enhance-

ment. These pathological EEG patterns appear between

seizures in epileptic patients and they are markers of the

epileptic disease having a characterized morphology. They

are usually present on several recorded signals, increasing

thus the correlation between them. Visual analysis of these

patterns helps the neurologists to localize malfunctioning

regions in the brain. In classical iEEG analysis, a spike

A BSS sBSS
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0.6

0.8

1

C
or

re
la

tio
n

Method

Fig. 4 Correlation coefficients distribution over 1,000 simulations.

As it can be seen, the proposed sBSS method surpasses both matrix

inversion and classical BSS, both in terms of mean value and of

robustness to the mixing characteristics

7 More specific studies using connectivity measures will be described

elsewhere.
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changing its polarity on two neighbouring signals of a

bipolar montage indicates that the generator is situated

close to the common contact (see example in Fig. 8b),

signals A10 � A11 and A11 � A12). On the other hand, the

BL montage also might diminish the amplitude of a spike,

as for example on signals TB9 � TB10 and TB10 � TB11.

This effect of the BL montage is corrected on the ZR

montage from Fig. 8c, where the spikes are preserved and

they can clearly be distinguished from the background

activity (although they are almost masked on the original

montage, perturbed by the reference artefact, see Fig. 8a).

4 Discussion

The main objective of this work was to revisit the reference

problem in iEEG signal processing and present a unified

multichannel signal processing framework. Generalizing

previous approaches presented in the literature, we have

shown that, under certain realistic hypothesis, the reference

signal can be estimated from the measures using a sBSS

approach, based on partial knowledge of the mixing model.

We have shown furthermore that the sBSS approach is

strictly equivalent to MPDR filter and that it achieves
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(c) bipolar BL montage

Fig. 5 Depth ictal EEG example using different montages (20 s).

Shaded column on the right approximately represents the brain

structures explored by the OT electrode (according to the patient

scanner). One can notice the elimination of the reference noise

between b and a, while still preserving amplitude and topography

information better than in c
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Fig. 6 Normalised power of the signals recorded by the different

contacts of the OT electrode. The corresponding powers of the signals

issued from the BL montage are represented in intermediate positions

among the contacts. Shaded row on the bottom of the figure

approximately represents the brain structures explored by the

electrode
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Fig. 7 Depth EEG obtained

using one contact for each

electrode (two neighbouring

contacts for the BL montage).

The signals are ordered by

anatomical structure: insula

(T1 and H1), entorhinal cortex

(TB1), hippocampus (B1 and

C1), temporal pole (P1) and

amygdala (A1)
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Fig. 8 Depth EEG obtained

using three contacts for three

electrodes, all placed in the

external right temporal lobe

(four neighbouring contacts per

electrode for the BL montage).

The enhancement of the

interictal spikes is delineated by

the dotted lines
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optimal performances in terms of SNR. The developed

sBSS/MPDR algorithm was compared with completely

blind approaches (i.e. considering that the mixing is com-

pletely unknown) and with direct matrix (pseudo-)inver-

sion (i.e. considering that the mixing is completely known).

We have shown, using different measuring setups (well,

over and under-determined mixtures), that our method

yields comparable or better results than both classical blind

source separation and matrix inversion.

The main benefit of the reference estimation is the

construction of a corrected reference-free montage ZR,

which can help both clinical interpretation and further

automatic EEG analysis. Possible applications (see first and

second examples in the Sect. 3.2) are direct clinical anal-

ysis of ictal, interictal and background iEEG without

transforming the data into a bipolar montage, offering thus

a complementary view on the brain electrical activity. A

promising research direction is the intra-cerebral source

localization using iEEG measures, potentially allowing the

localization of sources which are not situated in structures

implanted by the iEEG electrodes (see for example the

interictal spikes, enhanced in the third example). The

usefulness of our method should be validated further for

evoked potential (EP) analysis: by construction, it makes

no hypothesis on the morphology of the informative sig-

nals, so it should accurately correct the reference for EP

recordings also. On the other hand, as EP are mostly

studied after averaging on several trials, the reference

influence is anyway diminished and it probably disappears

if the number of trials is sufficiently big.

As a final note, we would like to add that we have been able

to prove in [12] that even the methods of [5, 7] converge to the

MPDR solution. Thus, the state-of-the-art approaches for

reference estimation all fall within our proposed framework.

5 Conclusion

We present a novel and rigorous methodology for the

reference estimation problem in depth EEG signal pro-

cessing. We prove that this method is optimal in terms of

SNR maximisation and demonstrate, further, that it also

encompasses existing approaches. The practical usefulness

of the proposed approach was illustrated on simulated and

real iEEG recordings taken in different situations (back-

ground, interictal spikes, epileptic seizure).
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