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Abstract Parameter identification methods are used to find

optimal parameter values to fit models to measured data. The

single integral method was defined as a simple and robust

parameter identification method. However, the method did not

necessarily converge to optimum parameter values. Thus, the

iterative integral method (IIM) was developed. IIM will be

compared to a proprietary nonlinear-least-squares-based

Levenberg–Marquardt parameter identification algorithm

using a range of reasonable starting values. Performance is

assessed by the rate and accuracy of convergence for an

exemplar two parameters insulin pharmacokinetic model,

where true values are known a priori. IIM successfully con-

verged to within 1% of the true values in all cases with a median

time of 1.23 s (IQR 0.82–1.55 s; range 0.61–3.91 s). The

nonlinear-least-squares method failed to converge in 22% of

the cases and had a median (successful) convergence time of

3.29 s (IQR 2.04–4.89 s; range 0.42–44.9 s). IIM is a stable

and relatively quick parameter identification method that can be

applied in a broad variety of model configurations. In contrast to

most established methods, IIM is not susceptible to local

minima and is thus, starting point and operator independent.

Keywords Parameter identification � Physiological

modelling � Pharmacokinetics � Pharmacodynamics

1 Introduction

Physiological models are used to mathematically describe,

replicate or predict the dynamics or mechanics of biological

phenomenon. Suitable models accurately describe or

re-create observed behaviour of an appropriate range of

subjects by varying the value of key model parameters. The

values of these model parameters can then be used to char-

acterise the observed behaviour with respect to the model

configuration. Most frequently, the optimal model parameter

values are considered those that minimise the difference

between the observed data and a response simulated by

the model. Numerous algorithms have been postulated for

the purpose of identifying the optimal model parameter

values as a function of the model formulation and observed

data [3].

However, parameter identification is intrinsically com-

plex. An insufficient ability to effectively apply parameter

identification methods or diagnose and remedy their failure

can become an insurmountable research obstacle. Thus,

there is some significant demand for a parameter identifi-

cation method that is robust, convex and relatively intuitive

and straightforward to apply.

Most algorithms attempt to identify the optimal param-

eter values by characterising the error change as a function

of variances in the model parameters. For example, the

Levenberg–Marquardt algorithm is a very commonly used

form of nonlinear-least-squares that optimise model

parameters in the direction of descending simulation error

[11, 15]. The algorithm steps towards convergence by

measuring the derivative of an error-surface with respect to

changes in model parameters and defines a parameter

change that is a function of the derivative and a manually

defined proportional driver. Thus, the method can be used

for numerous model configurations, and has been accepted

as a preferred method in a number of fields. However, the

method is susceptible to instability when there is an insuf-

ficient error gradient at the initial conditions, or the pro-

portional driver value is over-estimated. Under-estimation
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of the driver will slow the rate of convergence. Furthermore,

the method is non-convex and can converge to false local

minima giving incorrect parameter values. Thus, the

method requires some operator experience and care for best

results, which cannot necessarily be provided by some

research groups.

The single integral parameter identification method has

been proposed as a simple-to-use, convex algorithm that is

robust to sample error [8]. It has been used in a number of

applications [4, 10, 13, 14, 16, 18]. However, the single

integral method does not necessarily converge to a mini-

mal least-square error. The iterative integral method

(IIM) is an extension of the single integral method and

has previously been presented in application [5, 7], but

without formal validation or comparison. This article pre-

sents IIM methodology, and compares it to the frequently

used Levenberg–Marquardt nonlinear-least-squares method

[11, 15].

2 Methods

2.1 Steps of the iterative integral method

A general coupled first order differential equation will be

used to define the overall IIM algorithm. We may write this

in a general form such that for a vector of measured species

variables x with x 2 R
n then the kth differential equation

can be written as:

_xk ¼
XM

j¼1

njkfj x; t; hð Þ ð1Þ

where xn is a co-dependent species of the subset of x,

x 2 R
n�1, fj are functions of x and a priori known

parameters and/or known external time-variant inputs (h),

while njk are the matrix of unknown parameters to be

identified. To illustrate the method, we simplify the system

of o.d.e.s to a pair of coupled equations given by:

_x ¼
XM

j¼1

njfj x; t; hð Þ

_y ¼ fMþ1

ð2Þ

with the constraints

fi 6¼ fj for i 6¼ j

nM ¼ 1

These constraints enable a priori model identifiability

and unique identification of all the nj’s [7, 17].

If none of fi are functions of x, the first iteration of IIM

will produce the optimal parameter values and further

iterations would not improve the outcome. In this case, the

single integral method is sufficient. However, if any of the

fi are functions of x, then IIM is needed to converge to the

solution. The IIM algorithm is defined in Steps 1–7:

1. The governing equation is integrated over time

x tð Þ � x 0ð Þ ¼
XM

j¼1

nj

Z t

0

fj x; t; hð Þds

2
4

3
5 ð3Þ

2. The equation is re-arranged with unknown coefficients

(njk) on the RHS and the remaining terms on the LHS

with x(t) = xt and x(0) = x0, we have that

x tð Þ � x 0ð Þ �
Z t

0

fM x; t; hð Þds ¼
XM�1

j¼1

nj

Z t

0

fj x; t; hð Þds

2

4

3

5

ð4Þ

3. The LHS and the coefficients of the model parameters

are evaluated over a series of periods between t0 and

the sample times t1, t2,…,tn where xt and x0 are the

measured data. In contrast, functions fi are evaluated

by simulations of xn. The initial fi simulations can be

evaluated using simple linear interpolations of the

measured data or a vector of zeros.

4. The values evaluated in Step 3 are arranged in the

matrix formulation over all evaluated periods:

An ¼ w

A ¼ Aij

� �
; Aij ¼

Zti

0

fj x; s; hð Þ ds

w ¼ wif g; wi ¼ xt � x0 �
Zti

0

fM x; s; hð Þ ds

ð5Þ

Since the matrix is non-square, the system is over-determined

and A-1 does not exist and careful analysis is needed to find

the modelling parameter vector (n). To solve the matrix

system, the Moore–Penrose pseudo inverse is used. However,

this approach does not automatically produce a unique

solution and there is no indication that the matrix is

necessarily of full rank. A solution may be obtained in the

least squares sense by minimising the error (E):

E ¼ An� wk k2 ð6Þ

where we assume that the M columns of A are linearly

independent.

5. x is re-simulated using the identified vector n and the

governing Eqs. 1 and 2.

6. Equation 5 can be re-defined using the updated fi to

re-evaluate n

7. Steps 5 and 6 are iterated until convergence is

declared.
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It should be noted that this process is mechanistic.

Neither does it require initial starting values to be esti-

mated nor does it require the calibration of the proportional

driver functions to stabilise or accelerate convergence.

Hence, the method is operator independent.

2.2 Insulin pharmacokinetic example

The iterative method will be used to identify insulin

pharmacokinetic parameters from the dynamic insulin

sensitivity and secretion test (DISST) model [14] defined in

Eqs. 7 and 8. This coupled model is indicative of a number

of physiological models. The DISST model fits to the

insulin data by finding the optimal values of the first pass

(xL) and proportional (nT) insulin clearance rates [14].

_I ¼ �nT

I

1þ aII
þ nT

Vp

ðQ� IÞ þ xLUN þ UX

VP

ð7Þ

_Q ¼ nI

VQ

I � nC þ
nI

VQ

� �
Q ð8Þ

where I and Q are the plasma and interstitial insulin

concentrations [xn in Eq. 1]; VP and VQ are the distribution

volumes of plasma and interstitium [h]; UN and UX are the

endogenous and exogenous insulin inputs [h]; nI is the

a priori known rate of transfer between plasma and

interstitium [h]; nC is the a priori known clearance rate in

the interstitium [h]; aI is the saturation of insulin clearance

[h]; nT is the proportional plasma clearance rate [n1]; and

xL is the proportion of endogenous insulin that is not

extracted on the first hepatic pass [n2].

if : n1 ¼ nT ) f1 ¼
�I

1þ aII

if : n2 ¼ xL ) f2 ¼
UN

VP

n3 ¼ 1) f3 ¼
n1

VP

ðQ� IÞ þ UX

VP

f4 ¼
n1

VQ

ðI � QÞ � nCQ

2.3 Analysis

Clinical data obtained from one insulin resistant (IR) and

one healthy, normo-glucose tolerant (NGT) participant of

the DISST pilot investigation [14] are used to characterise

the range of test responses that may be expected from a

general cohort. Participant characteristics are summarised

in Table 1. Parameter values from these participants are

used to simulate 60-min insulin response to the DISST test

stimulus in silico. The DISST stimulus includes 10 g

intravenous (IV) glucose bolus at t = 10 and 1 U IV

insulin bolus at t = 20 min. The endogenous insulin pro-

duction response (UN) will be modelled as a three-stage

block step infusion with three rates: the basal rate (UB)

from t = 0–10, the first phase (U1) response to glucose

stimulus from t = 10 to 15 and the second phase response

(U2) t = 15–60 min. Data in terms of I will be ‘sampled’

from the synthetic profiles at 5-min interval.

In order to provide context and comparison, IIM and the

frequently used nonlinear least-squares method are used to

identify the true values of nT and xL from the ‘sampled’

data using 16 starting points. The 16 initial conditions are

within the values that may be reasonably assumed [14] and

are shown in Fig. 1. Convergence is declared when both

model parameters are within 1% of the true values, while

non-convergence is declared if at least 1 parameter is

outside 1% after 100 iterations.

Nonlinear least-squares will be applied with the pro-

prietary Matlab
TM

(version 7.10.0, R2010a) function lsq-

nonlin.m. The IIM method is also applied in Matlab
TM

(version 7.10.0, R2010a).

Step 3 of IIM states that the method does not necessarily

require accurate simulations for the initial estimate. Thus,

six initial condition cases are tested:

1. It = interpolation of measured data. This is the typical

approach used in application,

2. It = interpolation of measured data It 9 0.5,

3. It = interpolation of measured data It 9 2,

4. It = interpolation of measured data It 9 5,

5. It = 0,

6. It = I(0).

Finally, if the nonlinear least-squares method converges

to local minima, the local minima values will be used to

simulate It and Qt profiles that will be used as initial con-

ditions of IIM.

3 Results

Figure 2 presents the error distribution as a function of

model parameter variances across the axis shown in Fig. 1.

Table 1 Summary

characteristics of participant

physiology

BMI [kg m-2] UN [mU min-1] nT [min-1] xL SI

[10-4L mU-1 min-1]
UB U1 U2

IR 33.9 115 233 151 0.123 0.178 2.23

NGT 21.4 26.6 487 9.69 0.278 0.203 20.9
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Note that the in silico data used in this analysis does not

include simulated noise to represent assay error. Hence,

there are ‘zero error’ conditions at the true values which

would not occur in real clinical data.

Iterative integral method successfully iterated to the true

values from every starting condition. The nonlinear least-

squares method failed to converge on 7 of the 32 cases

tested (22% failure). Table 2 indicates the initial conditions

that caused failure of nonlinear least-squares and provides

an indication of the nature of the failure.

Table 3 shows that while IIM typically requires more

iterations than nonlinear least-squares, those iterations

are less computationally expensive, and convergence is

achieved faster. Figure 3 shows the convergence patterns of

the two methods as a function of time.

The convergence paths from the 16 starting positions for

both participants and both identification methods are

shown in Fig. 4. Note that IIM followed distinct conver-

gence patterns for each participant, and while some initial

iterations actually produced parameter values that diverged

from the true values, the convergence path always reduced

in It simulation error. In contrast, nonlinear least-squares

converged in the direction of descending error gradient.

The starting point analysis was undertaken to directly

compare the performance of IIM and nonlinear-least-

squares. However, typical application of the IIM uses

interpolation of the measured data as an initial condition

rather than initial parameter estimates. Figure 5 shows the

convergence of the parameters when the different initial It

and Qt profiles are tested. Note that for most cases, the

initial parameter estimation using the simple initial simu-

lation is within the range of expected values, and converges

quickly to the true values. However, for the NGT It = I(0)

case, the parameter values identified in the initial iteration

were very erroneous, and while it eventually converged to

the simulation values, the rate of convergence was slow.

Hence, placing bounds that limit parameters to realistic

values significantly increased the rate of convergence. The

effect of such bounding shown in Fig. 5, where nT is bound

below 1 min-1.

Figure 5 also shows successful convergence when the

local minima identified by nonlinear least-squares (listed as

failures numbered 2–4 in Table 2) are used to simulate It

and Qt profiles which are then used as initial conditions for

the IIM.
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Fig. 1 Starting conditions and true values of nT and xL for the IR and
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Fig. 2 Error distribution across the identified model parameters. (NGT left, IR right)
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4 Discussion

Iterative integral method is a robust and relatively fast

method of parameter identification. For each of the initial

and local minima conditions tested, the method success-

fully converged to the true values. The convergence path

of IIM consistently reduced the It simulation error.

Although model parameter values from the initial itera-

tions of the method actually diverged from the true values

in some cases, convergence ultimately occurred and the

true parameter values were always identified. IIM is

comparatively simple to apply, starting point independent

(Fig. 3), and requires no special operator input or care. In

particular, the method can use arbitrary initial simulations

of the observed analytes (Fig. 5), which are significantly

advantageous over non-convex starting-point-dependent

methods.

For the cases presented, IIM is more robust than

nonlinear least-squares. Seven of the 32 cases failed to

converge to the true parameter values when the nonlinear

least-squares method was used (Tables 2, 3). A very low

gradient of the error-surface at four of the starting condi-

tions meant that nonlinear least-squares failed to initialise

iteration towards the true values. Three of the failed cases

resulted in iteration towards local, rather than global,

minima. While the cases which failed to initialise may be

quickly recognised by the researcher and could be poten-

tially remedied via alternative initial conditions, the cases

Table 2 Cases of nonlinear

least-square failure
Failure no. Participant Starting conditions Reason

nT xL

1 NGT 0.5 0.5 Insufficient initial gradient

2 IR 0.125 0.5 Converged to local minima (0.129, 0.190)

3 IR 0.375 0.5 Converged to local minima (0.135, 0.201)

4 IR 0.5 0.375 Converged to local minima (0.167, 0.266)

5 IR 0.5 0.125 Insufficient initial gradient

6 IR 0.5 0 Insufficient initial gradient

7 IR 0.25 0 Insufficient initial gradient

Table 3 Convergence of methods and indicative identification times from the respective methods

Method Convergence from

starting points

Iterations to convergencea Time to converge (seconds)a

Min, Q1, Q2, Q3, Max Min, Q1, Q2, Q3, Max

Iterative integral 32/32 (100%) 15, 21, 31, 38, 78 0.61, 0.82, 1.23, 1.55, 3.91

Nonlinear-least-squares 25/32 (78%) 3, 8, 11, 15, 74 0.42, 2.04, 3.29, 4.89, 44.9

Median in bold
a Cases that did not converge are not included
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Fig. 3 Convergence of parameters as a function of time. (NGT left, IR right)
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of convergence to local minima would not be as easily

observed, and thus, non-optimal parameter values would

generally be reported.

The median convergence time for IIM was faster than

for nonlinear least-squares. Table 2 and Fig. 4 show that

the median required iterations for convergence of the

nonlinear least-squares method was less than the iterative

integral method. However, the overall computational

requirement of IIM was significantly less than nonlinear

least-squares. This result is due to the different number of

forward simulations required by the two methods. While

IIM requires only one simulation per iteration, the non-

linear least-squares method requires numerous simulations

at each iteration to compute a Jacobian. As the model of

Eqs. 7 and 8 had a saturation term, analytical solutions

were not possible. Thus, comparatively computationally

expensive Picard iterations [9, 19] were used to simulate It

and Qt. Importantly, such non-linearity features in many

physiological models and identification problems. Hence,

much of the computational cost of each method is attrib-

utable to the number of forward simulation processes.

Nonlinear least-squares seem to be slightly more com-

plex than IIM and thus could be more difficult to write into

computational code form. However, there are numerous

proprietary nonlinear least-squares computational packages

that require the user to define the model error given certain

parameter values. These packages then perform the more

complex iterative steps. However, when the proprietary

nonlinear least-squares packages fail to converge, an

in-experienced user may not be able to correctly diagnose
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Fig. 4 Convergence paths for IIM and nonlinear least-squares for both participants and all 16 starting conditions tested. (NGT left, IR right)
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and overcome the cause. Hence, the lack of robustness or

transparency can result in subpar results.

Iterative integral method has a major limitation in

comparison to the nonlinear least-squares method. Specif-

ically, it cannot be used to identify non-separable param-

eters. While this issue is not problematic for a wide variety

of models and research applications, it is impossible to use

in some situations. For example, the proportional and sat-

uration terms in Michalis–Menton formulations cannot be

concurrently identified with IIM [6].

Furthermore, IIM requires the identified model param-

eters to be functions of the observed species (i.e. x in

Eq. 1). Most often, model parameters are direct functions

of the measured species. However, when the identified

model parameters are functions of unobserved species,

re-arrangement of the model equations generally enables

an expression of the model variables in terms of the

observable species. Indeed, if the model parameters were

not dependent on the observed species, then the model

would not be a priori identifiable [1, 7, 17].

For example, the widely used Minimal Model (Equa-

tions 9 and 10) of insulin/glucose pharmacodynamics uti-

lises three model parameters, two of which are not a direct

function of glucose, the typically observed species (p2 and

p3) [1, 2].

_G ¼ p1 GB � Gð Þ � XG ð9Þ
_X ¼ p3 I � IBð Þ � p2X ð10Þ

where G is the measured glucose (GB denotes basal glu-

cose); I is the interpolation of measured plasma insulin data

(IB denotes basal plasma insulin); X is a lumped insulin

action and concentration parameter [X(0) = 0 assumed];

and p1–3 are identified model parameters with p1 repre-

senting glucose-related inhibition of endogenous glucose

production, and insulin sensitivity defined as p3/p2.

In order to identify p1–3 as model parameters, Eq. 10

must be incorporated into Eq. 9 to make p2 and p3 func-

tions of G. Equations 11–13 show how the Minimal Model

can be defined as a single equation in terms of G with

separated coefficients of the model parameters, thus

enabling the IIM approach.

X ¼ p3

Z
I � IBdt � p2

Z
Xdt ð11Þ

_G ¼ p1 GB � Gð Þ � G p3

Z
I � IBdt � p2

Z
Xdt

� �
ð12Þ

G� GB ¼ p1

Z
GB � Gdt þ p2

Z
G

Z
Xdsdt

� p3

Z
G

Z
I � IBdsdt ð13Þ

Hence, when the Minimal Model parameters are

identified with IIM, both G and X must be simulated

between iterations, these equations demonstrate the

flexibility of the presented method.

This article presented the IIM approach in general and

evaluated it in comparison to the nonlinear-least-squares

method for a validated insulin pharmacokinetic model [12]

and two indicative individuals. A two-variable case was

used in this analysis to allow the convergence paths to be

easily visualised. However, IIM is capable of identifying

models with a greater number of parameters. This analysis

enabled two distinct error-surfaces to be defined. These

distinct error-surfaces showed the different iterative paths

of IIM (Fig. 3). They also showed how the nonlinear least-

squares methods can fail when the initial parameter esti-

mations are located in areas of limited error gradient

(Fig. 3). Furthermore, the analysis showed how the non-

linear-least-squares method located local minima in the IR

participant’s error-surface (Fig. 3). Convergence to these

local minima was due to the sharp valley in the error-

surface limiting the efficacy of the Jacobian to identify the

dominant error gradient. In effect, nonlinear-least-squares

had reached convergence criteria. Equally, Fig. 5 (right)

shows that the IIM overcame these issues in the cases

tested.

Most importantly, IIM is robust to starting conditions,

and is not susceptible to locating local minima. IIM could

potentially be implemented in a wide range of physiolog-

ical models as the method is quicker, more stable and more

operator independent than the frequently used Levenberg–

Marquardt gradient decent method.
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