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Abstract The main objective of this article is to imple-

ment and compare QRS subtraction techniques for intra-

cardiac atrial electrograms based on using the surface ECG

as a reference. A band-pass filter between 8 and 20 Hz

followed by rectification, and then a low-pass filter at 6 Hz

are used for QRS detection. QRS subtraction was per-

formed using three different approaches: flat, linear and

spline interpolations. QRS subtraction affects the power of

the signals but it normally does not affect the dominant

frequency. The average power of the atrial electrograms

after QRS subtraction is significantly reduced for fre-

quencies above 10 Hz.

Keywords Atrial electrograms � Flat interpolation �
Linear interpolation � Spline interpolation � Subtraction

1 Introduction

During atrial fibrillation (AF), atrial electrical activity is

described as chaotic and random [15]. Frequency domain

analysis can help to interpret such activity. Ablation at sites

with dominant frequency (DF) resulted in a significant

prolongation of AF cycle length (AFCL) compared with

ablation of a site with nondominant frequencies [13, 19].

This result supports the use of DF mapping to identify

suitable ablation targets. It is important to minimize the

involvement of ventricular activity (QRS complexes)

because the range of frequencies of interest associated with

AF (from 5 to 12 Hz) overlaps with the frequency content

of QRS complexes (mainly from 10 to 30 Hz). If QRS

complex noise were not eliminated, the dominant fre-

quencies present in the atrial electrogram of some sites

might be ‘false’ in the sense that they do not indicate atrial

activation frequencies but QRS contamination. The main

purpose of this article is to demonstrate the effect that the

removal of QRS-related activity from atrial electrograms

has on the spectrum of these signals. The real importance

of our results for clinical application is the enhanced reli-

ability in the identification of atrial DF evidenced by the

marked reduction in spectral power of atrial electrograms

after 10 Hz resulting from the QRS subtraction.

A cancellation algorithm was presented by Slocum et al.

[20] who proposed to average QRST complexes and sub-

tract this averaged pattern from the electrogram. This

worked well, but there were residuals due to minor changes

in QRST morphology which were caused by movement of

the heart with respiration.
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Stridh et al. [21] proposed a modification of this tech-

nique aimed at reducing the effect of respiration and the

improvement was most obvious in leads with weak AF

(with low amplitude, in this study, leads V2 and V3).

Castells et al. [6] proposed a method similar to that by

Slocum et al. [20] where mean QRST complex was com-

puted by principal component analysis (PCA) instead of

averaging.

We aimed to evaluating the effects of cancellation on

unipolar signals with minimal far field ventricular depo-

larization using three different approaches, flat, linear and

spline interpolations rather than subtracting a pattern.

2 Methods

In this analysis, the algorithm detected ventricular activa-

tions from the QRS complexes of a surface ECG lead. The

ECG represents the total of the potentials generated by the

heart and contains information on all electrical events

occurring in the heart [18]. The QRS complex is the

dominant characteristic of the ECG signal [22], therefore,

reliable QRS detection remains an important area of

research. The ECG signal from lead V5 for a patient who

has AF is shown in Fig. 1a.

Figure 1b shows unipolar intra-cardiac atrial electro-

grams measured from inside the atrium. The noncontact

mapping system used (Ensite, St. Jude Medical) records

2048 virtual unipolar electrograms from multiple sites

simultaneously [11] sampled at 1200 Hz over 20 s. It con-

sists of atrial signals sometimes contaminated with far-field

ventricular activity. The patients underwent catheter abla-

tion guided by contact mapping using Ensite, NavX 6.0, St.

Jude Medical during electrophysiological procedures of AF.

There was approval from the Local Ethics Committee

for mapping and ablation studies for patients undergoing

AF ablation which include blood sampling and collection

of electrical data during the procedures. Data collected for

this study relate to patients who had consented to the

above.

It is important to eliminate ventricular signals that

contain relatively high frequency components compared

with other waves [16]. Therefore, QRS subtraction is the

first approach to be implemented for ‘cleaning’ atrial sig-

nals before performing spectrum analysis to locate domi-

nant frequencies.

The sweeping of the 3D representation of the atrium of

2048 unipolar electrograms (Fig. 2) is a spiral along the 32

‘parallels’ from pole to pole stepping down to the next

parallel after one full turn (and there are 64 ‘meridians’).

Fig. 1 a Surface ECG from patient in AF and b Intra-cardiac atrial electrograms
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2.1 QRS detection

Accurate QRS detection is important to recognize and

classify atrial and ventricular signals. Ventricular compo-

nent whilst present could not be accurately identified from

the noncontact unipolar atrial electrograms. Therefore, we

used signals from the surface ECG as a reference to

identify ventricular activity. The data collected from sur-

face ECG and the electrograms are sampled simulta-

neously. A technique based on Thakor et al. [22] was

implemented to detect the QRS complexes of the ECG

signals. The pass band frequencies, 8–20 Hz were deter-

mined based on the minimum and maximum duration of

the QRS complex (50–125 ms).

The signal was then rectified and a low-pass filter at

6 Hz applied to the rectified signal. The cut-off frequency

of this low-pass filter is determined by the shortest RR

interval of the ECG signals (354 beats per minute). FIR

filter design using the window method is used for the low

pass.

An adaptive threshold technique was used for QRS

detection. The adaptive threshold was adjusted and tended

to 75% of the running average of the peak of magnitude of

the QRS complexes [5]. The peaks were detected using this

threshold and to avoid detecting the same beat twice, a

refractory period (280 ms) was set, chosen to be a length of

time short enough that another beat could not physically

occur (214 bpm) [17].

The QRS was replaced by either flat, linear or spline

interpolation before frequency analysis was performed.

The subtracted points (110 points, with 50 points before

and 60 points after the detection) are based on the length of

typical QRS complex and the ratio 50/60 was selected

because the fiducial point of the detector is the first point

above the adaptive threshold.

Interpolation is the estimation of the unknown samples

of a signal using a weighted average of a number of known

samples by the neighbourhood [24].

2.2 Flat interpolation

In this approach, the subtracted QRS complexes were

replaced by a baseline value (near to zero).

2.3 Linear interpolation

Linear interpolation is often used to fill the gaps in a signal.

The interpolation consists of fitting a straight line between

two data points and choosing interpolated values at the

appropriate positions along that line [26]. If we have two

known points that have coordinates x0; y0ð Þ and x1; y1ð Þ as

shown in Fig. 3, the data series y along the straight line is

obtained from the equation:

y� y0

x� x0

¼ y1 � y0

x1 � x0

y ¼ x1 � xð Þy0 þ x� x0ð Þy1

x1 � x0

where x0 and x1 are the times (positions) of the data col-

lection at the beginning and end of the segment being

interpolated and x represents the corresponding time

(position) of the desired interpolated value within the

interval x0; x1½ �:

2.4 Spline interpolation

The term ‘spline’ derives from the flexible drafting tool

used by architects to draw piecewise continuous curves [8,

23, 26]. Splines have interesting properties such as highly

accurate derivative approximation, good convergence and

good stability in the presence of round-off errors [26].

Splines represent a middle ground between a purely ana-

lytical description and numerical finite difference methods

which break the domain into the smallest possible intervals.

With spline interpolation, we approximate the interpolation

function y xð Þ over the interval x0; x1½ � by dividing

the interval into sub regions with the requirement that there

be continuity of the function at the joints. We can define a

spline function, y xð Þ; of degree N (with N = 3 for cubic

splines) with values at the joints x0 ¼ u0� u1� u2. . .. . .

� uN�x1
and having the properties:

Fig. 3 Linear interpolation between the points

Fig. 2 3D representation of the atrium
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(1) In each interval ui�1� x� ui i ¼ 1;mð Þ; the function

y(x) is a polynomial of degree not greater than N.

(2) At each interior point, y xð Þ and its first N - 1

derivatives are continuous.

Consider a data series with elements xi; yið Þ; i ¼
1; . . .;N: The first two derivatives y0 xð Þ and y00 xð Þ will be a

constant for all x. Here, the prime symbol denotes differ-

entiation with respect to the independent variable x. We

write the spline function in the form

y xð Þ ¼ fi xð Þ; xi� x� xiþ1; i ¼ 1; . . .;N � 1

And specify the following conditions at the junctions of

the segments:

(1) Continuity of the spline function:

fi xið Þ ¼ y xið Þ ¼ yi ¼ i ¼ 1; 2; . . .;N � 1;

fi�1 xið Þ ¼ y xið Þ ¼ yi ¼ i ¼ 1; 2; . . .;N;

(2) Continuity of first derivative (slope):

f 0i�1 xið Þ ¼ f 0i xið Þ; i ¼ 1; 2; . . .;N � 1;

(3) Continuity of second derivative:

f 00i�1 xið Þ ¼ f 00i xið Þ; i ¼ 1; 2; . . .;N � 1

3 Results

3.1 QRS detection of intra-cardiac atrial electrograms

The band-pass filter used MATLAB filtfilt command to

filter the reference signals. This eliminates group delay

issues because it uses zero-phase forward and reverse

digital filtering. Figure 4a shows the signal after the band-

pass filter and rectification, and the signal after low-pass

filtering is shown in Fig. 4b.

The peaks of the QRS were detected and marked in red.

50 points to the left and 60 points to the right from the peak

points are marked in green as shown in Fig. 4b.

3.2 QRS subtraction from atrial electrograms

In the three different approaches, we implemented the 110

subtracted points are replaced by flat, linear or cubic-spline

interpolation, as shown in Fig. 5a–c. The flowchart of the

QRS detection and subtraction is shown in Fig. 5d.

The black line represents the atrial electrogram after

QRS subtraction (using flat, linear or spline interpolation),

while the blue dotted line represents the QRS complex

before subtraction was done.

3.3 Time analysis

Time-domain methods have been successfully applied in the

characterization of AF periods using ECG [25]. Anuradha

et al. [2] use time-domain methods to classify the cardiac

signals. They used adaptive neuro-fuzzy interface system

(ANFIS) and compared their results with those obtained

using the analytical method. As a result, they concluded that

ANFIS is the better of the two methods for ECG classifi-

cation. Husser et al. [9] use time–frequency analysis to

monitor and predict atrial drug effects during AF. They

showed that antiarrhythmic drugs (class I and III) can cause

atrial cycle length increase (decrease fibrillatory rate)

together with increased refractoriness and decreased con-

duction velocity. In time-domain analysis, complex frac-

tionated atrial electrograms (CFAE) have been noticed to

occur at areas of slowed conduction and pivot points of

reentrant wavelets [14]. Their mapping provides evidence

for the hypothesis that CFAE areas may be critical sites for

AF perpetuation and can serve as target sites for AF ablation.

3.4 Spectral analysis

Spectral analysis allows us to investigate the dominant fre-

quencies in a signal, as they are likely to be important to the

physical process. Berenfeld et al. [3] investigated the mech-

anism that underlies arrhythmias and focussed on the analysis

of human AF in the frequency domain. They reviewed the use

Fig. 4 QRS detection a ECG after band-pass filter and rectification,

b ECG after low-pass filter showing peaks of the signal and samples

to be subtracted
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(a) 

(b) 

(c) 

(d) 

Signal from surface ECG 

Band pass filter + rectification 

Low pass filter

Peak detection using adaptive 
threshold technique 

QRS subtraction using flat, 
linear and spline interpolation 

Fig. 5 The reference signal with QRS complex (blue dotted line) and atrial electrogram after QRS subtraction (black line) using a flat, b linear

and c spline interpolations. d Flowchart of the QRS detection and subtraction
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of the Fourier power spectrum and its DF to study the AF

mechanism in patients. In previous papers [4, 12], they

introduced the method of frequency sampling to identify the

spatial distribution of excitation frequencies during AF. Their

technique provides accurate localized sites of periodic activity

during AF and their results support the hypothesis that stable

localized sources are responsible for AF maintenance in the

isolated sheep heart.

DF analysis is a potential tool to analyse atrial rate in AF

[15]. The frequency characteristics of different areas of the

atria are not the same [4], hence DF analysis is used to

detect the areas that have rapid activations [15]. DF, defined

as the frequency with the highest power between 4 and

10 Hz, was obtained over 7 s-long segments. The DF esti-

mation of atrial electrograms after QRS subtraction was

determined after removing the direct current (DC) compo-

nent to obtain a stationary time series. DC component is the

mean value of the signals and it is important to remove it to

avoid a strong power at frequency zero in the spectrum. The

analysis was performed using FFT with frequency resolu-

tion 0.29 Hz and 50% overlap [7, 10]. The FFT approach is

efficient in terms of computation time [1, 7] and produces

reasonable results for a large class of signal processes.

4 Discussion

4.1 Effect of different QRS subtraction approaches

on DF

Three different approaches of interpolation were tested to

see the effect of the mean spectrum and illustrative results

are shown in Fig. 6 (fifth patient).

In Table 1, frequencies were the same value for flat, linear

and spline interpolations in each patient except for patient 4.

For patient 4, the DF for flat and linear interpolations is the

same, but DF for spline is showing a slight reduction. Hence,

we observed that the method of interpolation made little dif-

ference in the DF of the signals. However, the power ampli-

tude at the DF is different, as shown in Table 1.

Table 1 DF and power for each interpolation

No Flat Linear Spline

Freq Power (9105) Freq Power (9105) Freq Power (9105)

1 7.031 16.69 7.031 19.52 7.031 24.12

2 4.395 39.59 4.395 37.49 4.395 52.36

3 7.324 1.639 7.324 1.851 7.324 2.192

4 6.445 44.64 6.445 40.85 6.152 58.56

5 6.445 2.874 6.445 3.018 6.445 4.449

Fig. 6 Mean DF estimation of atrial electrogram using a flat, b linear

and c spline interpolations
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The mean power for flat and linear interpolations is

lower than for spline interpolation. This is due to the nature

of the graph for flat and linear approaches; the end power

depends on the slope of the segment of signal to be inter-

polated. If the signal is on a positive slope, the power for

linear approach is generally higher than that for flat inter-

polation, while if the signal is in on a negative slope the

power is lower due to the reduction of area under the graph.

Spline interpolation will normally result in higher power

due to the increase of area under the curve.

Figure 7a shows the mean frequency for all patients (P1,

P2, P3, P4 and P5) before and after QRS subtraction using

flat interpolation. We observed that the power for mean

frequency after QRS subtraction is reduced and this is most

significant for frequencies above 10 Hz. The reduction of

higher frequency power after QRS subtraction shows the

effect of cancellation of the QRS influences on the atrial

electrograms.

The analysis for 2048 unipolar atrial electrograms of

noncontact mapping shows that the power of the DF is

reduced after QRS subtraction. Figure 7b shows the power

spectrum before and after QRS subtraction in one patient.

The shape of the figure represents the 3D sweeping of the

atrium as explained in the Sect. 2.

In previous studies [20, 21], the QRS subtraction was

based on the shape of the QRS signal. In those studies, the

QRS complex is replaced with some pattern extracted from

the signal. In this study, we use flat, linear and spline

interpolations and we do not take the shape of the signal

into consideration. As for QRS detection, the surface ECG

is used as a reference while interpolation is done on the

atrial electrograms. The advantages of this approach are

that (i) it is not affected by changes in the shape of the QRS

and (ii) the DF values are consistent, irrespective of the

choice of the interpolation technique. The QRS subtraction

using three different interpolations only affects the power

of the signals but not the value of DF derived from the

electrograms. Finally, mean frequency after QRS subtrac-

tion shows low power for frequencies above 10 Hz.

5 Limitation

In this study, the subtraction includes the QRS complex

only (not the T wave). Some researchers argue that T

waves might introduce spectral contamination at 3–4 Hz

and that they should also be removed prior to estimation of

DF. We shall investigate this in a future work.
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