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Abstract With the increasing interest of using inertial

measurement units (IMU) in human biomechanics studies,

methods dealing with inertial sensor measurement errors

become more and more important. Pre-test calibration and in-

test error compensation are commonly used to minimize the

sensor errors and improve the accuracy of the walking speed

estimation results. However, the performance of a given

sensor error compensation method does not only depend on

the accuracy of the calibration or the sensor error evaluation,

but also strongly relies on the selected sensor error model. The

best performance could be achieved only when the essential

components of sensor errors are included and compensated.

Two new sensor error models, with the concerns about sensor

acceleration measurement biases and sensor attachment mis-

alignment, have been developed. The performance of these

two error models were evaluated in the shank-mounted IMU-

based walking speed/inclination estimation algorithm with a

comparison of an existing error model. The treadmill walking

experiment, conducted at both level and incline conditions,

demonstrated the importance of sensor error model selection

on the spatio-temporal gait parameter estimation perfor-

mance. Accurate walking inclination estimation was made

possible with a newly developed sensor error model.

Keywords Gait analysis � Walking speed � Inertial

sensors � Error analysis � Ambulatory � Incline walking �
Biomechanics

1 Introduction

Microelectromechanical (MEMS) inertial sensors have long

been used as an aiding component in the navigation and

control applications and offered promising performance [2].

As the MEMS technology development, the application of

miniature inertial sensors has been gradually explored in the

field of biomechanics. Conventional camera-based motion

tracking systems used in human mobility studies accurately

measure position and orientation information in a small area

but inevitably suffer from the range restriction, the complex

laboratory setup, and the lack of long-term monitoring

capability. In any case, the use of miniature MEMS inertial

sensors has become very attractive in human mobility

studies due to their low-cost, small-size features, and

capability of sensing the motion without additional equip-

ments [17, 20]. The orientation and position of any given

body segment can be derived based on the measurements

from a body-fixed inertial measurement unit (IMU), a

combination of accelerometers and gyroscopes. Over the

past decade, different algorithms using the inertial sensor

data have been developed to detect gait events [8, 14], to

recognize human activities [12], to estimate the spatio-

temporal gait parameters of human gait, such as walking

and running speed, stride length and stride frequency [1, 3,

9, 10, 15, 18, 23], and to estimate lower limb joint kine-

matics [4, 6]. However, a common issue of utilizing low-

cost IMU is the cumulative calculation error resulting from

sensor errors, such as the integration drift caused by

acceleration measurement bias, and considerable effort has

been devoted looking for ways to reduce such errors.

Two common methods to compensate the sensor errors

in inertial sensor-based gait analysis systems are pre-test

static/dynamic calibration and in-test compensation based

on a specific sensor error model that describe the possible
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sensor error involved in the data collection and algorithm

implementation. With pre-test calibration approach, a off-

line static (stand still) or a dynamic (standardized move-

ment) calibration process is carried out before each trial of

an experiment to obtain the sensor error characteristics [7,

16, 22], which is then corrected in the calculation. An in-

test sensor error compensation is implemented in the

algorithm and the sensor errors are updated during a spe-

cific period of time, such as the zero-velocity duration of

the foot in the mid-stance phase, so called zero-velocity

update (ZUPT) [3, 19, 21], or the shank vertical event,

when the shank segment is perpendicular to the floor [15].

However, no matter which compensation method is used

and how accurately the sensor error is evaluated, the per-

formance of the inertial sensor-based system strongly relies

on the sensor error model, the description of the sensor

error components in the system. For example, some studies

made the assumption in their sensor error model that the

acceleration measurement bias was constant in the global

coordinate system [15, 21]. Although algorithms with this

sensor error model achieved accurate estimation results for

some gait parameters, such as walking speed, stride length,

etc., it failed in estimating other gait parameters such as

inclination of walking. Therefore, it is important to

understand the effect of sensor error model on the gait

parameter estimation performance.

This study compared three sensor error models (constant

acceleration measurement biases in global coordinate system

(CABGCS); constant acceleration measurement biases in

sensor coordinate system(CABSCS); constant acceleration

measurement biases in sensor coordinate system plus sensor

misalignment (CABSCS plus SM)) in estimating walking

speed and inclination using inertial sensors. Of the three

models, CABGCS has been used in a shank-mounted IMU-

based walking speed estimation algorithm, previously repor-

ted by Li et al. [15]. Two new sensor error compensation

models (CABSCS and CABSCA plus SM) were developed in

this paper for comparison. We hypothesized that both the

CABSCS and CABSCA plus SM models could improve the

walking speed estimation accuracy and that the CABSCA plus

SM model could improve the inclination estimation accuracy.

2 Method

2.1 IMU-based walking speed estimation

The walking speed estimation method using shank-moun-

ted IMU sensor was first proposed by Li et al. [15]. This

method is based on the fact that human walking is a cyclic

motion with distinct patterns in the inertial data that

characterize shank kinematics and could be further used to

determine spatio-temporal parameters including stride

cycle, stride length, stride frequency, walking speed, etc. In

particular, the shank angular velocity characteristics clearly

define several important gait events, such as heel-strike,

toe-off, shank vertical, etc. [1, 5, 11, 13]. The measured

sensor accelerations, an(t) in normal direction and at(t) in

tangential direction of the shank rotation, are first projected

to the global coordinate system, ax(t) in horizontal direc-

tion and ay(t) in vertical direction:

axðtÞ
ayðtÞ

� �
¼ cos hðtÞ � sin hðtÞ

sin hðtÞ cos hðtÞ

� �
atðtÞ
anðtÞ

� �
� 0

g

� �
; ð1Þ

where g is the acceleration due to gravity. h(t) is the sensor

orientation angle, which is integrated from the measured

shank angular velocity, x(t) (Fig. 1).

The accelerations in the global coordinate systems are

then integrated to determine the instantaneous sensor

velocity in each axis of the global coordinate system,

vx(t) and vy(t). The average sensor velocities are the aver-

age of the instantaneous sensor velocities over the corre-

sponding stride cycle, while the walking speed is the

magnitude of the vector sum of the the averaged sensor

velocities. Detailed description of the walking speed esti-

mation method can be found in [15].

Two strategies have been implemented to reduce the

speed estimation errors resulted from sensor measurement

uncertainty. First, a walking sequence was segmented into

a sequence of stride cycles. Specifically, in [15] the shank

vertical event, when the longitudinal direction of the shank

Fig. 1 Sensor configuration (sagittal view): An IMU is attached to

the midway of the shank on the lateral side. The acceleration an is

measured along the normal direction, at is measured along the

tangential direction, and the angular velocity (x(t)) is measured about

the rotation of the shank in the sagittal plane. The arrows indicate

positive axes for the corresponding sensor measurements. L is the

sensor-to-ankle joint distance. To simplify the experiment procedure,

the location of the lateral malleolus was used to approximate the

ankle joint. h is the shank angle with respect to the vertical direction.

The world coordinate system is defined by the x and y axes
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is vertical to the floor, was used to segment the walking

sequence into stride cycles. Within each stride cycle, the

walking speed was estimated in order to reduce drift errors

caused by long-time integrations of sensor measurement

biases. Second, acceleration measurement bias-induced

integration drifts were further compensated in a given

stride cycle by the aid of known reference velocities. Li

et al. [15] assumed that the initial and the final sensor

velocities are equal and both zero, which provided the

reference boundary conditions for correcting integration

drifts. The compensated sensor velocities, vx compðtÞ and

vy compðtÞ; are then used to calculate the average sensor

velocities over one stride cycle

�vx ¼
1

T

Z T

0

vx compðsÞds;

�vy ¼
1

T

Z T

0

vy compðsÞds:

ð2Þ

Thus, the estimated walking speed, �Vestimated; and

inclination in percentage of grade, U; can be calculated as

�Vestimated ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2

x þ �v2
y

q
ð3Þ

Uestimated ¼
�vy

�vx
100: ð4Þ

2.2 Sensor measurement error compensation

The goal of the compensation is to reduce the effect of the

sensor measurement error on the estimated walking speed

and achieve an accurate estimation. There are two main

sources of sensor measurement error: (1) sensor uncertainty

including accelerometer bias and gyroscope drift. and (2)

uncertainty related to the procedure and algorithm such as

initial sensor orientation: it is unavoidable that there is a

discrepancy between the actual sensor orientation and the

initial orientation used in the algorithm.

To achieve error compensation, it requires reference

measurements which could be used to correct estimation

error in the algorithm. There are two prerequisites for the

reference measurement. First, it should be available for each

stride cycle. Second, it should be relatively accurate and can

be directly compared with results from integration of the

sensor accelerations. For the shank-mounted IMU-based

walking speed estimation algorithm [15], It used zero initial/

final sensor velocities as reference measurements for cor-

recting integration drifts. However, a follow-up evaluation

experiment and analysis identified a systematic error asso-

ciated with the zero-velocity assumption, which resulted in

an underestimation of walking speed [23]. This is due to the

facts that initial and final velocities are not exactly zero. One

remedy to achieve accurate reference is to use the shank

angular velocity measurements, x(t), to calculate initial/

final velocities. During the mid-stance shank vertical events

(i.e. the beginning and the end of the stride cycle), the shank

rotates around the ankle joint as an inverted pendulum.

Therefore, the sensor velocities can be accurately estimated

as the product of angular velocities and rotation radius

vx refðtÞ ¼ xðtÞ � L
vy refðtÞ ¼ 0;

t ¼ 0; T ð5Þ

where vx refðtÞ and vy refðtÞ are the initial (when t = 0)

and final (when t = T) sensor horizontal and vertical

velocities in the global coordinate system, respectively, and

T is the period of the corresponding stride cycle. L is the

distance from the sensor to the ankle joint (Fig. 1).

As the reference measurements (sensor instantaneous

velocities) are only available at limited time instants (e.g. the

beginning and the end of a stride cycle), it is not possible to

compare the estimated instantaneous velocities from accel-

eration integration with the reference velocities continuously.

Instead, a sensor error model needs to be developed to

account for the sensor measurement error compensation in

the middle of a stride cycle when the reference is not avail-

able. Even though the end velocities are the same, the com-

pensated sensor instantaneous velocities in the middle of a

stride cycle are determined by the sensor measurement error

compensation model (Fig. 2). As the stride-by-stride veloc-

ities are calculated as the average of the compensated sensor

instantaneous velocities over one stride cycle (Eq. 2), the

difference between the instantaneous velocity paths in the

middle of a stride will have an impact on the estimated speed

and inclination.

To determine the effects of sensor measurement error

compensation model on the estimated speed and inclina-

tion, three models are evaluated in this study:

– CABGCS constant acceleration measurement biases in

global coordinate system;

– CABSCS constant acceleration measurement biases in

sensor coordinate system;

– CABSCS plus SM constant acceleration measurement

biases in sensor coordinate system plus sensor

misalignment.

2.2.1 CABGCS

CABGCS has been used in the previous studies [15, 23] and

achieved reasonable accuracy in estimating walking speeds,

but unsatisfactory inclination estimation. This sensor error

model assumes a constant acceleration measurement bias in

each axis of the global coordinate system, ax bias and ay bias;

such that the compensated sensor acceleration in global

coordinate system can be expressed as the original sensor

acceleration (Eq. 1) with added biases
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axðtÞ
ayðtÞ

� �
¼ coshðtÞ� sinhðtÞ

sinhðtÞ coshðtÞ

� �
atðtÞ
anðtÞ

� �
� ax bias

ay bias

� �
� 0

g

� �
:

ð6Þ

The constant biases, ax bias and ay bias; in the sensor

measurement model could be determined using the

reference end velocities,vx refðTÞ and vy refðTÞ; obtained

from Eq. (5). The biases should be selected such that the

velocities, integrating Eq. (6) from time 0 to T reach the

reference end velocities

vx refðTÞ
vy refðTÞ

� �
¼
ZT

0

coshðsÞ� sinhðsÞ
sinhðsÞ coshðsÞ

� �
atðsÞ
anðsÞ

� �
�

0

g

� �� �
ds

þ
vx refð0Þ
vy refð0Þ

� �
�

âx bias

ây bias

� �
T; ð7Þ

where vx refð0Þ and vy refð0Þ are the initial velocities

determined using Eq. (5), and âx bias and ây bias are the

estimated sensor acceleration measurement biases in the

global coordinate system. To simplify the expression,

the sensor velocities calculated from direct integration

without considering the acceleration measurement biases,

vx intðtÞ and vy intðtÞ; are defined as

vx intðtÞ
vy intðtÞ

� �
¼
Z t

0

coshðsÞ� sinhðsÞ
sinhðsÞ coshðsÞ

� �
atðsÞ
anðsÞ

� �
�

0

g

� �� �
ds

þ
vx refð0Þ
vy refð0Þ

� �
ð8Þ

Combining Eqs. (7) and (8),

vx refðTÞ
vy refðTÞ

� �
¼ vx intðTÞ

vy intðTÞ

� �
� âx bias

ây bias

� �
T : ð9Þ

Thus, the constant biases are calculated as

âx bias

ây bias

� �
¼ 1

T

vx intðTÞ
vy intðTÞ

� �
� vx refðTÞ

vy refðTÞ

� �� �
: ð10Þ

Upon the determination of biases, the effect of the biases

are compensated by subtracting the velocity integration

drift from the instantaneous sensor velocities over the

corresponding stride cycle,

vx compðtÞ
vy compðtÞ

� �
¼
Z t

0

coshðsÞ�sinhðsÞ
sinhðsÞcoshðsÞ

� �
atðsÞ
anðsÞ

� �
�

0

g

� �� �
ds

þ
vx refð0Þ
vy refð0Þ

� �
�

âx bias

ây bias

� �
t: ð11Þ

The implementation of this compensation algorithm ben-

efits from its simplicity and has been reported in inertial

sensor-based gait analysis studies [15, 21].

2.2.2 CABSCS

Although CABGCS significantly improved the performance

in estimating walking speeds, we mush realize that accel-

erometer biases are physically with respect to the mea-

surement axes of the accelerometer, an and at, but not the

global coordinate axes, ax and ay.
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Fig. 2 Instantaneous sensor velocities for different sensor error

models over one stride cycle. The solid curve is the sensor velocity

calculated by direct sensor acceleration integration without any sensor

error compensation starting from the reference initial sensor velocities

ðvx refð0Þ and vy refð0Þ), which ends up with the final sensor

velocities ðvx intðTÞ and vy intðTÞ), which are different from the

reference final sensor velocities ðvx refðTÞ and vy refðTÞ). The

dashed, dotted, and dash-dotted curves represent three different

sensor error compensation methods (CABGCS, CABSCS and

CABSCS plus SM). All methods attain the final reference sensor

velocities but with different instantaneous velocities in the middle of

the stride cycle
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Therefore, it makes better sense to develop a sensor

error model that considers the accelerometer biases in the

measurement axes, at bias and an bias: The new sensor error

model, CABSCS, is developed as

axðtÞ
ayðtÞ

� �
¼ cos hðtÞ � sin hðtÞ

sin hðtÞ cos hðtÞ

� �
atðtÞ � at bias

anðtÞ � an bias

� �
� 0

g

� �
:

ð12Þ

The acceleration measurement biases in global coordinate

system can then be isolated and written as functions of

time, t

axðtÞ
ayðtÞ

� �
¼ coshðtÞ�sinhðtÞ

sinhðtÞ coshðtÞ

� �
atðtÞ
anðtÞ

� �
� ax biasðtÞ

ay biasðtÞ

� �
� 0

g

� �
;

ð13Þ

where

ax biasðtÞ
ay biasðtÞ

� �
¼ cos hðtÞ � sin hðtÞ

sin hðtÞ cos hðtÞ

� �
at bias

an bias

� �
: ð14Þ

Thus, at the end of the stride cycle when t = T,

vx refðTÞ
vy refðTÞ

� �
¼
ZT

0

coshðsÞ� sinhðsÞ
sinhðsÞ coshðsÞ

� �
atðsÞ
anðsÞ

� �
�

0

g

� �� �
ds

þ
vx refð0Þ
vy refð0Þ

� �
�
ZT

0

âx biasðsÞ
ây biasðsÞ

� �� �
ds; ð15Þ

where âx bias and ây bias are the estimated sensor

accelerometer biases projected in the global coordinate

system. Similar to Eqs. (6)–(10), the differences between the

reference velocities and the velocities through integration

can be expressed as

vx refðTÞ � vx intðTÞ
vy refðTÞ � vy intðTÞ

� �
¼

RT
0

âx biasðsÞds

RT
0

ây biasðsÞds

2
6664

3
7775

¼

RT
0

cosðsÞds�
RT
0

sinðsÞds

RT
0

sinðsÞds
RT
0

cosðsÞds

2
6664

3
7775

ât bias

ân bias

� �
ð16Þ

where vx refðTÞ; vy refðTÞ; vx intðTÞ and vy intðTÞ are,

respectively, calculated using Eq. (5) and (8), and ât bias

and ân bias are the estimated sensor acceleration measure-

ment biases in the sensor coordinate system.

Thus, the constant acceleration measurement biases can

be calculated by solving Eq. (15),

ât bias

ân bias

� �
¼

RT
0

cosðsÞds�
RT
0

sinðsÞds

RT
0

sinðsÞds
RT
0

cosðsÞds

2
6664

3
7775

�1

�
vx refðTÞ � vx intðTÞ
vy refðTÞ � vy intðTÞ

� �
ð17Þ

Therefore, similar to Eq. (11), the compensated

instantaneous sensor velocities over the corresponding

stride cycle are calculated as

vx compðtÞ
vy compðtÞ

� �
¼
Z t

0

cos hðsÞ � sin hðsÞ
sin hðsÞ cos hðsÞ

� ��

�
atðsÞ � ât bias

anðsÞ � ân bias

� �
�

0

g

� ��
ds ð18Þ

2.2.3 CABSCS plus SM

Both the CABGCS and CABSCS are developed based on

the assumption that the sensor is perfectly aligned with the

global coordinate system at the shank vertical event with

no error, i.e. h(0) = 0; however, the exact orientation of

the sensor, h(0), at the beginning of a stride cycle, most

likely does not equal to zero. To account for the mea-

surement error in the sensor orientation angle, we devel-

oped the sensor measurement model CABSCS plus SM. In

the new sensor error model, we introduce a constant bias to

the measured sensor orientation angle, h(0) = h0, which

describes the sensor misalignment at the shank vertical

event. In the mean time, we preserve the fact that sensor

acceleration measurement biases are in sensor coordinate

system (CABSCS). With the initial sensor misalignment

angle, h0, the CABSCS plus SM is given by

axðtÞ
ayðtÞ

� �
¼

cos h0 � sin h0

sin h0 cos h0

� �
cos hðtÞ � sin hðtÞ
sin hðtÞ cos hðtÞ

� �

�
atðtÞ � at bias

anðtÞ � an bias

� �
�

0

g

� �
ð19Þ

In this sensor error model, there are three constants,

at bias; an bias and h0; need to be determined using the end

reference velocity measurements. Because we only have

two equations with two reference end velocity

measurements, we could only determine two of the three

constants. As the two acceleration measurement biases are

small and close to each other, we make a reasonable

assumption as at bias ¼ an bias ¼ abias to reduce the

number of unknowns to two as the accelerometer bias

and the sensor misalignment angle, abias and h0. Integrating

Eq. (19), and comparing with the reference end velocities,
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vx refðTÞ
vx refðTÞ

� �
¼
ZT

0

cos ĥ0 � sin ĥ0

sin ĥ0 cos ĥ0

" #
cosðsÞ � sinðsÞ
sinðsÞ cosðsÞ

� � 

�
atðsÞ � âbias

anðsÞ � âbias

� �
�

0

g

� �!
ds ð20Þ

where vx refðTÞ; vy refðTÞ are calculated using Eq. (5), and

ĥ0 and âbias are the estimated sensor misalignment angle

and sensor accelerometer measurement bias. To solve

Eq. (20), two methods, analytical and numerical, have been

developed.

Analytical solution In order to simplify and analytically

solve the non-linear equation, the small-angle approxima-

tion was utilized based on the assumption that the sensor

misalignment angle is very small (\5�), such that Eq. (20)

can be re-written as

vx refðTÞ
vx refðTÞ

� �
¼
ZT

0

1� ĥ0

ĥ0 1

" #
cosðsÞ � sinðsÞ
sinðsÞ cosðsÞ

� � 

�
atðsÞ � âbias

anðsÞ � âbias

� �
�

0

g

� ��
ds ð21Þ

Isolating the acceleration measurement bias and rearrange

the equation, we get

vx refðTÞ
vx refðTÞ

� �
¼
ZT

0

1 �ĥ0

ĥ0 1

" #
cosðsÞ �sinðsÞ
sinðsÞ cosðsÞ

� �
atðsÞ
anðsÞ

� �
�

0

g

� � !
ds

�
ZT

0

1 �ĥ0

ĥ0 1

" #
cosðsÞ �sinðsÞ
sinðsÞ cosðsÞ

� �
âbias

âbias

� � !
ds

ð22Þ

Further, we decompose the approximated misalignment

angle transformation matrix into an identity matrix and an

anti-diagonal matrix about ĥ0;

vx refðTÞ
vx refðTÞ

� �
¼
ZT

0

1 0

0 1

� �
cosðsÞ � sinðsÞ
sinðsÞ cosðsÞ

� �
atðsÞ
anðsÞ

� �
�

0

g

� �� �
ds

þ
ZT

0

0 �ĥ0

ĥ0 0

" #
cosðsÞ � sinðsÞ
sinðsÞ cosðsÞ

� �
atðsÞ
anðsÞ

� � !
ds

�
ZT

0

1 0

0 1

� �
cosðsÞ � sinðsÞ
sinðsÞ cosðsÞ

� �
âbias

âbias

� �� �
ds

�
ZT

0

0 �ĥ0

ĥ0 0

" #
cosðsÞ � sinðsÞ
sinðsÞ cosðsÞ

� �
âbias

âbias

� � !
ds

ð23Þ

Note that the first term of Eq. (23) is the same as the right

side of Eq. (8), while the last term can be rewritten as

RT
0

sinðsÞ þ cosðsÞ
cosðsÞ � sinðsÞ

� �� �
ds � ĥ0 � âbias; ð24Þ

which can be omitted since the magnitude of ĥ0 and âbias is

very small and the product of them is negligible. Thus,

Eq. (23) is simplified to

vx refðTÞ
vx refðTÞ

� �
¼

vx intðTÞ
vy intðTÞ

� �

þ
ZT

0

0 �ĥ0

ĥ0 0

" #
cosðsÞ �sinðsÞ
sinðsÞ cosðsÞ

� �
atðsÞ
anðsÞ

� � !
ds

�
ZT

0

1 0

0 1

� �
cosðsÞ � sinðsÞ
sinðsÞ cosðsÞ

� �
âbias

âbias

� �� �
ds ð25Þ

We rearranged the equation such that ĥ0 and âbias are

isolated,

vx refðTÞ�vx intðTÞ
vx refðTÞ�vy intðTÞ

� �
¼
ZT

0

�atðsÞsinðsÞ�anðsÞcosðsÞ
atðsÞcosðsÞ�anðsÞsinðsÞ

� �� �
ds� ĥ0

�
ZT

0

cosðsÞ�sinðsÞ
sinðsÞþcosðsÞ

� �� �
ds� âbias

¼

RT
0

ð�atðsÞsinðsÞ�anðsÞcosðsÞÞds
RT
0

ðcosðsÞ�sinðsÞÞds

RT
0

ðatðsÞcosðsÞ�anðsÞsinðsÞÞds
RT
0

ðsinðsÞþcosðsÞÞds

2
6664

3
7775

ĥ0

âbias

" #
:

ð26Þ

Thus, we solved ĥ0 and âbias as

ĥ0

âbias

" #

¼

RT
0

ð�atðsÞ sinðsÞ� anðsÞcosðsÞÞds
RT
0

ðcosðsÞ� sinðsÞÞds

RT
0

ðatðsÞcosðsÞ� anðsÞ sinðsÞÞds
RT
0

ðsinðsÞþ cosðsÞÞds

2
6664

3
7775

�1

�
vx refðTÞ� vx intðTÞ
vx refðTÞ� vy intðTÞ

� �
ð27Þ

Numerical solution Instead of determine the constants

in the nonlinear equation of Eq. (20) analytically based on

first-order approximation, we solve the constants numeri-

cally using MATLAB optimization routine FMINUNC. We

first rearrange Eq. (20) and form two functions (fx and fy)

with respect to ĥ0 and âbias :

fxðĥ0; âbiasÞ
fyðĥ0; âbiasÞ

" #
¼

vx refðTÞ
vx refðTÞ

� �
�
ZT

0

cos ĥ0 � sin ĥ0

sin ĥ0 cos ĥ0

" # 

�
cosðsÞ � sinðsÞ
sinðsÞ cosðsÞ

� �
atðsÞ � âbias

anðsÞ � âbias

� �
þ

0

g

� ��
ds

ð28Þ
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Ideally, fx and fy should be zero when the exact value of h0

and abias is found. We use another function ferr as the

criteria for the MATLAB optimization routine,

ferrðĥ0; âbiasÞ ¼ f 2
x ðĥ0; âbiasÞ þ f 2

y ðĥ0; âbiasÞ: ð29Þ

To start the optimization routine, an initial value is pro-

vided for the unknown misalignment angle (ĥ0) and sensor

acceleration measurement bias (âbias), and then FMINUNC

searches for the best value of ĥ0 and âbias such that ferr is

minimized. The resulting ĥ0 and âbias are the numerical

solution for Eq. (20).

Upon the determination of ĥ0 and âbias; the compensated

instantaneous sensor velocities in the stride cycle are

simply calculated by plugging ĥ0 and âbias back to Eq. (19)

and integrating both sides,

vx compðtÞ
vy compðtÞ

� �
¼
ZT

0

cos ĥ0 � sin ĥ0

sin ĥ0 cos ĥ0

" # 

�
cos hðsÞ � sin hðsÞ
sin hðsÞ cos hðsÞ

� �
atðsÞ � âbias

anðsÞ � âbias

� �
�

0

g

� ��
ds

:

ð30Þ

With the compensated instantaneous sensor velocities,

vx compðtÞ and vy compðtÞ; from each sensor error model,

the stride-by-stride walking speed and inclination are

calculated according to Eqs. (3) and (5).

2.3 Experimental method

An IMU sensor was attached to the midway of the right

shank on the lateral side. The IMU sensor (Xsens Tech-

nology B.V., Netherlands) consists of a triaxial acceler-

ometer (± 18 g, where g is the gravitational acceleration)

and a triaxial gyroscope (± 1200�/s). Since we are only

interested in the shank movement in the progression plane

(sagittal plane), only the measurements from two acceler-

ometer axes and one gyroscope axis were used in the cal-

culation. The acceleration and angular velocity data were

collected at 120 Hz with MVN Studio (Xsens Technology

B.V., Netherlands). The raw sensor measurements were

filtered using a second-order Butterworth low-pass filter

with cut-off frequency of 3 Hz. The section of the cut-off

frequency of 3 Hz is based on the tread-off between

obtaining a smooth angular velocity profile for reliable

stride cycle segmentation and retaining acceleration mea-

surements for accurate gait speed integration. The sensor-

to-ankle distance (L) was measured and recorded for the

off-line algorithm implementation. Before each walking

trial, the subject was asked to stand still with the shank in

vertical direction and the IMU was adjusted such that the

readings from its normal and tangential axes were 1g and

0g, respectively. At this orientation the sensor’s normal and

tangential axes were aligned as closely as possible to ver-

tical and horizontal directions of the world coordinate

system, respectively (Fig. 1).

Two sets of experiments have been conducted to eval-

uate the performance of the three sensor error models in

estimating walking speeds and slopes. The first experiment

aims at the walking speed estimation performance com-

parison. Ten healthy subjects without any history of

orthopedic impairments were recruited from the university

community, including five males and five females (age:

21.0 ± 0.5 years; height: 172.9 ± 10.0 cm; weight:

68.9 ± 12.4 kg; sensor-to-ankle distance: 27.6 ± 3.2 cm).

The subjects were asked to walk on a treadmill (Nordic-

Track Comfort Stride, ICON Health & Fitness, Logan,

UT, USA) at five different preset treadmill speeds (0.8, 1.0,

1.2, 1.4 and 1.6 m/s) with 0 % inclination. The second

experiment aims at evaluating the performance in esti-

mating inclination of walking. Four healthy subjects

without any history of orthopedic impairments were

recruited, including three males and one female (age:

22.5 ± 3.3 years; height: 178.4 ± 13.5 cm; weight:

72.4 ± 16.6 kg; sensor-to-ankle distance: 30.9 ± 2.9 cm).

The subjects were instructed to walk at three different

preset treadmill inclines (0, 5 and 10 %) with 1.0 m/s

treadmill speed. The vertical reference speeds under the

inclined conditions were calculated as the product of the

preset treadmill speed and the percentage incline. For each

trial, the IMU data were recorded for a duration of 60 s.

The stride-by-stride walking speed and inclination were

estimated off-line with different sensor measurement error

compensation methods implemented in MATLAB (The

MathWorks, Natick, MA, USA). Twenty strides from the

steady walking period of each trial were used in the error

analysis. Before experiment, subjects gave their informed

consent to participate in accordance with university policy,

and the study was approved by the Queen’s Research

Ethics Board.

2.4 Data analysis

For the walking speed estimation performance comparison,

estimation error of each trial (20 strides from the steady

walking period) was calculated as the difference between

the average estimated stride-by-stride walking speed over

20 strides and the corresponding preset treadmill speed.

The mean absolute estimation error (Mean) and standard

deviation (SD) were determined for each treadmill speed

across all the subjects. A percentage root mean squared

error (%RMSE) for each treadmill speed was also com-

puted by averaging the results over all subjects,
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%RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ð �Vestimated � VtreadmillÞ2=N

q
Vtreadmill

100%; ð31Þ

where N = 10 for each walking speed, �Vestimated is the

average estimated walking speed for each treadmill speed

across all subjects, and Vtreadmill is the corresponding preset

treadmill speed. At each walking speed, the walking speed

estimation error difference between different sensor error

models were tested using the one-way ANOVA. With the

p-values smaller than the significance level, 0.05, the per-

formances of sensor error models were considered differ-

ent. The estimated horizontal, vertical sensor velocities,

and estimated inclination were also analyzed separately

using the one-way ANOVA. For the walking inclination

estimation performance comparison, the one-way ANOVA

was used to test the difference between the estimated

inclination of different sensor error models.

3 Results

Both CABSCS and CABSCS plus SM based walking speed

estimation methods achieved smaller absolute error and

%RMSE than the previously used CABGCS, as shown in

Table 1. An improvement of overall %RMSE from

CABSCS (3.7%) and CABSCS plus SM (3.4% from

numerical solution and 3.5% from analytical solution)

could be observed in comparison with that from CABGCS

(4.1%). Overall, CABSCS plus SM shows the best perfor-

mance in the walking speed estimation error comparison.

However, one-way ANOVA showed that the estimation

error difference between three error models were not sta-

tistically significant.

The comparisons between estimated average horizontal

and vertical sensor velocities with different sensor error

models are shown in Fig. 3a. As the experiment was car-

ried out on the treadmill with 0� inclination, the horizontal

sensor velocities estimated with all three sensor error

models approach the preset treadmill speeds; however,

much smaller vertical sensor velocities are obtained from

CABSCS and CABSCS plus SM, which are significantly

different from CABGCS, where the ideal estimated vertical

sensor velocity should be zero. The estimated vertical

velocities in CABSCS plus SM are slightly better than those

by CABSCS at lower walking speeds (0.8 and 1.0 m/s).

However, as the treadmill speed increases, the difference

becomes significant and CABSCS shows larger errors while

CABSCS plus SM still provides accurate estimates of ver-

tical velocities. On the other hand, the comparison between

numerical and analytical solutions for CABSCS plus SM in

Fig. 3b indicates that the numerical method provided a

better vertical sensor velocity estimate. Significant differ-

ence is observed in the vertical sensor velocity estimation

under two out of five treadmill speeds, and the estimation

variability is larger for the analytical solution.

In the inclination estimation experiment, the estimated

inclination between any two of the three sensor error

models are significantly different, as shown in Fig. 4a,

where CABSCS plus SM provides the most accurate incli-

nation estimates and the performance of CABSCS is better

than CABGCS. Significant difference is observed in the

Table 1 Walking speed estimation errors comparison between methods

Walking speed (m/s) Overall

%RMSEb

0.8 1.0 1.2 1.4 1.6

CABGCS

Errora 0.02 ± 0.01 0.06 ± 0.04 0.03 ± 0.02 0.05 ± 0.03 0.04 ± 0.03 4.1 %

% RMSE 3.4 % 7.2 % 2.8 % 3.9 % 2.9 %

CABSCS

Error 0.02 ± 0.01 0.06 ± 0.04 0.02 ± 0.02 0.04 ± 0.03 0.03 ± 0.03 3.7 %

% RMSE 3.2 % 6.9 % 2.5 % 3.5 % 2.6 %

CABSCS plus SM (numerical)

Error 0.02 ± 0.01 0.05 ± 0.04 0.02 ± 0.02 0.04 ± 0.03 0.03 ± 0.02 3.4 %

% RMSE 2.8 % 6.3 % 2.3 % 3.2 % 2.3 %

CABSCS plus SM (analytical)

Error 0.02 ± 0.01 0.05 ± 0.04 0.02 ± 0.02 0.04 ± 0.03 0.03 ± 0.02 3.5 %

%RMSE 2.9 % 6.5 % 2.3 % 3.3 % 2.5 %

pc 0.74 0.89 0.94 0.76 0.92

a Entry values are absolute Mean ± SD of the average walking speed estimates of each treadmill walking trial
b %RMSE is RMSE divided by preset treadmill speed
c One-way ANOVA results between different methods, with p [ 0.05 the difference is not statistically significant
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inclination estimation results between the numerical and

analytical solutions for CABSCS plus SM, as depicted in

Fig. 4b.

4 Discussion

Although accurate in estimating walking speeds for all

three sensor error models, only CABSCS plus SM with

numerical implementation achieved accurate results in

estimating inclination. In the original shank-mounted IMU

walking speed estimation [15], the initial shank angle at the

shank vertical event was assumed to be zero, h(0) = 0�;

however, this requires perfect sensor initial sensor angle at

the beginning of each stride cycle, which cannot be guar-

anteed. The walking speed estimation results are similar

and accurate (Table 1) because the amplitudes of the

estimated vertical sensor velocity were small for all error

models and the walking speed amplitude was calculated as

the vector sum of the horizontal and the vertical velocities.

As such, the incorrect distribution of the vertical and hor-

izontal velocities cannot be reflected in the overall walking

speed estimation. However, the walking inclination esti-

mation was severely affected because the calculation of the

inclination totally depends on the distribution of the ver-

tical and horizontal velocities. Previous studies with IMU

attached to human body have attempted to estimate incli-

nation during inclined walking, but failed to provide

accurate results [15, 21]. The unsuccessful estimation of

inclination is most likely due to the use of an sensor error

model that is insufficient to describe the sensor errors

involved in the system. In Fig. 3a, CABSCS and CABSCS

plus SM do not present significant difference in the sensor

vertical velocity estimation; however, as the walking speed

increases, the difference becomes significant, which to

some extent indicates that using shank angular velocity

characteristics to determine shank vertical event in high

walking speed may not be as accurate as in low walking
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Fig. 3 a Estimated average

sensor velocities (global

coordinate system) under

different sensor error models.

The light gray bars indicate the

results with CABGCS. The mid-
gray bars show the results with

CABSCS. The dark gray bars
show the results from CABSCS
plus SM. The error bars
represent ± one standard

deviation, indicating the

estimation inter-subject

variability. The asterisks
indicate that the results are

significantly different between

pairs. b Comparison between

the numerical and analytical

solution of CABSCS plus SM
method. The light gray bars
indicate the numerical solution,

while the mid-gray bars
represent the analytical solution
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speed. Comparing CABSCS and CABSCS plus SM in

Fig. 5, it is obvious that the vertical sensor velocity profile

is very sensitive to shank angle changes and even the small

sensor misalignment angle (\5�) will make a big discrep-

ancy. Therefore, the inclusion of the misalignment angle in

the sensor error model is essential for the walking incli-

nation estimation.

The main difference between sensor error models lies in

the instantaneous vertical velocities between 25 and 80 %

of the stride cycle (Fig. 5). This duration corresponds to the

swing phase of a stride cycle when the accelerations of the

shank-mounted sensor becomes large. Since the sensor

acceleration measurement biases are independent of the

orientation of the sensor and the direction of the accelera-

tion, the effect of the acceleration measurement biases in

global coordinate system strongly relies on the shank angle

that is used in the acceleration projection. The constant

acceleration measurement bias model in global coordinate

system applied in CABGCS ignores such fact and uses a

rough approximation in the calculation, CABSCS senses the

shank angle changes and realistically models the projection

of the biases in horizontal and vertical directions, and

CABSCS plus SM further takes care of the sensor mis-

alignment angle. Meanwhile, the contribution of the gravity

on sensor coordinate system also influences the calculated

sensor acceleration measurement biases if the shank angle is

not accurate. Due to the consideration of relationship

between the shank angle and sensor error in global coor-

dinate system, CABSCS observably corrects the sensor

velocity estimation in vertical direction, and CABSCS plus

SM significantly minimizes such error (Fig. 3a).

All in-test sensor error correction methods require some

reference measurements to determine the sensor accelera-

tion measurement bias. For example, the ZUPT has been

used in foot-mounted IMU based algorithm [3, 19] and

shank-mounted IMU based algorithm [15] to correct sensor

measurement error. CABGCS, CABSCS and CABSCS plus

SM all use the angular velocities measured during the end

of stride cycle to generate the reference measurements,

which is easy to implement and much simpler than other

sensor fusion algorithms, e.g. Kalman filtering [3]. In

comparison with CABGCS [15, 21], CABSCS and CABSCS

plus SM require the consideration of sensor acceleration

measurement biases for every sample collected in the

walking trial, i.e. describing the sensor errors in global

coordinate system as a function of time, and a relatively

more complicated implementation is needed. We devel-

oped numerical and analytical methods for CABSCS plus

SM. Both methods obtained accurate walking speed
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estimation results; however, the numerical solution per-

formed better in terms of the inclination estimation. The

small angle approximations we used in the derivation for

the analytical solution are the main reason for the dis-

crepancy found between numerical and analytical methods.

The omission of the term in (Eq. 24) also accounts for part

of the estimation error. As the vertical displacement is

relatively small, these approximations could introduce a

small absolute error in the estimated vertical displacement

but relatively large percentage error. This will ultimately

cause the wrong inclination estimation. On the other hand,

the numerically implemented CABSCS plus SM solves the

nonlinear equation directly without approximation,

achieving accurate inclination estimation. One shortcoming

of this implementation is the computational complexity

because it involves solving a nonlinear equation in each

stride cycle. In this study, we only conducted inclined

walking due to the limitation of treadmill, which can only

be adjusted to positive inclinations. The performance of

these three sensor measurement error compensation meth-

ods under declined walking conditions deserves further

evaluation.

In summary, this study proposed two new sensor error

models and evaluated the performance in comparison with

one sensor error model from previous study ([15]). The

results suggested that either method (CABSCS, CABGCS,

or CABSCS plus SM) could be used to estimate walking

speeds accurately. In the case of estimating walking

inclination, CABSCS plus SM with a numerical imple-

mentation will be the best choice. The use of advanced

sensor error model can further benefit some closely related

applications, such as personal positioning system [3];

Although in the present study the proposed error models

are used to correct the walking speed and inclination esti-

mation errors, the way of modeling body-mounted inertial

sensor error can be migrated to other applications, such as

human activities recognition [12].
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